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Abstract
Well-designed pattern trees (wdPTs) have been introduced as an extension of conjunctive queries
to allow for partial matching – analogously to the OPTIONAL operator of the semantic web
query language SPARQL. Several computational problems of wdPTs have been studied in recent
years, such as the evaluation problem in various settings, the counting problem, as well as static
analysis tasks including the containment and equivalence problems. Also restrictions needed to
achieve tractability of these tasks have been proposed. In contrast, the problem of enumerating
the answers to a wdPT has been largely ignored so far. In this work, we embark on a systematic
study of the complexity of the enumeration problem of wdPTs. As our main result, we identify
several tractable and intractable cases of this problem both from a classical complexity point of
view and from a parameterized complexity point of view.
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1 Introduction

With the steadily increasing amount of inaccurate and incomplete data on the web, the
need for partial matching as an extension of Conjunctive Queries (CQs) is gaining more and
more importance. Therefore, in the semantic web query language SPARQL, the OPTIONAL
operator is a crucial feature. Recently, this operator (which we shall abbreviate to “OPT”
in the sequel) has also been studied for arbitrary relational vocabulary [4]. Intuitively, the
OPT operator (which corresponds to the left outer join in the Relational Algebra) allows
the user to extend CQs by optional parts which are retrieved from the data if available, but
which do not cause the partial answers to get lost in case the optional information is not
available. The following example will help to illustrate this idea.

I Example 1. Consider the following {AND,OPT}-SPARQL query that is posed over a
database that stores information about movies:1((

(x, directed_by, y) AND (x, released, “before_1980”)
)

OPT (x, oscars_won, z)
)

OPT (y, first_movie, z′).

1 We use here the algebraic-style notation from [25] rather than the official SPARQL syntax of [28].
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{(x, directed_by, y), (x, released, “before_1980”)}

{(x, oscars_won, z)} {(y, first_movie, z′)}

Figure 1 The wdPT representing the query from Example 1.

This query retrieves all pairs (m, d) s.t. movie m is directed by d and released before
1980. This is specified by the pattern (x, directed_by, y) AND (x, released, “before_1980”).
Furthermore, whenever possible, this query also retrieves (one or both of) the following
pieces of data: the number of Academy Awards n won by movie m and the first movie m′
directed by d. In other words, in addition to (m, d) we also retrieve n and/or m′ if the
information is available in the database. This is specified by the atoms (x, oscars_won, z)
and (y, first_movie, z′) following the respective OPT-operators.

In [23], so-called well-designed pattern trees (wdPTs) were introduced as a convenient
graphical representation of CQs extended by the OPT operator. Intuitively, the nodes in a
wdPT correspond to CQs while the tree structure represents the optional extensions. The
wdPT corresponding to the query in Example 1 is displayed in Figure 1.

The semantics of a wdPT p is defined in terms of the CQs contained in it: with each
subtree T ′ of T containing the root, we associate a CQ qT ′ defined by the conjunction of all
atoms in the nodes of T ′. The evaluation of wdPT p over database D consists then of all
“maximal” answers to the CQs of the form qT ′ . That is, we take the union of all answers to
the CQs of the form qT ′ , for each T ′, and then remove all those answers that are “extended”
by some other answer in the set. We revisit Example 1 to illustrate these ideas.

I Example 2. Consider an RDF database D consisting of triples (“American_Graffiti”,
directed_by, “George_Lucas” ), ( “American_Graffiti”, released, “before_1980” ),
(“Star_Wars”, directed_by, “George_Lucas”), (“Star_Wars”, released, “before_1980”),
(“Star_Wars”, oscars_won, “6”). The evaluation over D of the wdPT in Figure 1, and,
therefore, of the query from Example 1, consists of partial mappings µ1 and µ2 defined
on variables x, y, z, z′ such that: (1) µ1 is only defined on x and y in such a way that
µ1(x) = “American_Graffiti” and µ1(y) = “George_Lucas”, and (2) µ2 is defined on x, y
and z in such a way that µ2(x) = “Star_Wars”, µ2(y) = “George_Lucas”, and µ2(z) = “6”.

To make wdPTs a proper extension of CQs, wdPTs have to be enhanced with projection.
For instance, for the wdPT in Example 1, one might decide to project out the variable x. In
this way, the answers µ1 and µ2 over the database in Example 2 would be restricted to µ′1
and µ′2, s.t. (1) µ′1 is only defined on y with µ′1(y) = “George_Lucas”, and (2) µ′2 is defined
on y and z and it holds that µ′2(y) = “George_Lucas” and µ′2(z) = “6”.

Several aspects of the complexity of wdPTs have been studied in previous works. Given a
database D and a query p, the evaluation problem asks if some given mapping µ is an answer
to p over D. This problem was shown coNP-complete for wdPTs without projection [25]
and ΣP2 -complete for wdPTs with projection [23]. Wrapping wdPTs into the CONSTRUCT
operator of SPARQL makes the evaluation problem NP-complete [20]. In [2], the max-
evaluation problem was introduced as a variant of the evaluation problem. Note that if we
allow projection, then it may happen that both, some mapping µ and a proper extension of µ
are solutions. This is indeed the case for µ′1 and µ′2 above. In [2], the max-evaluation problem
was identified as an important variant of wdPT evaluation: it asks if a given mapping is a
maximal solution (i.e., it cannot be properly extended to another solution). This problem is
DP-complete [2]. In [27], the counting problem of wdPTs was studied, i.e., given a database
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D and a query p, what is the number of solutions? It turned out that the counting problem
of wdPTs remains intractable even under very severe restrictions. Important query analysis
tasks such as the containment and equivalence problems in various settings were studied in
[26]. It was shown that the complexity of these tasks ranges from NP-completeness (if we
disallow projection) to undecidability (if projection is allowed in both queries).

Another interesting and very natural problem in the context of query languages is the
enumeration problem (i.e., computing one solution after the other without ever outputting
duplicates). Despite recent interest in the enumeration problem for First-Order and Conjunct-
ive Queries [5, 19, 29, 12], the complexity of enumerating the answers to wdPTs has been
hardly considered so far. A notable exception is [23], where it was shown that enumeration
of wdPTs without projection is tractable provided that the CQs contained in the wdPTs
are from some tractable fragment. In contrast, for wdPTs with projection, the enumeration
problem of wdPTs was shown intractable in [23] even when allowing only acyclic CQs to
appear at each node of a wdPT.

