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Abstract
An old and fundamental problem in databases and data streams is that of finding the heavy
hitters, also known as the top-k, most popular items, frequent items, elephants, or iceberg queries.
There are several variants of this problem, which quantify what it means for an item to be frequent,
including what are known as the `1-heavy hitters and `2-heavy hitters. There are a number of
algorithmic solutions for these problems, starting with the work of Misra and Gries, as well as
the CountMin and CountSketch data structures, among others.

In this paper (accompanying an invited talk) we cover several recent results developed in this
area, which improve upon the classical solutions to these problems. In particular, we develop
new algorithms for finding `1-heavy hitters and `2-heavy hitters, with significantly less memory
required than what was known, and which are optimal in a number of parameter regimes.
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1 The Heavy Hitters Problem

A well-studied problem in databases and data streams is that of finding the heavy hitters,
also known as the top-k, most popular items, frequent items, elephants, or iceberg quries.
These can be used for flow identification at IP routers [20], in association rules and frequent
itemsets [1, 44, 47, 25, 24], and for iceberg queries and iceberg datacubes [21, 6, 23]. We
refer the reader to the survey [16], which presents an overview of known algorithms for this
problem, from both theoretical and practical standpoints.

There are various different flavors of guarantees for the heavy hitters problem. We start
with what is known as the `1-guarantee:

I Definition 1 (`1-(ε, φ)-Heavy Hitters Problem). In the (ε, φ)-Heavy Hitters Problem, we
are given parameters 0 < ε < 1 and 2ε ≤ φ ≤ 1, as well as a stream a1, . . . , am of items
aj ∈ {1, 2, . . . , n}. Let fi denote the number of occurrences of item i, i.e., its frequency. The
algorithm should make one pass over the stream and at the end of the stream output a
set S ⊆ {1, 2, . . . , n} for which if fi ≥ φm, then i ∈ S, while if fi ≤ (φ − ε)m, then i /∈ S.
Further, for each item i ∈ S, the algorithm should output an estimate f̃i of the frequency fi
which satisfies |fi − f̃i| ≤ εm.

We are interested in algorithms which use as little space (i.e., memory) in bits as possible
to solve the `1-(ε, φ)-Heavy Hitters Problem. We allow the algorithm to be randomized and
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4:2 New Algorithms for Heavy Hitters in Data Streams

to succeed with probability at least 1− δ, for 0 < δ < 1. We do not make any assumption on
the ordering of the stream a1, . . . , am. This is desirable, as often in applications one cannot
assume a best-case or even a random order. We will assume m is known in advance, though
many of the algorithms below (including ours) can deal with unknown m. We note that while
the problem still makes sense for any φ > ε, it is well-known that an Ω(n) space lower bound
exists when φ is very close to ε, e.g., if φ = ε+ 1/n. Indeed, this follows via a reduction from
communication complexity, which is a standard method for proving lower bounds in data
streams. In particular, a reduction from the so-called INDEX problem is readily apparent -
we refer the reader to [32] for more details of the communication problem (see, e.g., [43] for
a recent survey discussing the INDEX problem).

The first algorithm for the `1-(ε, φ)-Heavy Hitters Problem was given by Misra and Gries
[38], who achieved O(ε−1 logn) bits of space for any φ > 2ε. This algorithm was rediscovered
by Demaine et al. [18], and again by Karp et al. [31]. Other than these algorithms, which are
deterministic, there are a number of randomized algorithms, such as the CountSketch [13],
Count-Min sketch [17], sticky sampling [34], lossy counting [34], space-saving [36], sample
and hold [20], multi-stage bloom filters [11], and sketch-guided sampling [33]. Berinde et al.
[5] show that using O(kε−1 log(mn)) bits of space, one can achieve the stronger guarantee of
reporting, for each item i ∈ S, f̃i with |f̃i − fi| ≤ ε

kF
res(k)
1 , where F res(k)

1 < m denotes the
sum of frequencies of items in {1, 2, . . . , n} excluding the frequencies of the k most frequent
items. This is particularly useful when there are only a few large frequencies, since then the
error ε

kF
res(k)
1 will depend only on the remaining small frequencies.

While the `1-heavy hitters have a number of applications, there is also a sometimes
stronger notion known as the `2-heavy hitters, which we now define.

