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Abstract
We study the computational complexity of a variant of the popular 2048 game in which no new
tiles are generated after each move. As usual, instances are defined on rectangular boards of
arbitrary size. We consider the natural decision problems of achieving a given constant tile value,
score or number of moves. We also consider approximating the maximum achievable value for
these three objectives. We prove all these problems are NP-hard by a reduction from 3SAT.

Furthermore, we consider potential extensions of these results to a similar variant of the
Threes! game. To this end, we report on a peculiar motion pattern, that is not possible in 2048,
which we found much harder to control by similar board designs.
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1 Introduction

2048 is a single-player online puzzle game that went viral in March 2014. The game is played
on a 4 × 4 board as in Figure 1. Each turn, the player picks a move from {←,→, ↑, ↓} to
slide all tiles on the board. Tiles slide as far as possible in the chosen direction until they hit
either another tile or an edge of the board. When a sliding tile runs into a stationary one of
equal value, they merge into a tile of double this value. Trailing tiles following a tile that
just merged continue to slide uninterrupted and may merge among themselves as they come
to rest one after the other. However, newly merged tiles cannot merge again in the same
move. After each move, a 2 or 4 tile is generated in one of the empty cells. The player wins
when a 2048 tile is created, hence the name of the game. Otherwise, the player loses when
the board is full and no merges can be performed.

2048 combines features from two families of games: Candy Crush Saga [6] and PushPush
[5]. Prior to our work, an attempt to prove that 2048 is PSPACE-complete appeared in [9].
On the other hand, a proof of membership in NP appeared in a blog post by Christopher
Chen [4], which applies to the games we study in this paper. The first draft of this work was
made available in [3] and a revised version was presented in the Computational Geometry:
Young Researchers Forum (CG:YRF) [2], held in conjunction with The 31st Symposium on
Computational Geometry. In the meanwhile, another draft came out by Langerman and Uno
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Figure 1 The result of taking the Down action (↓). Notice that the two 4 s on the right have
merged and a new 2 has been randomly inserted.

[7] establishing the NP-completness of the original 2048 game, with new tiles generated after
each move. Their construction extends easily to similar games including Threes!.

The game we analyze differs from the original 2048 game in the following two aspects:
(1) The input encodes the complete board configuration and no new tiles are generated. (2)
The board is a rectangular grid of arbitrary size. In this paper, we are primarily concerned
with the following decision problem:

I Definition 1. (2048-TILE) Given a configuration of tiles on an m× n board, is it possible
to obtain a tile of value 2048? (More generally, 2k for a constant integer k ≥ 8.)

Our construction can be augmented to study two related decision problems: 2048-SCORE
and 2048-MOVES. The former asks if it is feasible to achieve a given score and the latter asks
if it is feasible to achieve a given number of moves. As in [8], we define the score as the sum
of all new tiles the player creates by merges during the game. In our setting, the number of
moves is taken to mean the number of effective moves that change the board by merging at
least two tiles.

The crucial piece of proving membership in NP is to bound the number of moves between
two consecutive merges. Using a canonical orientation [4], all moves are interpreted as flips
of the board, which send tiles along orbits of O(mn) length. A pair of tiles that end up
merging requires no more than LCM(O(mn), O(mn)) = O(m2n2) moves.

In this paper, we prove NP-hardness by a reduction from 3SAT and obtain the main
result.

I Theorem 2. 2048-TILE is NP-Complete.

Using the same reduction, we obtain similar results for both 2048-SCORE and 2048-MOVES.
Furthermore, encouraged by the inapproximability results in [8] for the maximization version
of these problems, where a new tile is generated after each move, we show similar results in
our setting without new tiles. We implemented our gadgets and full reduction as an online
game to aid the presentation [1].

2 Reduction from 3SAT

Given an instance of 3SAT with n variables and m clauses, we produce an instance of
2048-TILE. The board is filled using a 2-4 lattice to provide a rigid base for placing gadgets
and planning their movements. We allow no merges using lattice tiles, which requires
preserving their parity. This confines all merges to blocks, where a block is defined as a 2× 2
arrangement of tiles. We typically use the words row and column to denote two consecutive



A.Abdelkader, A. Acharya, and P.Dasler 1:3

rows or columns, respectively. In devising the gadgets presented here, we experimented with
different lattice patterns before we settled for this one. We would like to note however that
the 2-4 lattice was first described in [9].