Goal. The goal of this work is to initiate a systematic complexity study of the enumeration
problem of wdPTs. We thus view the enumeration problem from various angles:

Classical complexity analysis of the combined complexity. We aim at identifying the
boundary between tractable and intractable enumeration for the set of both, all solutions
and maximal solutions. In [17], various notions of tractable enumeration are defined. We
concentrate on two such notions, namely polynomial delay as the strongest and output
polynomial time as the weakest form of tractability. The former means that the time
before outputting the first solution, the time between any two solutions and the time
between the last output and termination are all bounded by a polynomial in the size of
the input. The latter means that the total time for outputting all solutions is bounded by
a polynomial in the combined size of the input plus the output. In our quest for tractable
enumeration, we start with restrictions introduced in [4] to achieve tractable evaluation
and we will introduce further restrictions to get a better understanding of the sources of
complexity.
Parameterized complexity. Over more than a decade, parameterized complexity theory
[11] has developed into a well-established approach to dealing with intractability. The
ideal result of a parameterized complexity analysis is fixed-parameter tractability. This
means that the problem at hand can be solved in time f(k) · nO(1), where n is the size of
the input and f(k) is a function depending solely on the parameter k. In other words, the
exponential explosion can thus be confined to the parameter. By FPT, we denote the class
of problems with this behavior. The opposite behavior is fixed-parameter intractability.
This means that we can at best achieve an upper bound O(nf(k)) on the time complexity.
In other words, the size of the parameter occurs in the exponent of the input size n.
In this paper, we take the size of the query as parameter. In a sense, this gives us an
intermediate state between data complexity (where the query is considered as fixed) and
classical combined complexity (where the query is treated equally as the data). The
parameterized complexity approach allows us to obtain a more fine-grained picture of
the intractable cases by exploring the boundary between FPT-delay and fixed-parameter
intractable enumeration.
Revisiting the evaluation problem. Our complexity analysis of the enumeration problem
will bring to light an interesting relationship between fixed-parameter tractable enumer-
ation and evaluation. More formally, we will show that FPT-delay of the enumeration
problem for some type of wdPTs implies that also the evaluation problem for this type
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of wdPTs is in FPT. We thus resume the quest for tractable evaluation from [4] and
inspect the intractable cases (classical complexity) from a parameterized complexity point
of view. We thus aim at delineating the border between fixed-parameter tractability
and fixed-parameter intractability to get a better understanding of the nature of the
intractability.
Data complexity. Finally, we have a brief look at the data complexity of the enumeration
problem of wdPTs. Note that polynomial delay is trivial for query languages derived
from First-Order logic. Hence, the goal of analyzing the data complexity is to construct
an enumeration algorithm which works with linear-time preprocessing (i.e., the time to
produce the first output) and constant delay (i.e., the time between any two successive
outputs and the time after the last output).

Organization of the paper and summary of results. In Section 2, we recall some basic
notions and results. A conclusion and an outlook to future work are given in Section 6. The
main results of the paper are detailed in Sections 3–5, namely:

Evaluation problem. In Section 3, we revisit the evaluation problem of wdPTs. More
precisely, we subject the intractable cases from [4] for the evaluation problem to a
parameterized complexity analysis. By establishing both fixed-parameter tractability and
intractability results, we provide a more fine-grained picture of the complexity of this
problem.
Combined complexity. In Section 4, we study the combined complexity of enumerating
all solutions and of enumerating the maximal solutions. We have already recalled above
that – without any restrictions – testing if some mapping is a solution is harder than
testing if it is a maximal solution [23, 2]. By the same token, it was shown in [4] that
strictly more severe restrictions on the wdPTs are needed to achieve tractability of the
evaluation problem than for the max-evaluation problem. Our complexity analysis of
the enumeration problem reveals an interesting effect: it turns out that enumerating the
maximal solutions is harder than enumerating all solutions. A yet more detailed picture
of the complexity of the enumeration problem (for all solutions resp. for the maximal
solutions) is provided by studying also the parameterized complexity of this problem
under various restrictions.
Data complexity. In Section 5, we study the data complexity of the enumeration problem
(for all resp. for the maximal solutions) of wdPTs. Under the common assumption that
matrix multiplication of two Boolean n×n matrices is not feasible in time O(n2), we rule
out the possibility of linear time preprocessing and constant delay for a very restricted
class of wdPTs. However, if we allow polynomial time preprocessing then constant delay
is achievable for an appropriately restricted class of wdPTs.

2 Preliminaries

Conjunctive queries. We assume familiarity with the relational model, especially with
conjunctive queries (CQs), see [1] for details. In the following, we fix some notation. For a
set A of atoms we use dom(A) to denote the set of constants and variables appearing in A,
while var(A) refers to the variables only. Similarly, for a mapping µ we denote with dom(µ)
the set of elements on which µ is defined. It is convenient to denote mappings as sets of
ordered pairs. Thus two mappings µ1, µ2 are equal if µ1 = µ2, and a mapping µ2 extends a
mapping µ1 if µ1 ⊆ µ2. Furthermore, µ2 is a proper extension of µ1 if µ1 ⊂ µ2.
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We write CQs q as Ans(~x) ← R1(~v1), . . . , Rm(~vm), where ~x are the free variables, and
define var(q) = var({Ri(~vi) | 1 ≤ i ≤ m}). For the evaluation q(D) of a CQ q with free
variables ~x over database D, we depart slightly from the traditional definition. We define q(D)
to be the set of all mappings µ|~x such that µ is a homomorphism from R1(~v1), . . . , Rm(~vm)
into D, where µ|~x denotes the restriction (or projection) of µ to the variables ~x (observe that
usually, q(D) is defined as the set of all tuples µ(~x)).

Graphs. We consider undirected, simple graphs G = (V,E). For a graph G, we may write
V (G) and E(G) to denote the set of nodes and edges, respectively. As usual, a tree is an
acyclic graph, and a subtree is a connected subgraph of a tree. A tree decomposition of a
graph G = (V,E) is a pair (S, ν), where S is a tree and ν : V (S) → 2V , that satisfies the
following: (1) For each u ∈ V the set {s ∈ V (S) | u ∈ ν(s)} is a connected subset of V (S),
and (2) each edge of E is contained in one of the sets ν(s), for s ∈ V (S). The width of
(S, ν) is (max {|ν(s)| | s ∈ V (S)})− 1. The treewidth of G is the minimum width of its tree
decompositions. Intuitively, the treewidth of G measures its tree-likeness. Notice that if G is
an undirected graph, then G is acyclic iff it is of treewidth one.

Well-designed pattern trees. Well-designed pattern trees (wdPTs) were originally intro-
duced in [23] as a graphical representation of well-designed SPARQL defined in [25] and later
extended to arbitrary relational vocabulary [4]. Their formal definition is given below.

I Definition 3 (wdPTs). A well-designed pattern tree (wdPT) p is a tuple (T, λ, ~x), such
that the following holds:
1. T is a rooted tree and λ maps each node N ∈ V (T ) to a set of relational atoms.
2. For every variable y mentioned in T , the set of nodes of T where y occurs is connected.
3. The tuple ~x of distinct variables from T denotes the free variables of the wdPT.
We say that (T, λ, ~x) is projection-free, if ~x contains all variables mentioned in T .

Clearly, CQs correspond to the special case of wdPTs consisting of the root node only.
Condition (2) above is referred to as the well-designedness condition introduced in [25]. We
use upper-case letters to denote nodes of a wdPT, and lower-case letters for vertices of
tree-decompositions and general graphs. For a wdPT p = (T, λ, ~x) and a node N ∈ V (T ),
we may abbreviate var(λ(N)) to var(N). Also, for a subtree T ′ of T we may use var(T ′) to
denote the set

⋃
N∈V (T ′) var(N). Finally, we may write var(p) instead of var(T ).