I Definition 2 (`2-(ε, φ)-Heavy Hitters Problem). In the (ε, φ)-Heavy Hitters Problem, we
are given parameters 0 < ε < 1 and 2ε ≤ φ ≤ 1, as well as a stream a1, . . . , am of items
aj ∈ {1, 2, . . . , n}. Let fi denote the number of occurrences of item i, i.e., its frequency.
Let F2 =

∑n
i=1 f

2
i . The algorithm should make one pass over the stream and at the end

of the stream output a set S ⊆ {1, 2, . . . , n} for which if f2
i ≥ φF2, then i ∈ S, while if

f2
i ≤ (φ− ε)F2, then i /∈ S. Further, for each item i ∈ S, the algorithm should output an
estimate f̃i of the frequency fi which satisfies |fi − f̃i| ≤ ε

√
F2.

One of the algorithms for `1-heavy hitters mentioned above, the CountSketch [14], refined
in [46], actually solves the `2-(ε, φ)-Heavy Hitters Problem. Notice that this guarantee can
be significantly stronger than the aforementioned `1-guarantee that fi ≥ εm. Indeed, if
fi ≥ φm, then f2

i ≥ φ2m2 ≥ φ2F2. So, an algorithm for finding the `2-heavy hitters, with φ
replaced by φ2, will find all items satisfying the `1-guarantee with parameter φ. On the other
hand, given a stream of n distinct items in which fi∗ =

√
n for an i∗ ∈ [n] = {1, 2, 3, . . . , n},

yet fi = 1 for all i 6= i∗, an algorithm satisfying the `2-heavy hitters guarantee will identify
item i with constant φ, but an algorithm which only has the `1-guarantee would need to set
φ = 1/

√
n, therefore using Ω(

√
n) bits of space. In fact, `2-heavy hitters are in some sense

the best one can hope for with a small amount of space in a data stream, as it is known for
p > 2 that finding those i for which fpi ≥ φFp requires n1−2/p bits of space even for constant
φ [4, 12].

The `2-heavy hitter algorithms of [14, 46] have broad applications in compressed sensing
[22, 42, 37] and numerical linear algebra [15, 35, 40, 9], and are often used as a subroutine in
other data stream algorithms, such as `p-sampling [39, 3, 29], cascaded aggregates [28], and
frequency moments [27, 8].

Given the many applications of heavy hitters, it is natural to ask what the best space
complexity for them is. For simplicity of presentation, we make the common assumption
that the stream length m is polynomially related to the universe size n.
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It is clear that for constant ε and φ, that there is an Ω(logn) bit lower bound, as this is
just the number of bits needed to specify the identity of the heavy hitter.

For constant ε, given the aforementioned results, this is actually tight for the `1-(ε, φ)-
Heavy Hitters Problem. The main focus then, for the `1-(ε, φ)-Heavy Hitters Problem is on
obtaining tight bounds as a function of ε and φ.

On the other hand, for the `2-(ε, φ)-Heavy Hitters Problem, even for constant ε and φ,
the best previous algorithms of [14] and the followup [46] achieve Θ(log2 n) bits of space. It
is known that if one allows deletions in the stream, in addition to insertions, then Θ(log2 n)
bits of space is optimal [19, 29]. However, in many cases we just have a stream of insertions,
such as in the model studied in the seminal paper of Alon, Matias, and Szegedy [2]. Thus,
for the `2-(ε, φ)-Heavy Hitters Problem, our focus will be on the regime of constant ε and φ
and on understanding the dependence on n.

There are a number of other desirable properties one would want out of a heavy hitters
algorithm. For instance, one is often also interested in minimizing the update time and
reporting time of such algorithms. Here, the update time is defined to be the time the
algorithm needs to update its data structure when processing a stream insertion. The
reporting time is the time the algorithm needs to report the answer after having processed
the stream. In this article we will focus primarily on the space complexity.

2 Our Recent Results

In several recent works [10, 7], together with coauthors we significantly improve known
algorithms for finding both `1-heavy hitters as well as `2-heavy hitters. For many settings of
parameters, our algorithms are optimal.

2.1 `1-Heavy Hitters
In joint work with Bhattacharyya and Dey [7], we improve upon the basic algorithm of Misra
and Gries [38] for the `1-(ε, φ)-Heavy Hitters Problem, the latter achieving O(ε−1 logn) bits
of space for any φ ≥ 2ε. We now describe the algorithm of [7].