In the rest of this section, we describe the gadgets we use in the reduction. A full
annotated reduction is shown in Figure 2.

2.1 Displacers
These are the building blocks of all gadgets which allow us to communicate signals across the
board. They come in two main forms: horizontal D and vertical DT . Typically, a displacer
starts in an inactive state where the middle 2 × 2 block, highlighted below, is shifted by
one (or two) blocks along the axis orthogonal to the displacer’s axis of action. An inactive
displacer cannot merge, by any sequence of moves, before it is activated. The only way to
activate a displacer is to use another properly aligned displacer to engage its middle block.
Collapsing tiles in a displacer shrinks it to a single block, which results in a parity-preserving
pull in a row or a column.

D =
[

8 8 16 16
32 32 64 64

]

2.2 Variable Gadget
Each variable is represented by two horizontal displacers on the same row. This enables
variables to move the portion of its row between their two displacers to the right or left. We
enforce the assignment of variables in the order of their indices. A variable is assigned T

or F using a → or ← move, respectively. The displacers of x0 come activated in the initial
configuration to allow the game to start.

To activate the variable gadget of xi+1, two connector displacers are placed in the row of
xi. These connectors are activated regardless of the chosen truth assignment of xi and allow
the two displacers of xi+1 above them to be activated by a ↓ move in the following turn.

The variable gadgets of xi for i ∈ {0, 1, 2, 3} are annotated in Figure 2. Note that each
variable has one gadget on the left and another on the right.

2.3 Clause and Literal Gadgets
A clause occupies a single column with a distinguished block near the top. Satisfying the
clause corresponds to pulling down this block, which will be made possible by literal gadgets
in the center of the reduction. Clause gadgets can be seen at the top of Figure 2.

Literals are encoded using a similar mechanism to the connectors in the variable gadget,
but are only activated by the appropriate assignment. This is achieved by a connector lattice.
Each active literal is a vertical displacer. Observe that both permutations of the columns of
such a displacer can equally perform the required downward pull. We call this the parity of
the displacer. The reduction uses the appropriate parity to distinguish positive and negative
literals. A displacer may only be activated by providing a middle block of the same parity.
As such, the displacers of positive (negative) literals will have positive (negative) parity
and will only be activated by positive (negative) blocks in the connector lattice when the
variable in question is assigned True (False) by a → (←) move. For each clause column, a
complete literal displacer is only included for each of the three rows corresponding to the
three variables of the literals making up each clause. Otherwise, the connector blocks will
have no effect on this column.

FUN 2016
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With variables as rows and clauses as columns, literal gadgets are situated exactly at the
intersection of these rows and columns to communicate the relevant signals. This is easily
seen at the center of Figure 2.

2.4 Key-Lock Gadget
To check that all clauses are satisfied, it helps to arrange for a special event to happen
only after all variables have been assigned. To achieve this, an auxiliary variable xaux = xn

activates the lock portion of this gadget. Satisfying all clauses corresponds to using the
correct key. Together, the activated key-lock gadget is a sequence of displacers that can
activate a distinguished displacer with two special 2k−1 tiles. Collapsing this distinguished
displacer creates the desired 2k tile.

The lower portion of the lock gadget is composed of a sequence of m+1 vertical displacers
that can only be activated by xaux. When activated, the lock, in turn, activates a sequence
of up to m horizontal displacers, at the upper portion of the gadget, utilizing the blocks of
satisfied clauses.

As the lock gadget overlaps all clause columns, it must not be affected when any one
clause is satisfied. To achieve this, the middle blocks of the vertical displacers in the lock
gadget are shifted by two blocks away. This means that each middle block for such a displacer
will be nestled in the displacer next to it. In order for this to work, the parity of these
displacers alternate such that they are only activated by the displacers of xaux.

The lower portion of the lock gadget is aligned with the rows of xaux, as can be seen in
Figure 2. The distinguished block lies to the right on the row where satisfied clause blocks
are pulled.

2.5 Core and Padding
All gadgets live in the center of the board produced by the reduction, which we call the
core. A crucial invariant for our reduction to work is that any row or column may not move
unless it has an active displacer. This requires that any gaps created by such displacers are
immediately collected away on the next move.