Let p = (T, λ, ~x) be a wdPT. We write R to denote the root of T . Given a subtree
T ′ of T rooted in R, we define qT ′ to be the CQ Ans(~y) ← R1(~v1), . . . , Rm(~vm), where
{R1(~v1), . . . , Rm(~vm)} =

⋃
N∈T ′ λ(N), and ~y = var(T ′). Finally, we write |p| to denote the

size of p in standard relational notation – which corresponds to the size of qT .
We define the semantics of wdPTs by naturally extending their interpretation under

semantic web vocabularies [23, 26]. Intuitively, a mapping µ satisfies (T, λ) over a database
D if it is a solution to a CQ qT ′ and if no proper extension of µ is a solution to some CQ qT ′′ .
The result of evaluating a wdPT (T, λ, ~x) over D contains the projection of all mappings
satisfying (T, λ) to ~x. We formalize this next.

I Definition 4 (Semantics of wdPTs). Let p = (T, λ, ~x) be a wdPT and D a database.
A homomorphism from p to D is a partial mapping µ for which there is a subtree T ′ of
T rooted in R such that µ ∈ qT ′(D).
A homomorphism µ is maximal if there is no homomorphism µ′ from p to D s.t. µ ⊂ µ′.

The evaluation of wdPT p = (T, λ, ~x) over D, denoted p(D), corresponds to the set of all
mappings of the form µ|~x, such that µ is a maximal homomorphism from p to D.

ICDT 2016
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For a wdPT p and a database D, a mapping µ is called a partial solution if there exists some
solution µ′ ∈ p(D) s.t. µ ⊆ µ′. Observe that p(D) may contain mappings µ, µ′ s.t. µ ⊆ µ′. As
an example, recall the mappings µ′1 and µ′2 that are the result of restricting the mappings µ1
and µ2 from Example 2 to the variables y and z. We thus define the set of maximal solutions
as pm(D) = {µ ∈ p(D) | for all µ′ ∈ p(D) : µ 6⊂ µ′}. For instance, in the above example, the
maximal solutions contain only the mapping µ′2.

Parameterized complexity. Let Σ be a finite alphabet. A parameterization of Σ∗ is a
polynomial time computable mapping κ : Σ∗ → N. A parameterized problem over Σ is a pair
(L, κ) where L ⊆ Σ∗ and κ is a parameterization of Σ∗. We refer to x ∈ Σ∗ as the instances of
a problem, and to the numbers κ(x) as the parameters. The following well-known problems
will play an important role in our parameterized-complexity analyses.

p-Clique
Instance: A graph G and k ∈ N.
Parameter: k

Question: Does G contain a
clique of size k?

p-Dominating Set
Instance: A graph G and k ∈ N.
Parameter: k

Question: Does G contain a
dominating set of size k?

A parameterized problem E = (L, κ) belongs to the class FPT of “fixed parameter
tractable” problems if there exists an algorithm A deciding L, a polynomial p, and a
computable function f : N→ N such that the running time of A is at most f(κ(x)) · p(|x|).

Parameterized complexity theory also provides notions of intractability. Towards this
notion, we first recall the definition of fpt-reductions. Let E = (L, κ) and E′ = (L′, κ′)
be parameterized problems over the alphabets Σ and Σ′, respectively. An fpt-reduction
from E to E′ is a mapping R : Σ∗ → (Σ′)∗ such that (1) for all x ∈ Σ∗ we have x ∈ L iff
R(x) ∈ L′, (2) there is a computable function f and a polynomial p such that R(x) can be
computed in time f(κ(x)) · p(|x|), and (3) there is a computable function g : N → N such
that κ′(R(x)) ≤ g(κ(x)) for all x ∈ Σ∗.

One notion of intractability for parameterized problems are the classes W[i] (for i ≥ 1) of
the W-hierarchy. Since we are here only interested in the classes W[1] and W[2], we omit a
discussion of the W-hierarchy and only recall the following facts: A parameterized problem
E is in W[1] or W[2], if there exists an fpt-reduction to the problems p-Clique (for W[1])
and p-Dominating Set (for W[2]), respectively. Similarly, E is W[1]-hard or W[2] if there
exists an fpt-reduction from p-Clique and p-Dominating Set, respectively. It is strongly
believed that problems that are hard for W[1] or W[2] are not in FPT. For details, see [13].

Complexity classes for enumeration problems. A parameterized enumeration problem is
a triple (L, κ,Sol) such that L ⊆ Σ∗ (for an alphabet Σ), κ is a parameterization of Σ∗, and
Sol : Σ∗ → P(Σ∗) is a function such that for all x ∈ Σ∗, we have that Sol(x) (the set of
“solutions”) is finite and Sol(x) = ∅ iff x /∈ L. When we omit the parameterization κ, the
pair (L,Sol) is an enumeration problem.

An enumeration algorithm A for a (parameterized) enumeration problem E = (L,Sol)
(resp., E = (L, κ,Sol)) is an algorithm which, on input x, outputs exactly the elements from
Sol(x) without duplicates. We denote the output of A on x by A(x).

Let A be an enumeration algorithm for some problem E. For an input x, let n = |A(x)|.
For 0 ≤ i ≤ n, we define the delay delay(i) as follows: delay(0) (“preprocessing”) is the time
between the start of the algorithm and the (beginning of the) first output (or termination of



M. Kröll, R. Pichler, and S. Skritek 22:7

A, if n = 0). For 0 < i < n, delay(i) is the time between outputting solution i and (i+ 1).
Finally, delay(n) is the time between the last output and the termination of A.

The concept of the delay between outputs allows us to define several classes of enumeration
problems that capture different notions of tractability for these problems [17, 8, 31]. In the
sequel, let E = (L,Sol) (resp. E′ = (L, κ,Sol)) be a (parameterized) enumeration problem.
For a class C, we say that E ∈ C (E′ ∈ C, respectively), if there exists an enumeration
algorithm A for E, some m ∈ N, and a computable function f such that on every input x
the following holds:

E ∈ OutputP: A terminates in time O((|x|+ |Sol(x)|)m).
E′ ∈ OutputFPT: A terminates in time O(f(κ(x)) · (|x|+ |Sol(x)|)m).
E ∈ DelayP: delay(i) is in O(|x|m) for every 0 ≤ i ≤ |Sol(x)|.
E′ ∈ DelayFPT: delay(i) is in O(f(κ(x)) · |x|m) for every 0 ≤ i ≤ |Sol(x)|.
E ∈ DelayClin: delay(0) is in O(|x|) and for 0 < i ≤ |Sol(x)|, delay(i) is in O(1).

A stricter notion of allowing for polynomial delay between two solutions is captured by the
class SDelayP (“strict polynomial delay”): An enumeration problem E is in SDelayP if there
exists a total order < on Sol(x), some m ∈ N, and an algorithm B terminating in time O(|x|m)
with the following output: On input x, it returns the first element of Sol(x) (according to
<). On input (x, y) for any y ∈ Sol(x), it either returns the next element according to < if
there is some, or halts otherwise. As is common in the literature on enumeration, we use
RAMs (rather than Turing Machines) as model of computation [17].

