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Abstract
When analyzing the computational complexity of well-known puzzles, most papers consider the
algorithmic challenge of solving a given instance of (a generalized form of) the puzzle. We take a
different approach by analyzing the computational complexity of designing a “good” puzzle. We
assume a puzzle maker designs part of an instance, but before publishing it, wants to ensure that
the puzzle has a unique solution. Given a puzzle, we introduce the FCP (fewest clues problem)
version of the problem:

Given an instance to a puzzle, what is the minimum number of clues we must add in order
to make the instance uniquely solvable?

We analyze this question for the Nikoli puzzles Sudoku, Shakashaka, and Akari. Solving these
puzzles is NP-complete, and we show their FCP versions are ΣP

2 -complete. Along the way, we
show that the FCP versions of 3SAT, 1-in-3 SAT, Triangle Partition, Planar 3SAT, and
Latin Square are all ΣP

2 -complete. We show that even problems in P have difficult FCP versions,
sometimes even ΣP

2 -complete, though “closed under cluing” problems are in the (presumably)
smaller class NP; for example, FCP 2SAT is NP-complete.
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1 Introduction

A natural aesthetic for designing pencil-and-paper puzzles is to provide as few starting hints
as possible, yet have the resulting solution be unique. For example, in the well-known Sudoku
puzzle, the starting configuration is a partially filled 9× 9 grid where the goal is to fill in
the remaining entries. Hard Sudoku puzzles tend to give very few numbers in the starting
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12:2 The Fewest Clues Problem

configuration, but must still give enough numbers to ensure that the puzzle has a unique
solution. The natural question here is, how small can we make the starting configuration?

In this paper, we formalize this question by the family of “Fewest Clues Problem” (FCP).
Given an NP search problem where the certificate is written as a string, we ask: is there a
setting of at most k characters of the certificate such that there exists exactly one way to
complete the certificate (fill in the remaining characters)?

FCP seems superficially related to two other classes of problems, the “Another Solution
Problem” (ASP) and counting (#) problems [7, 10, 11, 12, 13]. The ASP problem asks:
given an instance as well as one solution to a search problem, is there another solution?
Counting problems ask: given an instance, how many solutions are there? All three of these
problem types are transformations of an original NP search problem.

ASP versions of NP-hard problems are in NP by definition, and interestingly, there
are NP-hard problems whose ASP versions are NP-hard as well. The counting version of
a problem can be significantly harder the original problem. It is well known that some
problems in P (such as 2SAT) have #P-hard counting versions, and Toda’s theorem states
that such problems are as hard as the polynomial hierarchy [9].

Our results. This paper has three main contributions:
1. We introduce the FCP framework for analyzing puzzles, and we develop simple techniques

to adapt existing hardness reductions to the FCP setting (Section 2). With these
techniques, we show that the FCP versions of common NP-complete problems are ΣP

2 -
complete. These include FCP 3SAT, FCP 1-in-3 SAT, FCP Triangle Partition,
FCP Planar 3SAT, and FCP Latin Square (Section 3.2).

2. We show that the FCP versions of three common Nikoli puzzles (Sudoku, Shakashaka,
and Akari) are ΣP

2 -complete by reducing from the above problems (Section 4). Figure 1
shows a chain of reductions which allow us to conclude these problems are ΣP

2 -complete.
3. We analyze how the computational complexity of problems in P changes when we consider

their FCP versions (Section 5). For a class of problems closed under cluing, their FCP
versions are in NP. In addition, we show FCP 2SAT, which naturally falls in the class of
problems closed under cluing, is NP-complete. We give an example of a problem in P
whose FCP version is ΣP

2 -complete.

2 Definitions and Overview

2.1 FCP Framework
I Definition 1. For each A ∈ NP, we associate an NP relation, RA the set of instance-
certificate pairs.

For example, the NP relation for the Boolean satisfiability problem (SAT) consists of
pairs (φ, x) where φ is a Boolean formula and x is an assignment to the variables where φ(x)
evaluates to true. We assume that instances and certificates are strings from some alphabet
Σ. From now on, when referring to some A ∈ NP, we implicitly consider the NP relation, RA.