We first recall the algorithm of Misra and Gries. That algorithm initializes a table of
1/ε+ 1 pairs of (v, c) to (⊥, 0), where v is an element in the universe {1, 2, . . . , n} ∪⊥, and c
is a non-negative integer. When receiving a new stream insertion ai, the algorithm checks if
v = ai for some (v, c) pair in the table. If so, it replaces (v, c) with (v, c+ 1). Otherwise, if
there is a (v, c) in the table with v = ⊥, then the algorithm replaces that (v, c) pair with
(ai, 1). If neither of the previous two cases hold, the algorithm takes each (v, c) pair in the
table, and replaces it with (v, c− 1). If c− 1 = 0, then the corresponding v is replaced with
⊥.

Note that the algorithm, as described in the previous paragraph, naturally can be
implemented using O(ε−1 logn) bits of space (recall we assume the stream length m and the
universe size n are polynomially related, so logm = Θ(logn)). Moreover, a nice property is
that the algorithm is deterministic.

For the correctness, note that if an item i occurs fi ≥ 2εm times, then it will appear in
the table at the end of the stream. Indeed, notice that for each occurrence of i in the stream,
if it is not included in the table via the operation of replacing a pair (i, c) with (i, c+ 1) for
some value of c, or replacing a pair (⊥, 0) with (i, 1), then this means that there were at least
1/ε+ 1 stream updates that were removed from the table upon seeing this occurrence of i,
since each counter c for each (v, c) pair in the table is decremented by 1. We can therefore
charge those stream updates to this occurrence of i. Moreover, if (i, c) is in the table for
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4:4 New Algorithms for Heavy Hitters in Data Streams

some value of c and is replaced with (i, c− 1) or (⊥, 0), this means we can charge at least
1/ε stream updates to items not equal to i to this occurrence of i. Since we are charging
distinct stream updates for each occurrence of i, we have the relationship that fi · (1/ε) ≤ m,
which is a contradiction to fi ≥ 2εm. Therefore, i will occur in a pair in the table at the
end of the stream. The same analysis in fact implies that at most εm occurrences of i will
not be accounted for in the table at the end of the stream, which means that for the (i, c)
pair in the table, we have fi ≥ c ≥ fi − εm. This latter guarantee enables us to solve the
`1-(ε, φ)-Heavy Hitters Problem for any φ ≥ 2ε.

One shortcoming of the algorithm above is that if φ is much larger than ε, say φ is
constant, then the above algorithm still requires O(ε−1 logn) bits of space, that is, it is
insensitive to the value of φ. Consider for instance, the case when ε = 1/ logn and φ = 1/10,
so one wants a very high accuracy estimate to each of the item frequencies for items occurring
at least 10% of the time. The above algorithm would use O(log2 n) bits of space for this
problem. In this case, the only known lower bound is Ω(logn) bits, which just follows from
the need to return the identities of the heavy hitters. Is it possible to improve this O(log2 n)
bits of space upper bound?

This is precisely what we show in [7]. Here we sketch how to achieve a bound of
O((1/φ) logn + (1/ε) log(1/ε)) bits of space and refer to [7] for further optimizations as
well as extensions to related problems. Note that this translates to a space bound of
O(logn log logn) bits for the above setting of parameters.

The first observation is that if we randomly sample r = Θ(1/ε2) stream updates, then with
probability 99%, simultaneously for every universe item i, if we let f̂i denote its frequency
among the samples, and fi its frequency in the original stream, then we have∣∣∣∣∣ f̂ir − fi

m

∣∣∣∣∣ ≤ ε

2 .

This follows by Chebyshev’s inequality and a union bound. Indeed, consider a given i ∈ [n]
with frequency fi and suppose we sample each of its occurrences pairwise-independently with
probability r/m, for a parameter r. Recall that pairwise independence here implies that
any single occurrence is sampled with probability r/m and any two occurrences are jointly
sampled with probability exactly r2/m2, though we do not impose any constraints on the
joint distribution of any three or more samples. Also, a pairwise independent hash function
can be represented with only O(logn) bits of space. Then the expected number E[f̂i] of
sampled occurrences is fi · r/m and the variance Var[f̂i] is fi · r/m(1− r/m) ≤ fir/m (here
we use pairwise independence to conclude the same variance bound as if the samples were
fully independent). Applying Chebyshev’s inequality,

Pr
[∣∣∣f̂i −E[f̂i]

∣∣∣ ≥ rε

2

]
≤ Var[f̂i]

(rε/2)2 ≤
4fir
mr2ε2

.