3 Parameterized Complexity of Evaluation

While there has been some research on the classical complexity of fragments of wdPTs [4],
the parameterized complexity is still open. We thus recall two variants of the evaluation
problem, namely Eval(C) and Max-Eval(C) (where we ask if a given mapping is a solution
or a maximal solution, respectively) and introduce the parameterized versions p-Eval(C)
and p-Max-Eval(C). Here, the size of the query is taken as parameter.

Eval(C) / Max-Eval(C)
Instance: Query: wdPT p ∈ C,

mapping µ,
Data: database D.

Question: µ ∈ p(D) / µ ∈ pm(D)?

p-Eval(C) / p-Max-Eval(C)
Instance: wdPT p ∈ C, mapping µ,

database D.
Paramter: |p|
Question: µ ∈ p(D) / µ ∈ pm(D)?

Observe that in order to talk about the common notions of data- and query complexity, for
Eval(C) and Max-Eval(C) we distinguish which parts of the input are considered to be
part of the query, and which are part of the data. For the parameterized case, because of the
explicit parameter, such a distinction does not make sense.

Tractable CQ-evaluation. When looking for tractable classes of wdPT evaluation [4], a
natural starting point are tractable classes of CQ evaluation. We define the problem CQ-
Eval(C) for a class C of CQs as follows: Given a CQ q ∈ C, a mapping µ, and a database D
as input, decide if µ ∈ q(D). This problem has been extensively studied and several tractable
classes of CQs have been identified [32, 14, 15]. If the maximal arity of the relation symbols
is known in advance, even the precise border of tractability is known [16].

An important tractable class of CQs is obtained by restricting the treewidth of the
Gaifman-graph of queries [6]. The Gaifman-graph of a CQ q is a graph G = (V,E) where
V = var(q) and E contains exactly all pairs of variables that jointly occur in some atom
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in q. The treewidth of a CQ is the treewidth of its Gaifman-graph. We denote by TW(k)
the class of CQs of treewidth at most k. It follows from [6] (see also [10]) that for k ≥ 1,
CQ-Eval(TW(k)) is in PTIME.

Tractable wdPT-evaluation. In the past, tractable classes of CQs have been successfully
used for defining tractable classes of wdPTs following two different approaches. Either by
locally restricting the CQs defined by each node of the wdPT to be from some tractable class
(“local tractability”), or by globally requiring that for every subtree (containing the root) the
corresponding CQ is tractable (“global tractability”). Formally, let C be a class of CQs. A
wdPT p = (T, λ, ~x) is locally in C if for every node N ∈ V (T ) the CQ Ans()← λ(N) is in
C. Also, p is globally in C if for every subtree T ′ of T rooted in R the CQ qT ′ is in C. We
denote with `-C and g-C the sets of all wdPTs that are locally and globally in C, respectively.

It was shown for projection-free wdPTs that local tractability is sufficient to achieve tract-
ability. However, in the presence of projection, Eval(`-TW(k)) and Max-Eval(`-TW(k))
are NP-complete [23] and DP-complete [4], respectively. Resorting to global tractability
only helps when dealing with maximal solutions: Max-Eval(g-TW(k)) is in PTIME, while
Eval(g-TW(k)) remains NP-complete [4].

Thus, just restricting the structure of the CQs defined by a wdPT is not sufficient for
tractability. Instead, an additional source of complexity comes from the information shared
between different nodes. Thus another approach is to restrict the number of variables nodes
may have in common. Formally, let p = (T, λ, ~x) be a wdPT. For two nodes N,M ∈ V (T ),
we define the interface I(N,M) = var(N) ∩ var(M). Similarly, for a node N ∈ V (T ) define
I(N) =

⋃
M∈(V (T )\{N}) I(N,M). Observe that because of condition (2) in the definition of

wdPTs, the interface of a nodeN can be completely determined by just looking at its neighbors,
i.e. for every N ∈ V (T ) we have

⋃
M∈(V (T )\{N}) I(N,M) =

⋃
{M |{N,M}∈E(T )} I(N,M). For

c ≥ 0, we say that p has c-bounded interface if |I(N)| ≤ c for all N ∈ V (T ). Similarly, we
say that p has c-semi-bounded interface if for any two distinct nodes N,M ∈ V (T ) we have
|I(N,M)| ≤ c. We denote with BI(c) and SBI(c) the classes of wdPTs of c-bounded interface
and c-semi-bounded interface, respectively.

Of course, restricting only the number of shared variables is not sufficient for tractability,
since already the evaluation of the CQ in the root node is intractable. However, combining
the two approaches above finally leads to tractable classes of wdPTs: Let C be a class of CQs
s.t. CQ-Eval(C) is in PTIME and c ≥ 1. Then Eval(`-C ∩ BI(c)) is also in PTIME [4].

An inspection of the NP-hardness proof for Eval(g-TW(k)) provided in [4] reveals that
hardness even holds for Eval(g-TW(k) ∩ SBI(c)), but this class is newly introduced in the
present paper and was not considered in [4]. The introduction of the notion of a semi-bounded
interface allows us to define the classes `-TW(k) ∩ SBI(c) and g-TW(k) ∩ SBI(c). Below,
we show that a parameterized complexity analysis of these classes helps to explore the
gap between tractability of Eval(`-C ∩ BI(c)) and the NP-completeness of Eval(g-TW(k)).
In fact, we show that the parameterized evaluation problem for the different classes of
wdPTs is in PTIME (for `-C ∩ BI(c)), in FPT (for g-TW(k) ∩ SBI(c)), W[1]-complete (for
`-TW(k) ∩ SBI(c)), and W[2]-hard (for g-TW(k)), respectively.

Evaluation in case of bounded vs. semi-bounded interface. Before we present our FPT-
result for wdPTs in g-TW(k) ∩ SBI(c), we first discuss the main difference compared with
the restriction to `-TW(k) ∩ BI(c). In the latter case, it is easy to construct a global tree
decomposition of width k + c, s.t. for any two neighboring nodes N,M in the wdPT, the
interface I(N,M) is covered by some bag in the tree decomposition. Indeed, we can take a
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local tree decomposition for every node N (of width at most k) and add all interface variables
to every bag. A global tree decomposition of p is then obtained by gluing together the local
tree decompositions. With this global tree decomposition, the FPT-membership (actually,
even the PTIME-membership) is easily established [4]. In contrast, for semi-bounded interface,
the variables in I(N,M) for neighboring nodes N,M in p can be arbitrarily scattered over
the global tree decomposition. Since the total number of interface variables of a single node
in p with all its neighbors is unbounded, we cannot apply the above trick to construct a tree
decomposition where all interfaces are covered by some bag. Hence, a different approach is
needed in the following theorem to obtain FPT-membership also in this case.

We first introduce the decision problem ExtendSolution(C) (a similar problem was
introduced in [7, 9] to study enumeration problems), defined as follows: given a database D,
a wdPT p ∈ C, a partial mapping µ and a set ~x′ ⊆ ~x (where ~x are the free variables of p),
does there exist some mapping µ′ ∈ p(D) such that µ ⊆ µ′ and dom(µ′) ∩ ~x′ = ∅? Observe
that the last property dom(µ′) ∩ ~x′ = ∅ is essential, since it allows us to explicitly specify
variables ~x′ which we do not want to be bound by the desired solutions. Clearly, the problem
Eval(C) corresponds to the special case of the ExtendSolution(C) problem where we set
~x′ ∪ dom(µ) = ~x, i.e., we ask if µ itself is the desired mapping µ′.