If the string x is a solution to a SAT problem, we call a “partially filled" version of x
(constructed by blocking out certain characters of x with a ⊥ symbol) a clue for that problem.
We define this notion for all NP problems as follows.

I Definition 2. For any instance I of a problem A ∈ NP, a clue is a string c = (ci) ∈
(Σ ∪ {⊥})∗ if there exists some certificate string y = (yi) ∈ Σ∗ with (I, y) ∈ A such that if
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Figure 1 Chain of reductions from QSAT to FCP versions of satisfiability problems and FCP
versions of pencil-and-paper puzzles.

ci 6= ⊥, then ci = yi. The size of a clue is the number of non-⊥ characters. We refer to this
y as a solution which satisfies the clue c, and denote this as c ⊂ y.

I Definition 3. For A ∈ NP, FCP A is the following decision problem:

Given x ∈ Σ∗ and an integer k, does there exist a clue c of size at most k with only
one satisfying solution to x?

2.2 FCP Versions of Classic Problems
In Section 3.1, we show that the FCP version of any NP problem is in ΣP

2 . Our more
compelling result is that the FCP versions of many NP-complete problems are themselves ΣP

2 -
complete. We show this by using a variety of techniques that modify existing NP-completeness
reductions to give ΣP

2 -completeness results for the corresponding FCP problems.
We first prove ΣP

2 -completeness of the FCP versions of many common SAT variants. This
will be useful since many known NP-completeness reductions are from variants of SAT. We
show that FCP 3SAT, FCP 1-in-3 SAT, and FCP Planar 3SAT are all ΣP

2 -complete. We obtain
these hardness results with a chain of reductions, starting with the canonical ΣP

2 -complete
problem, quantified satisfiability with one pair of alternating quantifiers, ∃ and ∀ (QSAT).
The chain of reductions for all problems defined in this subsection and Section 2.3 are shown
in Figure 1.

A slight issue with constructing this chain of reductions is that QSAT does not have any
notion of uniqueness, which is essential in FCP problems. We overcome this by defining
the unique quantified satisfiability problem (UQSAT), a problem we show is ΣP

2 -complete.
Unfortunately, the reduction will introduce clauses which are longer than three literals. For
our hardness reductions, we often want to work with 3-CNF formulae. Thus we introduce
UQ3SAT, another provably ΣP

2 -complete problem.
For the following three problems, φ(x, y) is a Boolean function in CNF form on the sets

of variables x and y.

QSAT: Given φ(x, y), does there exist an assignment of the variables in x, such that
for all assignments of variables in y, φ(x, y) = 1?

UQSAT: Given φ(x, y), does there exist an assignment of the variables in x, such that
there exists a unique assignment of the variables in y with φ(x, y) = 1?

UQ3SAT: Given φ(x, y) in 3-CNF form, does there exist an assignment of the variables
in x, such that there exists a unique assignment of the variables in y with φ(x, y) = 1?

FUN 2016



12:4 The Fewest Clues Problem

The transition to FCP problems relies on the following observation: while UQ3SAT
specifies which variables can be assigned, FCP 3SAT allows any k variables to be assigned.

We address this distinction by building assign gadgets; these gadgets are built so that
specifying some part of them fixes in place other aspects of the reduction. These assign
gadgets also have the property of having inherent ambiguity. Thus, any clue must specify
something within the assign gadget to resolve this ambiguity, or else a unique solution will
not be possible. If we place exactly k assign gadgets, we will need a clue of size at least k.
This technique will be useful for reducing from non-FCP problems to FCP problems.

For the following three problems, φ(x) is a Boolean formula in 3-CNF form.

FCP 1-in-3 SAT: Given φ(x) and a number k, does there exist a partial assignment
of at most k variables such that the remaining formula φ′ has only one satisfying
assignment, where each clause has exactly one true literal?