Setting r = C
ε2 for a constant C > 0 makes this probability at most 4fi

Cm . By the union
bound, if we sample each element in the stream independently with probability r

m , then the
probability there exists an i for which |f̂i −E[f̂i]| ≥ rε

2 is at most
∑n
i=1

4fi

Cm ≤
4
C , which for

C ≥ 400 is at most 1
100 , as desired.

After sampling so that the stream length is reduced to O(1/ε2), it follows that the
number of distinct items in the stream is also O(1/ε2), and therefore if we hash the item
identifiers to a universe of size O(1/ε4), by standard arguments with probability 99% the
items will be perfectly hashed, that is, there will be no collisions. This follows even with a
pairwise-independent hash function h. The high level idea then is to run the algorithm of
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Misra and Gries, but the pairs (v, c) correspond to the hashed item identity and the count in
the sampled stream, respectively. Notice that it takes only O(log(1/ε)) bits to represent such
pairs and so the algorithm of Misra and Gries would take O(ε−1 log(1/ε)) bits of space.

However, we still want to return the actual item identifiers! To do this, we maintain
a parallel data structure containing actual item identifiers in [n], but the data structure
only contains O(1/φ) items. In particular, these item identities correspond to the items v
for which (h(v), c) is stored in the algorithm of Misra and Gries, for which the c values are
largest. Namely, the items with top 1/φ c-values have their actual identities stored. This can
be maintained under stream insertions since given a new stream update, one has the actual
identity in hand, and therefore can appropriately update the identities of the items with top
O(1/φ) counts. Moreover, when we subtract one from all counters in the algorithm of Misra
and Gries, the only thing that changes in the top O(1/φ) identities is that some of them
may now have zero frequency, and so can be thrown out. Thus, we can always maintain the
actual top O(1/φ) identities in the original (before hashing) universe.

We refer the reader to [7] for more details, optimizations, and extensions to related
problems.

2.2 `2-Heavy Hitters
In joint work with Braverman, Chestnut, and Ivkin [10], we improve upon the CountSketch
data structure [14] for the `2-(ε, φ)-Heavy Hitters Problem. To illustrate the algorithm of [10],
we consider ε and φ to be constants in what follows, and further, we suppose there is only a
single i∗ ∈ [n] for which f2

i∗ ≥ φF2 and there is no i for which (φ− ε)F2 ≤ f2
i < φF2. It is

not hard to reduce to this case by first hashing into O(1) buckets (recall φ, ε are constants
for this discussion), since the O(1/φ) heavy hitters will go to separate buckets with large
constant probability (if, say, we have Ω(1/φ2) buckets). Thus, we focus on this case. In this
case the CountSketch algorithm would use Θ(log2 n) bits of space, whereas in [10] we achieve
O(logn log logn) bits of space, nearly matching the trivial Ω(logn) bit lower bound.

We first explain the CountSketch data structure. The idea is to assign each item i ∈ [n]
a random sign σ(i) ∈ {−1, 1}. We also randomly partition [n] into B buckets via a hash
function h and maintain a counter cj =

∑
i|h(i)=j σ(i) · fi in the j-th bucket. Then, to

estimate any given frequency fi, we estimate it as σ(i) · ch(i). Note that E[σ(i) · ch(i)] =
E[σ(i)2fi +

∑
j 6=i,h(j)=h(i) fjσ(j)σ(i)] = fi, using that E[σ(i)σ(j)] = 0 for i 6= j. Moreover,

by computing the variance and applying Chebyshev’s inequality, one has that

|σ(i) · ch(i) − fi| = O(
√
F2/B)

with probability at least 9/10. The intuitive explanation is that due to the random sign
combination of remaining items in the same hash bucket as i, the absolute value of this linear
combination concentrates to the Euclidean norm of the frequency vector of these items. The
idea then is to repeat this independently O(logn) times in parallel. Then we estimate fi
by taking the median of the estimates across each of the O(logn) repetitions. By Chernoff
bounds, we have that with probability 1 − 1/n2, say, the resulting estimate is within an
additive O(

√
F2/B) of the true frequency fi. This then holds for every i ∈ [n] simultaneously

by a union bound, at which point one can then find the `2-heavy hitters, if say, one sets
B = Θ(1/ε2).