I Theorem 5. The problem p-Eval(g-TW(k) ∩ SBI(c)) is in FPT for every k, c ≥ 1.

Proof idea. We prove FPT-membership for the ExtendSolution(g-TW(k) ∩ SBI(c)) prob-
lem, from which the desired FPT-result follows. Let p be a wdPT and D a database. Further
let T denote a global tree decomposition of p of width k, let ~x denote the set of free variables
in p, and let µ be a mapping with dom(µ) ⊆ ~x. Let N denote a set of nodes in p with
dom(µ) ⊆ var(N ) and let M = {M1, . . . ,Mβ} denote the set of nodes outside N whose
parent is in N . We have to test if there exists an extension ν of µ on the existentially
quantified variables in N , s.t. ν cannot be further extended to any of the nodes Mi inM.

The key idea is, for all Mi ∈M, to define critical subsets C(Ni,Mi) of I(Ni,Mi), where
Ni ∈ N is the parent of Mi. Intuitively, C(Ni,Mi) is defined in such a way that the existence
of an extension ν of µ to the variables in Mi only depends on the values for µ on each of the
critical subsets. Our FPT-algorithm relies on several crucial properties of C(Ni,Mi):

First of all, for each critical subset ~v ⊆ I(Ni,Mi), we can efficiently determine the “good”
(resp. “bad”) value combinations, i.e., value combinations such that an extension (resp. no
extension) of a mapping ν to Mi is possible, namely: good(~v) = {η | dom(η) = ~v and there
exists an extension ν of η to var(Mi) with ν(Mi) ⊆ D} and bad(~v) = {η | dom(η) = ~v and
there exists no extension ν of η to var(Mi) with ν(Mi) ⊆ D}. It can be shown that, for
an arbitrary mapping µ with I(Mi, Ni) ⊆ dom(µ), there exists an extension ν of µ with
var(Mi) ⊆ dom(ν) and ν(Mi) ⊆ D iff for every ~v ∈ C(Mi, Ni), we have µ|~v ∈ good(~v).

Consider µ from our arbitrary instance of ExtendSolution(g-TW(k) ∩ SBI(c)). We
have to test if there exists an extension ν of µ to the existentially quantified variables in N ,
s.t. ν cannot be further extended to any of the nodes Mi inM. In other words, such ν has
to satisfy the following two conditions: (1) ν(N) ⊆ D for every N ∈ N and (2) for every
i ∈ {1, . . . , β}, there exists a critical subset ~vi ∈ C(Mi, Ni), s.t. ν|~vi

∈ bad(~vi).
Hence, our decision procedure for ExtendSolution(g-TW(k)∩SBI(c)) just checks if such

a combination (~v1, . . . , ~vβ) of critical subsets exists. We can search for such a combination
by nested loops over all ~vi ∈ C(Mi, Ni) with i ∈ {1, . . . , β}. Since ~vi ⊆ I(Mi, Ni) and
|I(Mi, Ni)| ≤ c, there are at most 2c elements in each C(Mi, Ni). Moreover, β is bounded by
the size of p. Hence, we have to check at most f(p) = (2c)|p| combinations (~v1, . . . , ~vβ). To
prove the algorithm to be in FPT, it suffices to show that, for a given combination (~v1, . . . , ~vβ)
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of critical subsets, one can test in polynomial time if there exists an extension ν of µ with
(1) ν(N) ⊆ D for every N ∈ N and (2) ν|~vi

∈ bad(~vi) for every i ∈ {1, . . . , β}.
The second crucial property of the critical subsets C(Ni,Mi) with i ∈ {1, . . . , β} is that

for any combination (~v1, . . . , ~vβ) with ~vi ∈ C(Ni,Mi), we can transform the given global tree
decomposition T of p of width k into a tree decomposition T ∗ of width ≤ (k+ 1) · (c+ 1), s.t.
every ~vi is covered by the bag of some vertex t in T ∗. Analogously to the PTIME-membership
proof in [4], the tree decomposition T ∗ guarantees that the check for the existence of an
extension ν of µ with the desired properties (1) and (2) is feasible in polynomial time. J

What happens if, instead of the restriction to g-TW(k) ∩ SBI(c), we consider `-TW(k) ∩
SBI(c)? Below we show that, with this relaxation, fixed-parameter tractability is lost.

I Theorem 6. The problem p-Eval(`-TW(k)∩SBI(c)) is W[1]-complete for k ≥ 1 and c ≥ 2.

Proof sketch. Membership is shown by reduction to the W[1]-complete problem Pos-Eval,
which is the evaluation problem for FO-queries built from relational atoms using ∃,∧,∨ [24]
(see also [24] for the problem definition). The idea is to create one positive query which is a
big disjunction over all possible CQs qT ′ corresponding to subtrees of p that potentially have
µ as an answer. The maximality of answers is enforced by introducing “interface relations”
which, for every child node, only contain those tuples which cannot be extended to the child.

Hardness is shown by an fpt-reduction from p-Clique. Given a graph G = (V,E) and
d ∈ N, we construct a wdPT p and a database D with the following intuition: The root R of
p contains d variables x1, . . . , xd. Mapping the root into D assigns one node from V to each
xi. In addition, R contains one child for each pair of distinct variables xα, xβ ∈ {x1, . . . , xd}.
Each of these children can be mapped into D iff there is an edge between the nodes assigned
to xα, xβ . Thus G contains a clique of size d iff there exists a mapping µ ∈ p(D) that maps
all children of R into D. J

We now consider another relaxation of the g-TW(k) ∩ SBI(c) restriction from Theorem 5
by considering wdPTs in g-TW(k) but without any bound on the interfaces.

I Theorem 7. The problem p-Eval(g-TW(k)) is W[2]-hard for k ≥ 1.

Proof sketch. The proof is by reduction from p-Dominating Set. Thus, let G = (V,E) be
a graph and d ∈ N. The idea of the constructed wdPT p and database D is to have variables
x1, . . . , xd in the root R of p such that a mapping of R into D assigns one node from V to
each xi. Observe that S ⊆ V is a dominating set iff there does not exist some u ∈ V \ S that
is not adjacent to any node in S. This is tested in the single child node of R: It contains an
additional variable x0 which also encodes nodes in V . Now the child node is mapped into D
iff there exists a value for x0 that differs from those of all xi’s, and there does not exist an
edge between the nodes mapped to x0 and any of the xi’s. I.e., there exists a solution that
only maps the root into D iff G contains a dominating set of size d. J

It was shown in [4] that the problem Max-Eval(g-TW(k)) is in PTIME. In other words,
for wdPTs with globally bounded treewidth, there is no need to also restrict the interface.
Moreover, as recalled above, restricting wdPTs to `-TW(k) ∩ BI(c) also yields a restriction of
the global treewidth. The only case remaining is therefore the restriction to `-TW(k)∩SBI(c).