FCP Planar 3SAT: Given a planar φ(x) and a number k, does there exist a partial
assignment of at most k variables such that the remaining formula φ′ has only one
satisfying assignment?

FCP 3SAT: Given φ(x) and a number k, does there exist a partial assignment of at
most k variables such that the remaining formula φ′ has only one satisfying assignment?

We use assign gadgets to show FCP 1-in-3 SAT is ΣP
2 -complete. The same technique will

show that FCP Planar 3SAT is also ΣP
2 -complete.

In some cases, an NP-hardness reduction from problem A to problem B may already
preserve clue structure without needing any modifications. If FCP A is ΣP

2 -hard, then the
same reduction implies that FCP B is ΣP

2 -hard. This method will show that FCP 3SAT is
ΣP

2 -complete.

2.3 FCP Versions of NP-hard Puzzles
In this section, we introduce a number of NP-hard pencil-and-paper puzzles. We modify
NP-hardness reductions for these problems to show that their FCP versions are ΣP

2 -hard.
These problems were chosen because their NP-hardness reductions mostly preserve clue
structure. Figure 1 summarizes the chain of reductions.

FCP Latin Square: Given a partially filled Latin Square and a number k, do there
exist k additional squares to fill in such that the remaining puzzle has a unique
solution?

FCP Sudoku: Given a partially filled Sudoku board and a number k, do there exist
k additional squares to fill in such that the remaining puzzle has a unique solution?

FCP Shakashaka: Given a Shakashaka board and a number k, do there exist k
clues for the board such that the remaining board has a unique solution?

FCP Akari: Given an Akari board and a number k, do there exist k clues to the
board such that the remaining board has a unique solution?

There is a fundamental difference between Shakashaka and Akari, and Sudoku. In the
former, there is a clear distinction between problem instance and solution, whereas in the
latter, this distinction is less clear. In particular, filling in a clue in Sudoku and Latin Squares
simply produces a new instance of the problem, whereas filing in clues for Shakashaka and
Akari do not create new problem instances.
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2.4 FCP Versions of Easy Problems
It is also interesting to consider the FCP transformation applied to problems in P. Here, we
do not find many general hardness bounds; instead, the results are problem-dependent.

We provide an upper bound for the class of problems in P where filling in a clue results
in another instance of the problem. The FCP versions of such problems are always in NP. As
an example of such a problem, consider 2SAT.

FCP 2SAT: Given a Boolean formula φ(x) written in 2-CNF form, and a number k,
does there exist a partial assignment of at most k variables such that the remaining
formula φ′ has only one satisfying assignment?

In this problem, filling in a clue means assigning truth values to certain variables of φ,
which results in another instance of 2SAT. Thus, our upper bound will imply that FCP 2SAT
is in NP. In fact, this bound is tight as we show that FCP 2SAT is NP-complete by reduction
from Minimum Independent Dominating Set.

However, for problems in P that do not have this property, the hardness of their FCP
versions cannot be so easily characterized. This happens because we can modify hard
problems by planting solutions to make them “easy”, while maintaining the hardness of their
FCP versions. We give a simple example of a problem in P whose FCP version is ΣP

2 -hard.

3 The FCP Transformation

3.1 Upper Bounds
I Theorem 4. If L ∈ NP, then FCP L ∈ ΣP

2 .

Proof. We write FCP L as an instance of QSAT, a problem in ΣP
2 . The original problem of

deciding membership in L can be written as

x ∈ L↔ ∃y : A(x, y) = 1,

where A is a polynomial time algorithm and |y| is polynomial in |x|.
FCP L asks: for a given instance x and positive integer k, does there exist a clue c of size

at most k such that there is only one solution y with c ⊂ y and (x, y) ∈ R? We write this in
logical notation as

(x, k) ∈ FCP L↔ ∃c, y : ∀y′ : A′(x, c, y, y′) = 1.