To this end, the core is surrounded by a padding of tiles on both axes. This padding
ensures that any number of gaps produced by merging tiles in such a reduction can be
completely isolated in one corner away from the rows and columns containing any gadget.

Keeping in mind that the board produced by the reduction is initially full, a gap is
created iff two tiles merge. As the number of active gadgets is Θ(m + n) and each gadget
contributes a constant number of gaps, a padding of Θ(m + n) thickness suffices.

2.6 Properties of the Reduction
Size: As variables are stacked on top of each other all the way up to xaux and the key-lock
gadget, the number of rows is Θ(n). Then, each variable has to activate the connectors to
the next variable. We get a pyramid shape with variable displacers on both sides and literals
in the middle, plus the unique displacer taking up 2(m + 1) columns far to the right, for a
total of Θ(m + n) columns. It follows that the total size of the reduction is Θ(n(m + n)).

Game Play: When no merges happen, two consecutive moves in opposite directions leave
the board unchanged, e.g., [←,→,←] is effectively reduced to [←]. Effective moves alternate
between horizontal and vertical. The alternation accumulates newly created gaps, resulting
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from the merge, at the corners so the decision encoded by the previous move cannot be
altered. Furthermore, any row or column may witness merges during at most one turn. In
particular, clause columns cannot experience more than one ↓ pull. This implies consistent
assignments. Finally, ↑ moves are useless since they must be canceled or otherwise the player
cannot win. Figures 6 through 17 show a complete play sequence through the reduction in
Figure 2.

Hardness: Aligning the two 2k−1 tiles requires a 2m shift, which only satisfied clauses can
provide with each satisfied clause contributing 2. Hence, the 2k tile can be created iff the
3SAT instance is satisfiable. This proves Theorem 2.

Furthermore, regardless of the truth assignment of variables, the player can always
activate and collapse all variable gadgets, including xaux, and the lower portion of the lock
gadget. Doing so takes 2(n + 1) effective moves. If any clauses were satisfied by the chosen
assignment, the player will be able to perform one additional move and collapse up to m

horizontal displacers in the upper portion of the lock gadget. Only if all m displacers were
collapsed will the player be able to make one last move and collapse the special displacer. In
such a winning sequence, there will be a total of 4n + 3m + 5 active displacers plus 1 special
displacer. Merging all these displacers takes 2(n + 2) moves and creates a set of new tiles
with a total score (24 + 25 + 26 + 27)(4n + 3m + 5) + (24 + 25 + 26 + 2k). Again, this is
possible iff the 3SAT instance is satisfiable. It follows that 2048-MOVES and 2048-SCORE are
both NP-complete.

3 Inapproximability

Rather than placing a 2k−1 tile in the special displacer, we can use a normal displacer
that activates a pot of gold gadget. In this section, we present two such gadgets: one for
MAX-2048-MOVES and another for both MAX-2048-TILE and MAX-2048-SCORE. The size of
the pot will be controlled by a parameter S. We let K = n + m, so the size of the 3SAT
reduction is N0 = O(K2).

3.1 Pot of Moves
A sequence of horizontal and vertical displacers can be added on top of the distinguished
displacer as in Figure 3. Adding S such displacers allows S more moves.

Setting S = 2K , the input size will be N = Θ((K +S)2). If the 3SAT instance is satisfiable,
the player can make S =

√
N −O(log N) moves, and O(K) = O(log N) otherwise. It follows

that it is NP-hard to approximate MAX-2048-MOVES within a factor of o(
√

N/ log N).

3.2 Pot of Value
Parity constraints are rather restrictive to allow merging a large number of blocks into one
another, as required to create a tile of arbitrarily high value from a collection of constant
value tiles. Instead, we opt to create a containment gadget where parity can be violated only
inside it without disturbing the rest of the reduction. This allows us to align a large number
of tiles into a single column where they can be collapsed into a single tile.