I Proposition 8. The problem p-Max-Eval(`-TW(k) ∩ SBI(c)) is W[1]-hard for k ≥ 1 and
c ≥ 2.

Proof. The reduction used to prove the hardness in the proof of Theorem 6 also proves this
case, since clearly µ ∈ p(D) iff µ ∈ pm(D). J
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4 Classical and Parameterized Complexity of Enumeration

We now turn our attention to the enumeration problem. Analogously to the evaluation
problem in Section 3, we will study four variants of the enumeration problem, namely
enumerating all vs. the maximal solutions and parameterized vs. non-parameterized problems.

Enum(C) / Max-Enum(C)
Instance: Query: wdPT p ∈ C.

Data: database D.
Output: p(D) / pm(D)?

p-Enum(C) / p-Max-Enum(C)
Instance: wdPT p ∈ C, database D.
Parameter: |p|
Output: p(D) / pm(D)?

For CQs, the enumeration problem is also well-studied, although not as thoroughly as the
evaluation problem. Similarly to the evaluation problem, restrictions on the graph structure
of the query have proven useful when looking for tractable enumeration of CQs, cf. [32, 5, 3].
For wdPTs, analogously to the evaluation problem, additional restrictions are necessary
in order to achieve tractability. However, for enumeration we get a more diverse picture
than for evaluation: When we are interested in all solutions, the additional restrictions used
for evaluation are sufficient also for enumeration, while this is not the case if we are only
interested in the maximal solutions. It will turn out that the techniques required to analyze
the enumeration of all vs. the maximal solutions differ significantly. We thus treat the
enumeration and the max-enumeration problems in separate subsections below.

4.1 Enumeration
For our study of the enumeration problem, the decision problem ExtendSolution(C),
which we introduced in Section 3, again plays an important role.

I Lemma 9. Let C be a class of pattern trees, p = (T, λ, ~x) ∈ C, and D a database. Assume
that there is a computable function f such that for every partial mapping µ and every subset
~x′ of ~x, the problem ExtendSolution(C) can be decided in O(f(|p|, |D|)). Then there exists
an algorithm enumerating p(D) with delay(i) in O(f(|p|, |D|) · |D| · |p|) for i ≥ 0.

Proof Sketch. The general idea is to create solutions by iteratively testing if certain variable
bindings can be extended to solutions. Observe that for CQs, it would suffice to test (in
nested loops) for each variable if it can be bound to a certain domain element. In contrast,
for wdPTs, we now have to consider an additional option, namely not binding a variable at
all. Thus, we look for extensions (= solutions) that bind some variables to specific domain
values (expressed by µ) and leave some variables unbound (expressed by ~x′).

In a little bit more detail, we enumerate all ν ∈ p(D) as follows: For all a ∈ dom(D), we
can check using ExtendSolution(C) whether {(x1, a)} can be extended to a solution (by
setting µ = {(x1, a)}), and whether there is a solution ν ∈ p(D) with x1 6∈ dom(ν) (by setting
~x′ = {x1}). Then by either fixing such a value a1 ∈ dom(D), or by fixing the fact that x1 will
not be in the domain of an extension, we can repeat this test for all a2 ∈ dom(D). Thus by
iteratively fixing such variable assignments (respectively intentional non-assignments) for all
n variables xi in ~x by either extending µ or ~x′, we can output a mapping ρ ∈ p(D) in the n-th
step. Given a solution ρ ∈ p(D), we find the next one by taking the maximal j ∈ {1, . . . , n}
such that under the same assignments for x1, . . . , xj , the check for an extension is positive
for a different ν(xj). Extending this assignment as described above gives a ρ′ 6= ρ with
ρ′ ∈ p(D). Iterating this process outputs p(D) with a delay of O(f(|p|, |D|) · |D| · |p|). J
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To make use of this lemma, we identify classes of wdPTs that meet the requirements:

I Proposition 10. The following complexity results hold for ExtendSolution(C):
1. Let k, c ≥ 1 and C be a class of CQs for which CQ-Eval(C) is in PTIME. Then

ExtendSolution(`-C ∩ BI(c)) is in PTIME.
2. ExtendSolution(g-TW(k)) is NP-complete for every k ≥ 1.
3. Let k, c ≥ 1. Then ExtendSolution(g-TW(k) ∩ SBI(c)) parameterized by |p| is in FPT.

Proof idea. (1) follows by some slight modifications of the proof of [4, Theorem 6]. Since
Eval(C) is a special case of ExtendSolution(C) where ~x′ = ~x \ dom(µ), (2) follows
immediately from [4]. For (3) we note that in the previous section, Theorem 5 was stated for
p-Eval(g-TW(k) ∩ SBI(c)). One can actually show the stronger result of FPT membership
for the parameterized version of ExtendSolution(g-TW(k) ∩ SBI(c)). J

Now the following corollary follows immediately from the previous results.

I Corollary 11. Let k, c ≥ 1.
Let C be a class of CQs for which CQ-Eval(C) is in PTIME. Then Enum(`-C ∩BI(c)) is
in SDelayP.
The problem p-Enum(g-TW(k) ∩ SBI(c)) is in DelayFPT.

We now move to negative results for the enumeration problem. As an important tool and
an interesting result in its own right, we establish a close relationship between enumeration
and the parameterized complexity of evaluation. We introduce some terminology first:

I Definition 12. A class C of wdPTs is robust if for every wdPT p = (T, λ, ~x) ∈ C the
following two conditions hold:
1. For every N = {N1, . . . , Nm} ⊆ V (T ) the wdPT (T, λN , ~z) is in C, where ~z = {z1 . . . , zm}

is a set of new variables, λN (N) = λ(N) for all N ∈ V (T ) \ N and λN (Ni) = λ(Ni) ∪
{b(zi)} for 1 ≤ i ≤ m and some new relation symbol b.

2. For every variable x ∈ var(p), let p′ be the wdPT retrieved from p by replacing every
occurrence of x by the same constant c. Then p′ ∈ C.

The notion of “robust” classes of wdPTs is important in the following theorem, to make
sure that wdPTs do not fall out of their class when certain transformations are performed.

I Theorem 13. Let C be a robust class of wdPTs. If p-Enum(C) is in OutputFPT, then
p-Eval(C) is in FPT.

Proof Sketch. Given a pattern tree p = (T, λ, ~x), a database D and a mapping µ, we first
transform p into a pattern tree p′ by substituting free variables in p according to µ, and then
adding unary atoms of the form b(zi) with new variables to the leaf nodes of the minimal
subtree of T only containing the variables dom(µ) and to the children of the leaf nodes of
the maximal subtree containing only dom(µ). Further we set the free variables of p′ to the
newly introduced variables and extend the database to a database D′ = D ∪ {b(1)}. We can
fix a mapping µ′ ∈ p′(D′) such that µ ∈ p(D) iff µ′ ∈ p′(D′). Since |p′(D′)| is in O(|p| · 2|p|),
we can output all of p′(D′) in O(f(|p|) · |D|m) for some m ≥ 1 and some function f , and
hence decide whether µ′ ∈ p′(D′) and thus whether µ ∈ p(D) in time in O(f(|p|) · |D|m). J

Exploiting this relationship between the evaluation and the enumeration problem, the
next results are immediate consequences of the W[1]- and W[2]-hardness, respectively, shown
in the previous section and the fact that all the classes mentioned in this paper are robust.
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I Corollary 14. If FPT 6= W[1], then the following holds:
The problem p-Enum(`-TW(k) ∩ SBI(c)) is not in OutputFPT for k ≥ 1 and c ≥ 2. Thus
also the problem Enum(`-TW(k) ∩ SBI(c)) is not in OutputP for k ≥ 1 and c ≥ 2.
The problem p-Enum(g-TW(k)) is not in OutputFPT for k ≥ 1.