A′ simply checks that c ⊂ y, c is of size at most k (c is a valid clue of the correct size),
c ⊂ y′ 6= y (y′ is another possible solution), A(x, y) = 1 (y is a solution), and A(x, y′) = 0
(all other possible solutions do not work). J

3.2 Lower Bounds
In this subsection we present a chain of ΣP

2 -hardness reductions starting with UQSAT and
UQ3SAT. These results allow us to transition to ΣP

2 -hardness proofs of various FCP problems.

I Lemma 5. UQSAT is ΣP
2 -hard.

Proof. We reduce from QSAT. We define a function f from instances of QSAT to instances
of UQSAT which maps φ(x, y) to φ′(x, y, z), where z is one additional variable. We show

∃x : ∀y : φ(x, y) = 1↔∃x : φ′(x, y, z) has a unique solution.

FUN 2016



12:6 The Fewest Clues Problem

Let φ′(x, y, z) = (z ∧
∧

i yi) ∨ φ(x, y).
Note that for each assignment of x, φ′(x, 0, 0) = 1. If there exists some x for which

φ(x, y) = 1 always, then for this x, φ(x, y) = 0 always. For this x, the only way to satisfy φ′
is to set z and each yi to 0. It remains to rewrite φ′ as a CNF formula.

The given φ(x, y) is in CNF form, so we write φ(x, y) in DNF form using De Morgan’s
laws. For the ith clause, we introduce the variable ci to represent whether that clause is
satisfied. If there are n clauses, φ(x, y) becomes (c1 ∨ c2 ∨ · · · ∨ cn). We write the jth literal
in the ith clause as li,j , and introduce A as one additional variable. Then the following
formula is logically equivalent to φ′:

φ′′(x, y, z, {ci}, A) = (A ∨ z) ∧
∧

i

(A ∨ yi) ∧
∧

i

∧
j

(ci ∨ li,j) ∧ (A ∨
∨

i

ci).

Then the following two claims complete the proof.
Claim. Suppose for some assignment x, φ(x, y) = 1 for all y. Then φ′′(x, y, z, {ci}, A) has

a unique satisfying assignment.
Since φ(x, y) = 1, φ(x, y) = 0. This implies that each li,j = 0 and therefore each ci = 0.

This forces A = 1, z = 0, and yi = 0 for all i.
Claim. If for each x there exists some y where φ(x, y) = 0, then after fixing x,

φ′′(x, y, z, {ci}, A) has more than one satisfying assignment.
Setting each yi = 0, z = 0, ci = 0 for each i and A = 1 gives one satisfying assignment. If

there is a setting of the yi’s which makes some of the clauses true, then for the true clauses
set ci = 1. Then set A = 0 and z to either 0 or 1. This gives additional satisfying assignments
for φ′′. J

I Lemma 6. UQ3SAT is ΣP
2 -hard.

Proof. The reduction is from UQSAT. Given φ(x, y), an instance of UQSAT, it remains to
transform φ(x, y) into 3-CNF form. For clauses in φ(x, y) of length m > 3, we imagine a
binary tree of height logm where leaves correspond to clause literals. For all interior nodes
of the tree, we introduce a new variable to act as the OR of its two children. If an interior
node has children i1 and i2, we introduce the variable o along with the following clauses:

(i1 ∨ i2 ∨ o), (i1 ∨ i2 ∨ o), (i1 ∨ i2 ∨ o), (i1 ∨ i2 ∨ o).

These clauses ensure that o is the OR of i1 and i2. Additionally, we add the variable at
the root of the tree as a new clause of size 1 to capture the original clause exactly.

To handle clauses with fewer than three literals, we pad the clause with the additional
variable a along with the clause (a ∨ a ∨ a) to ensure that a is set to false. J

I Lemma 7. FCP 1-in-3 SAT is ΣP
2 -complete.

Proof. The reduction is from UQ3SAT. We use the reduction from Proposition 3.3 in [6]
which is a parsimonious reduction from Planar 3SAT to Positive Planar 1-in-3 SAT.
For this problem, we disregard the planarity and note that the reduction works to map
non-planar instances of 3SAT to 1-in-3 SAT.