The design principle used here is to make two merges in a single column each of making
an offset of exactly one. This means that the portion of the column between the two merges
would experience an odd offset, altering its parity, while everything else in the board is
unchanged. The same can be done for rows. Observe however that such a shift exposes an
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Figure 3 The Pot of Moves on top of the distinguished displacer (left) and after 6 moves (right).

even length portion of the neighboring rows and columns on both sides which have the same
parity. To disallow such potential merges in lattice tiles, we need to make these shifts to an
even number of consecutive rows and columns.

An example of such a gadget is shown in Figure 4. For S = 2p, the gadget allows
p = Θ(log S) consecutive merges starting with 2c tiles, for a constant c, and ending with tiles
of value 2p+c = Θ(S). The total value of merged tiles add up to Θ(S) and the size of the
augmented board will be Θ(K(K + S)).

Setting S = 2K , the input size will be N = Θ(K2 + K2K). If the 3SAT instance
is satisfiable, the player can create a tile of value S = N/O(log N) − O(log2 N), and 2c

otherwise, for a constant c. It follows that it is NP-hard to approximate MAX-2048-TILE
within a factor of o(N/ log N). Using the same parameters, if the 3SAT instance is satisfiable,
the player can achieve a score S = N/O(log N)−O(log2 N), and O(K) = O(log N) otherwise.
It follows that it is NP-hard to approximate MAX-2048-SCORE within a factor of o(N/ log2 N).

4 The case for Threes!

For our purposes, the key difference between Threes! and 2048 is that in Threes!, tiles only
move one step at a time instead of sliding all the way till they cannot go any further. It
turns out that the difficulty of controlling such tiles comes from the presence of gaps. As in
2048, gaps are created after each merge, but unlike 2048 where they are consumed on the
next effective move, the gaps in Threes! persist for multiple moves. This allows the player to
move these gaps to different locations creating a series of nontrivial shifts in the board.

We attempted a similar approach for Threes! in [3] and hoped that by spreading out the
gadgets such a gap cannot travel from the row or column of the gadget that created it to a
different row or column containing another gadget. For example, this may allow the player
to make inconsistent truth assignments by altering a previously committed assignment of
some variables or directly satisfying some clause without true literals. However, upon further
examination we realized that the behavior of such gaps is richer than we thought.

For such a board game, a reduction like the one we use for 2048 alternates horizontal
and vertical merges to communicate signals between the different gadgets. For 2048, we did

FUN 2016



1:8 2048 Without New Tiles Is Still Hard

Figure 4 The Pot of Value: activation sequence and subsequent merges into a large value.

not need to keep track of how many gaps are created after each move or how to get rid of
them. One possible solution that comes to mind is to create at most one gap per move and
activate gadgets one by one as in [8]. However, this does not seem to resolve the issue as the
example we discuss here shows.

Figure 5 shows the simplest such scenario. With just two gaps, one on the top side and
one on the left side, the player can start a sequence of clockwise moves, cycling through
[←, ↑,→, ↓]. One such full cycle is denoted by a winding arrow. This in turn creates two
touching cycles of tiles that partition the board into two islands. Adding more gaps on either
side results in a grid of islands separated by touching cycles.

One would need to show that the player gains nothing from such cycles. However, as
the example shows, tiles that are initially far apart can come together after a number of
rounds. The constraints on the lengths of such possible cycles and the safe locations of
gadgets call for a more formal approach to the design. The example also shows an island
that is not affected by the cycle. It would be interesting to explore whether one can exploit
such protected islands to create gadgets that are easier to control and argue about.
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Figure 5 An example of curious motion patterns in the variant of Threes! without new tiles.
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Figure 7 Board(2): move(↓). c2 satisfied. x0 fixed to T . x1 activated.

Figure 8 Board(3): move(←). x1 assigned F .

Figure 9 Board(4): move(↓). c0 satisfied. x1 fixed to F . x2 activated.
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Figure 10 Board(5): move(←). x2 assigned F .

Figure 11 Board(6): move(↓). c1 satisfied. x2 fixed to F . x3 activated.

Figure 12 Board(7): move(→). x3 assigned T .
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Figure 13 Board(8): move(↓). x3 fixed to T . xaux activated.

Figure 14 Board(9): move(←). Key-lock sequence initiated.

Figure 15 Board(10): move(↓). Key-lock ready.
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Figure 16 Board(11): move(←). All clauses satisfied? Unlock.

Figure 17 Board(12): move(↓). Win.
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