It follows of course also immediately from Theorem 13 (in combination with Theorem 7)
that Enum(g-TW(k)) is not in OutputP if FPT 6= W[1]. However, we can show the same
result under an even stronger assumption, namely assuming that PTIME 6= NP, by making
use of the following NP-hardness result.

I Proposition 15. The following problem is NP-hard for every k ≥ 1: Given a wdPT
p ∈ g-TW(k) and a database D, decide whether |p(D)| = 2.

Proof sketch. The proof is by reduction from the NP-complete problem Dominating Set,
via the same reduction used to prove Theorem 7. W.l.o.g. we consider only graphs G that
contain at least one node that is not already a dominating set. Then there always exists
one solution that maps both, the root and the child into D. In addition there still exists a
second solution that maps only the root into D iff G contains a dominating set of size d. J

The next result follows immediately. Indeed, an algorithm solving Enum(g-TW(k)) in
polynomial time w.r.t. the size of the input plus the output would provide a polynomial time
decision procedure for Dominating Set, a problem well-known to be NP-hard.

I Corollary 16. If PTIME 6= NP, then Enum(g-TW(k)) is not in OutputP for every k ≥ 1.

4.2 Max-Enumeration
We next turn our attention to the problem of enumerating only the maximal solutions of
a wdPT. In fact, we show that for none of the classes of wdPTs considered in this work,
the problem Max-Enum(`-TW(k) ∩ BI(c)) is in OutputP. After establishing this result, we
therefore turn towards the parameterized problem, where for all but one of the classes we
can show a positive result, namely DelayFPT membership.

Of course, for the negative result on the non-parameterized problem, it suffices to show
intractability for Max-Enum(`-TW(k) ∩ BI(c)), since the other results follow from that.
Again, we do this via an intractability result for a suitable decision problem.

I Proposition 17. The following problem is NP-hard for every k, c ≥ 1: Given a wdPT
p ∈ `-TW(k) ∩ BI(c), a database D, and an integer s ≥ 1 encoded in unary, decide if
|pm(D)| > s.

To show that Max-Enum(`-TW(k) ∩ BI(c)) is not in OutputP using this result, we recall
a relationship from [31] (also [18]). The lemma below is actually a slight reformulation of
[31, Lemma 2.11]. However, it holds by the same arguments as the original statement.

I Lemma 18 ([31]). Let E be an enumeration problem. If E is in OutputP, then the following
problem is in PTIME: Given an instance x of E and an integer s encoded in unary, decide if
|E(x)| > s.

The intractability of Max-Enum(`-TW(k) ∩ BI(c)) now is an immediate consequence of
the previous two results.

I Corollary 19. If PTIME 6= NP, then Max-Enum(`-TW(k) ∩ BI(c)) is not in OutputP for
every k, c ≥ 1.
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We now show that the parameterized problem p-Max-Enum(C) is tractable in all but
one cases. We first establish the tractability for C = g-TW(k) and C = `-TW(k) ∩ BI(c),
respectively. Of course, this immediately implies tractability for C = g-TW(k) ∩ SBI(c).

We start by formulating a crucial lemma. It will be convenient to recall the problem
Partial-Eval(C) from the literature (cf. [4]): Given a wdPT p, a database D and a mapping
µ, does there exist some µ′ ∈ p(D) s.t. µ ⊆ µ′?

I Lemma 20. Let C be a class of wdPTs such that Partial-Eval(C) is in PTIME. Assume
that there exists an enumeration algorithm A, such that for every p ∈ C and every database D,
A enumerates some set P of partial solutions with pm(D) ⊆ P with delay(i) in O(f(|p|)·|D|m)
for some computable function f , some positive integer m and 0 ≤ i ≤ |P |. Then p-Max-
Enum(C) is in DelayFPT.

Proof idea. Given the enumeration algorithm A for P , the idea is to construct an extension
A′ of A that, after initializing a set M = ∅, performs the following steps: (1) Retrieve the
next output µ of A and extend it to a maximal solution µm. If µm has not been created
before, add µm to M ; (2) If the previous step was repeated 2|p| times since the last output,
output and delete a mapping from M . If A halts, A′ outputs M and halts as well.

Two main observations are important: First, if Partial-Eval(C) is in PTIME, we can
always extend a (partial) solution to a maximal solution by greedily adding variable mappings.
Second, at most 2|p| partial solutions can be extended to the same maximal solution. J

For a class C of wdPTs to show that Max-Enum(C) is in DelayFPT it thus remains to
identify a suitable set of partial solutions. We do this for the classes mentioned before.

I Theorem 21. Let C′ be a class of CQs s.t. CQ-Eval(C′) is in PTIME, k, c ≥ 1, and
C ∈ {g-C′, l-C′ ∩ BI(c)}. Then the problem p-Max-Enum(C) is in DelayFPT.

Proof idea. If CQ-Eval(C′) is in PTIME, then the corresponding enumeration problem is
in DelayP (cf. [5]). Thus, for wdPTs p ∈ g-C′, we have qT ′ ∈ C′ for every subtree T ′ of T
containing the root. Thus

⋃
T ′ qT ′(D) gives the required set of partial solutions – it suffices

to compute the solutions for one CQ after the other. For l-C′ ∩ BI(c), we use p(D) which can
be efficiently enumerated by Corollary 11. J

Algorithm A′ sketched in the proof of Lemma 20 crucially depends on the choice of RAMs
as the model of computation: A′ may need to store an exponential number of maximal
solutions. A Turing Machine (TM) cannot access these solutions efficiently, while a RAM can.
However, these algorithms could be easily adapted to run in incremental delay on a TM, i.e.
for some m ∈ N and computable function f , delay(i) is in O(f(|p|) · (|p|+ |D|+

∑i
j=1 |yi|)m)

for i ≥ 0 (where y1, . . . , yi are the first i solutions returned by the algorithm).
We have thus shown fixed-parameter tractability for three out of the four classes we

consider. We conclude this section by showing that for the remaining class the problem is
not in OutputFPT.

I Proposition 22. If FPT 6= W[1], then p-Max-Enum(`-TW(k)∩SBI(c)) is not in OutputFPT
for every k, c ≥ 1.