We modify the reduction slightly by constructing the assign gadget from Figure 2 for each
variable in x. This assign gadget is designed so that any clue to the problem must resolve
an ambiguity within the gadget, forcing every clue to assign a value to each variable in x.
Therefore, even though FCP 1-in-3 SAT can give clues for any variable, because of the assign
gadgets, clues will only correspond to variables with existential quantifiers in UQ3SAT. J
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x

w w

w w w

11 2

3 4 5

Figure 2 Clue gadget for 1-in-3 SAT. Each
box represents a 1-in-3 SAT clause with vari-
ables corresponding to the three lines connected
to the box. x is set to true by setting w4 to
true. x is set to false by setting w1 or w2 to
true (but not both). If none of the wi in the
clue gadget is assigned, there exists more than
one satisfying assignment.

x

t f t' f '

Figure 3 FCP Planar 3SAT assign gadget
for variable x. The above diagram is written
with 4 clauses: (t∨f)∧(f ∨x)∧(t′ ∨x)∧(t′ ∨f ′).
The arrows indicate "causal" relationships (if t′

is set to true, then x must be assigned to true;
if f is set to true, then x must be assigned to
false). In order to assign x to true, set f ′ to
false. In order to assign x to false, set t to false.
If neither of the t, t′, f , or f ′ variables are set,
then the solution is not unique.

I Lemma 8. FCP 3SAT is ΣP
2 -complete.

Proof. We reduce from FCP 1-in-3 SAT. For each clause of the form (l1 ∨ l2 ∨ l3) in the
FCP 1-in-3 SAT instance, we construct the following clauses:

(l1 ∨ l2 ∨ l3), (l1 ∨ l2 ∨ l3), (l2 ∨ l1 ∨ l3), (l3 ∨ l1 ∨ l2), (l1 ∨ l2 ∨ l3).

Note that if (l1 ∨ l2 ∨ l3) is true in the 1-in-3 SAT configuration, all of the above clauses are
satisfied. Conversely, if all of the above clauses are satisfied, then the clause (l1 ∨ l2 ∨ l3) has
exactly one variable set to true. J

I Lemma 9. FCP Planar 3SAT is ΣP
2 -complete.

Proof. The reduction is from UQ3SAT. We use the reduction from [4] showing Planar
3SAT is NP-complete. The only change is that we introduce clauses to form an assign gadget
as shown in Figure 3. The assign gadget guarantees variables with existential quantifiers in
UQ3SAT are given clues. J

4 FCP Versions of NP-hard Puzzles

In this subsection we show that the FCP versions of popular puzzles are ΣP
2 -complete. It is

worth noting that all problems considered in this section are in NP, so their FCP versions are
in ΣP

2 due to Theorem 4. Therefore, we focus on obtaining ΣP
2 -hardness reductions.

4.1 Triangle Partition
The Triangle Partition problem is the following:

Given an undirected graph G = (V,E), can we partition E into disjoint triangles?

Holyer [3] showed this problem is NP-complete. We use elements of Holyer’s reduction to
show FCP Triangle Partition is ΣP

2 -complete. We use the notation as well as elements from
the reduction in [3].
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12:8 The Fewest Clues Problem

I Theorem 10. FCP Triangle Partition is ΣP
2 -complete.

Proof. In order to show FCP Triangle Partition is ΣP
2 -hard, we reduce from FCP 1-in-3 SAT.

We use Holyer’s reduction, which reduces 3SAT to Triangle Partition [3]. For the FCP setting,
we switch from 3 SAT to 1-in-3 SAT so that it is not advantageous to provide clues within
clause gadgets. The other modification we make is that instead of a single two-way join
between literals and variables, we make two two-way joins in other to enforce the variable
matches the literal exactly. Since the reduction is from 3SAT in [3], and the three-way join
enforces a 1-in-3 SAT constraint, [3] cannot map the literals and variables directly. Since we
are reducing from 1-in-3 SAT constraints, we can make the literals and variable gadgets be
the exact same partition.