Notice that it is easy to maintain the CountSketch data structure in a data stream since
we just need to hash the new item i to the appropriate bucket and add σ(i) to the counter
in that bucket, once for each of the O(logn) repetitions. The total space complexity of
the CountSketch algorithm is O(B · log2 n), where the “B” is the number of hash buckets,
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4:6 New Algorithms for Heavy Hitters in Data Streams

one logn factor is to store the counter in each bucket, and the other logn factor is for the
number of repetitions. For constant ε and B = Θ(1/ε2) this gives O(log2 n) bits of space. It
is also not hard to see that the CountSketch data structure can be maintained in a stream
with deletions as well as insertions, since given a deletion to item i, this just corresponds
to subtracting σ(i) from the bucket i hashes to in each repetition. Moreover, as mentioned
earlier, this O(log2 n) space bound is optimal for streams with deletions.

To give some intuition for our new algorithm, let i∗ ∈ [n] be the identity of the single
`2-heavy hitter that we wish to find. Suppose first that fi∗ ≥

√
n logn and that fi ∈ {0, 1}

for all i ∈ [n] \ {i∗}. For the moment, we are also going to ignore the issue of storing random
bits, so assume we can store poly(n) random bits for free (which can be indexed into using
O(logn) bits of space). We will later sketch how to remove this assumption. As in the
CountSketch algorithm, we again assign a random sign σ(i) to each item i ∈ [n]. Suppose
we randomly partition [n] into two buckets using a hash function h : [n] → {1, 2}, and
correspondingly maintain two counters c1 =

∑
i|h(i)=1 σ(i) · fi and c2 =

∑
i|h(i)=2 σ(i) · fi.

Suppose for discussion that h(i∗) = 1. A natural question is what the values c1 and c2 look
like as we see more updates in the stream.

Consider the values c1 − σ(i∗) · fi∗ and c2. Then, since all frequencies other than i∗ are
assumed to be 0 or 1, and since the signs σ(j) are independent, these two quantities evolve
as random walks starting at 0 and incrementing by +1 with probability 1/2, and by −1 with
probability 1/2, at each step of the walk. By standard theory of random walks (e.g., Levy’s
theorem), there is a constant C > 0 so that with probability at least 9/10, simultaneously
at all times during the stream we have that |c1 − σ(i∗) · fi∗ | and |c2| are upper bounded by
C
√
n. The constant of 9/10, like typical constants in this paper, is somewhat arbitrary. This

suggests the following approach to learning i∗: at some point in the stream we will have that
fi∗ > 2C

√
n, and at that point |c1| > C

√
n, but then we know that i∗ occurs in the first

bucket. This is assuming that the above event holds for the random walks. Since we split [n]
randomly into two pieces, this gives us 1 bit of information about the identity of i∗. If we
were to repeat this O(logn) times in parallel, we would get exactly the CountSketch data
structure, which would use Θ(log2 n) bits of space. Instead, we get much better space by
repeating Θ(logn) times sequentially!

To repeat this sequentially, we simply wait until either |c1| or |c2| exceeds Cn1/2, at
which point we learn one bit of information about i∗. Then, we reset the two counters to
0 and perform the procedure again. Assuming fi∗ = Ω(

√
n logn), we will have Ω(logn)

repetitions of this procedure, each one succeeding independently with probability 9/10. By
Chernoff bounds, there will only be a single index i ∈ [n] which match a 2/3 fraction of these
repetitions, and necessarily i = i∗.

2.2.1 Gaussian Processes
In general we do not have fi∗ = Ω(

√
n logn), nor do we have that fi ∈ {0, 1} for all

i ∈ [n] \ {i∗}. We fix both problems using the theory of Gaussian processes.

I Definition 3. A Gaussian process is a collection {Xt}t∈T of random variables, for an
index set T , for which every finite linear combination of the random variables is Gaussian.