Proof idea. The proof is based on the same parameterized reduction from p-Clique used
in the proof of Theorem 6. There we have that |pm(D)| ≤ 2|p|. Thus, if enumerating pm(D)
were in OutputFPT, then deciding p-Clique would be in FPT. J
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5 Constant Delay

We now move to the data complexity of the enumeration problem. To make this explicit
in the notation used below, we write Enump to denote the problem Enum(C) where the
query is considered fixed and the input consists of the database only. The usual goal in
the database context is to devise an enumeration algorithm that works with linear time
preprocessing and then outputs the solutions with constant delay [29, 30]. To reach this
goal, typically additional restrictions on the query (and/or the data) are required than just
acyclicity/bounded treewidth [12, 19, 3]. For instance, for CQs it was shown that under
reasonable complexity assumptions, the class of conjunctive queries that are free-connex
acyclic (respectively of bounded free-connex treewidth) is the only class of acyclic (bounded
treewidth) CQs which allows constant delay enumeration [3].

Below, we show that this goal is not reachable for the classes of wdPTs studied here. Recall
from Section 4 that lower bounds are proved relative to some common complexity theoretic
assumption such as PTIME 6= NP or FPT 6= W[1]. The assumptions used in this section are
of a different nature, namely assuming that certain upper bounds are not achievable for
the search of a triangle in a graph [21] and for the multiplication of Boolean matrices [22].
Observe that these are typical problems for showing these kind of lower bounds and have
been used e.g. in [3] to show the dichotomy result mentioned above.

We first revisit the case of wdPTs without projections, i.e. let Cpf be the class of wdPTs
p = (T, λ, ~x) such that ~x = var(p).

I Proposition 23. If it is not possible to decide in time O(n2) whether a graph G with
|V (G)| = n contains a triangle, then Enump is not in DelayClin already for wdPTs in Cpf
consisting of only a root node with a single child where the root node contains a single binary
atom, the child node contains two binary atoms, and the two nodes share two variables.

Proof Idea. Constructing a pattern tree p with only two nodes R and N and three binary
atoms and an appropriate database D, we can decide whether a graph has a triangle by
checking whether there is a µ ∈ p(D) such that µ is a mapping on the whole pattern tree.
Using the fact that |p| is constant, constant delay enumeration with linear preprocessing
thus leads to an algorithm detecting a triangle in O(n2). J

The negative result in Proposition 23 is mainly due to the restriction of preprocessing to
linear time. Below, we show that if we relax this restriction and allow preprocessing in time
O(|D|mf(|p|)) in terms of combined complexity for a constant m > 0 and some computable
function f , then constant delay is achievable. Note that it is important to require that m be
a constant in order to exclude preprocessing of time O(|D||p|), which in most cases would
suffice to simply compute all of the solutions.

I Theorem 24. Let c, k ≥ 1 be positive integers. Then there exists an enumeration algorithm
A for Enum(`-TW(k)∩BI(c)) with delay(0) in O(f(|p|) · |D|c+k+1) and delay(i) in O(1) for
i > 0.

Proof Idea. In the preprocessing, we construct a global tree decomposition of all atoms, which
is consistent with the structure of the pattern tree (cf. our discussion preceding Theorem 5).
Then by partitioning the corresponding relations of the nodes of the decomposition and
eliminating tuples which are not part of some solution, a repeated top-down traversal through
the tree yields all solutions with a delay only in the size of the pattern tree. J
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Table 1 Summary of the main results on evaluation and enumeration of wdPTs.

`-TW(k) ∩ BI(c) g-TW(k) ∩ SBI(c) `-TW(k) ∩ SBI(c) g-TW(k)

p-Eval(C) PTIME [4] FPT W[1]-complete W[2]-hard
p-Max-Eval(C) PTIME [4] PTIME [4] W[1]-hard PTIME [4]

Enum(C) SDelayP open not OutputP not OutputP
Max-Enum(C) not OutputP not OutputP not OutputP not OutputP

p-Enum(C) SDelayP DelayFPT not OutputFPT not OutputFPT
p-Max-Enum(C) DelayFPT DelayFPT not OutputFPT DelayFPT

We note that the proof in fact allows to show that in the above theorem, f(|p|) is actually
polynomial w.r.t. |p|. Thus, given an exponential number of solutions, it is impossible to
compute all of them during the preprocessing step.

For wdPTs with projection, we need to restrict the class of CQs in the pattern tree for a
chance to achieve constant delay with linear preprocessing: Recall that – under reasonable
complexity assumptions – the class of free-connex acyclic (respectively of bounded free-connex
treewidth) CQs is the only class of acyclic (bounded treewidth) CQs which allows constant
delay enumeration [3]. However, we show below that Enump is not in DelayClin even for
wdPTs with such a restriction imposed locally on each set of atoms. As in Proposition 23,
constant delay and linear preprocessing would lead to an unlikely upper bound on the runtime
of a well-studied combinatorial problem.

I Proposition 25. If the product AB of two Boolean n × n matrices A and B cannot be
computed in time O(n2), then Enump is not in DelayClin already for wdPTs consisting of
only two nodes, each containing a single binary atom and sharing a single variable.

Let C∗ be the class of conjunctive queries with bounded free-connex treewidth. Then,
even if we allow polynomial time preprocessing instead of a linear one as in Theorem 24,
there is no constant delay enumeration algorithm for pattern trees in {g-C∗, l-C∗ ∩ SBI(c)}
assuming that W[1] 6= FPT. This is due to the fact that enumeration in these classes is not
in OutputFPT under this complexity assumption.

I Proposition 26. Let c ≥ 1 and C∗ be the class of conjunctive queries with bounded free-
connex treewidth. Further let p ∈ {g-C∗, l-C∗ ∩ SBI(c)} and D be a database. Then there is
no positive integer m and computable function f such that p(D) can be enumerated with
delay(0) in O(|D|m · f(|p|)) and delay(i) in O(1) for i ≥ 1 unless FPT = W[1].

6 Conclusion

In this paper, we have embarked on a complexity analysis of two versions of the enumeration
problem of wdPTs: the problems of enumerating all solutions and of enumerating the
maximal solutions. Due to the close relationship with the parameterized complexity of the
corresponding evaluation problem, we have also revisited the evaluation and max-evaluation
problems. A summary of the main results is given in Table 1.

For the problems Eval(C) and Max-Eval(C) we have identified fixed-parameter tractable
and intractable cases. Likewise, for the two variants of the enumeration problem, we have
identified tractable and intractable cases – both in terms of classical and parameterized
complexity. More precisely, for the classical complexity, we have established tractability
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by showing a strong form of tractability (i.e., polynomial delay) and we have established
intractability by ruling out even a weaker form of tractability (i.e., output polynomial time).
We have proved analogous results from a parameterized complexity point of view.

Even though we have provided quite a comprehensive picture of the complexities in
various settings, Table 1 still calls for further work. Above all, the Enum(C) problem with
C = g-TW(k) ∩ SBI(c) is open. We conjecture tractability in this case – but this has to be
proved yet. Also, for two of our W[1]- and W[2]-hardness results, a matching upper bound
is missing. Finally, the search for tractable classes both, for evaluation and enumeration
of wdPTs should be continued. Note that none of the restrictions studied here sufficed to
ensure tractability of Max-Enum(C). Hence, further restrictions should be studied.
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