We assume E[Xt] = 0 for all t, as this will suffice for our application. It then follows that the
Gaussian process is entirely determined by its covariances E[XsXt]. This fact is related to
the fact that a Gaussian distribution is determined by its mean and covariance. The distance
function d(s, t) = (E[(Xs−Xt)2])1/2 is then a pseudo-metric on T (the only property it lacks
of a metric is that d(s, t) may equal 0 if s 6= t).
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The connection to data streams is the following. Suppose we replace the signs σ(i) with
standard normal random variables g(i) in our counters above, and consider a counter c at
time t, denoted c(t), of the form

∑
i g(i) · fi(t). Here fi(t) is the frequency of item i after

processing t stream insertions. The main point is that c(t) is a Gaussian process! Indeed,
any linear combination of the c(t) values for different t is again Gaussian since the sum of
normal random variables is again a normal random variable.

The reason we wish to make such a connection to Gaussian processes is the following
powerful inequality called the “chaining inequality”.

I Theorem 4 (Talagrand [45]). Let {Xt}t∈T be a Gaussian process and let T0 ⊆ T1 ⊆ T2 ⊆
· · · ⊆ T be such that |T0| = 1 and |Ti| ≤ 22i for i ≥ 1. Then,

E
[
sup
t∈T

Xt

]
≤ O(1) · sup

t∈T

∑
i≥0

2i/2d(t, Ti),

where d(t, Ti) = mins∈Ti d(t, s).

We wish to apply Theorem 4 to the problem of finding `2-heavy hitters. Let F2(t) be the
value of the second moment F2 after seeing t stream insertions. We now describe how to
choose the sets Ti in order to apply the chaining inequality; the intuition is that we recursively
partition the stream based on its F2 value.

Let at be the first stream update for which F2(m)/2 ≤ F2(t). Then T0 = {t}. We then
let Ti be the set of 22i times t1, t2, . . . , t22i in the stream for which tj is the first point in the
stream for which j · F2(m)/22i ≤ F2(tj). Then, we have created a nested sequence of subsets
T0 ⊆ T1 ⊆ T2 ⊆ · · · ⊆ T with |T0| = 1 and |Ti| ≤ 22i for i ≥ 1.

We are now in position to apply Theorem 4. A straightforward computation based on
our recursive partitioning of the stream around where F2 changes (see [10] for details) shows
that for any stream position t and set Ti we have created,

d(t, Ti) =
(

E[min
s∈Ti

|c(t)− c(s)|2]
)1/2

= O

(
F2

22i

)1/2
.

Applying Theorem 4, we have

E[sup
t∈T

Xt] ≤ O(1) sup
t∈T

∑
i≥0

2i/2
(
F2

22i

)1/2
= O(F 1/2

2 ).

This is exactly the same bound that the theory for random walks gave us earlier! (recall in
that case

∑
i 6=i∗ f

2
i < n).

Using Gaussian processes has therefore allowed us to remove our earlier assumption
that fi ∈ {0, 1} for all i ∈ [n] \ {i∗}. The same random walk based algorithm will now
work; however, we still need to assume the fi∗ = Ω(

√
F2 logn) in order to learn logn bits

of information to identify i∗, as before. This is not satisfactory, as an `2-heavy hitter only
satisfies fi = Ω(

√
F2) (recall we have assumed φ and ε are constants), which is weaker than

the fi∗ = Ω(
√
F2 logn) that the above analysis requires.

2.2.2 Amplification
To remove the assumption that fi∗ = Ω(

√
F2 logn), our work [10] designs what we call

an “amplification” procedure. This involves for j = 1, 2, . . . , O(log logn), independently
choosing a pairwise independent hash function hj : [n] → {1, 2}. For each j, we as before
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4:8 New Algorithms for Heavy Hitters in Data Streams

maintain two counters cj1 =
∑
i|hj(i)=1 gj(i) · fi and c

j
2 =

∑
i|hj(i)=2 gj(i) · fi, where the gj(i)

are independent standard normal random variables.
Applying the chaining inequality to each of the O(log logn) counters created, we have

that with large constant probability, in a constant fraction of the O(log logn) pairs, both
counters cj1 and cj2 will be bounded by O(

√
F2) in magnitude. It follows that if fi∗ ≥ C

√
F2

for a sufficiently large constant C > 0 (which we can assume by first hashing the universe
into O(1) buckets before the streaming algorithm begins), then in say, a 9/10 fraction of
pairs j, the counter cjk, k ∈ {1, 2}, of larger magnitude will contain i∗. Moreover, by Chernoff
bounds, only a 1

logc n fraction of other i ∈ [n] will hash to the larger counter in at least a
9/10 fraction of such pairs, where c > 0 is a constant that can be made arbitrarily large by
increasing the constant in the number O(log logn) of pairs of counters created. Now the idea
is to effectively run our previous algorithm only on items which hash to the heavier counter
in at least a 9/10 fraction of pairs. By definition, this will contain i∗, and now the expected
second moment of the other items for which we run the algorithm on will be F2/ logc n,
which effectively makes fi∗ = Ω(

√
F2 logn), where F2 is now measured with respect to the

items for which we run the algorithm on. Now we can sequentially learn O(logn) bits of
information about i∗ in our algorithm, as before.

One thing to note about this approach is that after seeing a sufficiently large number of
insertions of i∗, i.e., Θ(

√
F2) such insertions, then most of the pairs of counters will have

the property that the larger counter (in absolute value) stays larger forever. This is due to
the chaining inequality. This can be used to fix the itemset for which we run the algorithm
on. In fact, this is precisely why this does not result in a 2-pass algorithm, which one might
expect since one does not know the itemset to run our algorithm on in advance. However, we
always run the algorithm on whichever current itemset agrees with at least a 9/10 fraction of
the larger counters, and just accept the fact that in the beginning of the stream the bits we
learn about i∗ are nonsense; however, after enough updates to i∗ have occurred in the stream
then the counters “fix” themselves in the sense that the larger counter does not change. At
this point the bits we learn about i∗ in our algorithm are the actual bits that we desire. At
the end of the stream, we only look at a suffix of these bits to figure out i∗, thereby ignoring
the nonsensical bits at the beginning of the stream. We refer the reader to [10] for more
details.

2.2.3 Derandomization
The final piece of the algorithm is to account for the randomness used by the algorithm. We
need to derandomize the counters, which use the theory of Gaussian processes to argue their
correctness. We also cannot afford to maintain all of the hash functions that were used to
learn specific bits of i∗ (which we need ad the end of the stream to figure out what i∗ is).

To derandomize the Gaussian processes, we use a derandomized Johnson Lindenstrauss
transform of Kane, Meka, and Nelson [30]. The rough idea is to first apply a Johnson-
Lindenstrauss transform to the frequency vectors for which we take inner products with
independent Gaussian random variables in our counters. This will reduce the dimension from
n to O(logn), for which we can then afford to take an inner product with fully independent
Gaussian random variables. The nice thing about Johnson-Lindenstrauss transforms is that
they preserve all the covariances up to a constant factor in our specific Gaussian process,
and therefore we can use Slepian’s Lemma (see [10] for details) to argue that the Gaussian
process is roughly the same as before, since it is entirely determined by its covariances. Here
the derandomized Johnson-Lindenstrauss transform of [30] can be represented using only
O(logn log logn) bits of space. Also, instead of using Gaussian random variables, which
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require truncation, we can directly use sign random variables (+1 with probability 1/2, −1
with probability 1/2), which results in what are called Bernoulli processes, together with
a comparison theorem for Bernoulli processes and Gaussian processes. This enables us to
avoid arguments about truncating Gaussians.

To derandomize the hash functions, we use Nisan’s pseudorandom generator in a similar
way that Indyk uses it for derandomizing his algorithms for norm estimation [41, 26]. Please
see [10] for further details.

3 Conclusions

We presented new algorithms for finding `1-heavy hitters and `2-heavy hitters in a data
stream. We refer the reader to the original papers [10, 7] for further details. As these
algorithms are inspired from applications in practice, it is very interesting to see how the
improved theoretical algorithms perform in practice. In ongoing work we are testing these
algorithms in practice on real datasets.

Another interesting aspect is that the technique of using Gaussian processes in the `2-
heavy hitters algorithm has led to a number of other improvements to data stream algorithms,
including for example the ability to estimate the second moment F2 at all times in a stream
of insertions. Previously, given a stream of length n and a universe of size n, to estimate F2
at all points in a stream up to a constant factor would require Θ(log2 n) bits of space, since
it takes Θ(logn log(1/δ)) bits to estimate it at a single point with failure probability δ, and
one needs to union bound over n stream positions. Using Gaussian processes, we achieve
only O(logn log logn) bits of space for this task. It would be interesting to see if Gaussian
processes are useful for other problems in data streams.

Obtaining simultaneously optimal update time, reporting time, and space in all parameter
regimes is also a very important goal.
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