This completes the proof, as now a clue on variables in the 1-in-3 SAT instance corresponds
exactly to a clue of the same size on the variable gadgets in the Triangle Partition instance. J

4.2 Latin Squares
The Latin Squares problem is the following:

Given an n× n grid, with some entries filled in with the numbers 1 to n, can we fill in
the remainder of the grid with numbers from 1 to n so that no row or column repeats
a number?

Colbourn proved this problem was NP-complete by showing it is equivalent to the
Triangle Partition problem restricted to tripartite graphs [1]. We show FCP Latin Squares is
ΣP

2 -complete.
I Theorem 11. FCP Latin Squares is ΣP

2 -complete.
Proof. We show hardness via a reduction from FCP Triangle Partition of Tripartite Graphs
which is ΣP

2 -complete following Theorem 10 and [1]. The reduction is identical to the one
in [1]. The mapping sends Latin Squares entries of the form L(i, j) = m to triangles with
vertices (i, j,m) on different parts of the partition, where L(i, j) is the entry on the i-th
row and j-th column of the Latin Square L. The mapping between entries and triangles is
bijective, implying that a clue of size k to the Latin Squares problem will produce a clue of
size k in the Triangle Partition problem. J

4.3 Sudoku
The Sudoku problem is as follows:

Given an n2 × n2 grid, divided into n2 subgrids of size n× n, can we fill in the grid
with numbers from [n2] so that no row, column, or any of the n2 subgrids contain any
repeated numbers?

We will show the FCP problem is ΣP
2 -complete by reduction from FCP Latin Squares.

The Latin Square is embedded into the Sudoku puzzle. The columns of the Latin Square are
mapped to the parts of columns of the Sudoku. In the mapping, the values are scaled by n.
I Lemma 12. FCP Sudoku is ΣP

2 -complete.
Proof. We note the same reduction as [8] will serve as a reduction from FCP Latin Square to
FCP Sudoku. Each entry in the Sudoku puzzle is mapped to an entry in the Latin Squares
problem, after diving by n. Therefore, a clue of size k in the constructed Sudoku puzzles can
be mapped to a clue of size k in the Latin Squares problem. Figure 4 shows the case when
n = 3. J
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1 2
4 5
7 8

4 5 7 8
7 8 1 2
1 2 4 5

1 2 3 4 5 6 7 8 0
4 5 6 7 8 0 1 2 3
7 8 0 1 2 3 4 5 6
2 3 4 5 6 7 8 0 1
5 6 7 8 0 1 2 3 4
8 0 1 2 3 4 5 6 7

Figure 4 Reduction from Latin Square to Sudoku for n = 3 from [8].

4.4 Shakashaka
Shakashaka is a pencil-and-paper puzzle published by Nikoli. A Shakashaka puzzle consists
of a rectangular grid of black and white squares. Black squares either contain an integer
from {0, 1, 2, 3, 4} or can be left blank. Each white square is filled in with a black triangle or
is left blank. The filled-in squares become half-black with right isosceles triangles in any of
four possible directions (referred to as b/w squares in [2]). The resulting configuration must
satisfy the following constraints: each black square with a number c must have c adjacent
black isosceles triangles, and the remaining white area must be partitioned into (possibly
rotated) rectangles.

The problem is shown to be NP-complete in [2]. The same reduction will show that FCP
Shakashaka is ΣP

2 -complete.

I Lemma 13. FCP Shakashaka is ΣP
2 -complete.

Proof. We use the reduction from [2] to reduce from FCP Planar 3SAT. It remains to show
that all clue structure of the original problem is preserved in the reduction. Shakashaka
entries are comprised of assignments (either to one of the four possible triangle orientations
or to be left blank) to the white squares. The key observation is that any assignment to a
white square in the reduction can be implied by an assignment in the variable gadget of [2].
Therefore, we can assume without loss of generality that each assignment in an entry is in a
unique variable gadget. Thus, the entries correspond exactly to assignments on variables in
FCP Planar 3SAT, completing the reduction. J

4.5 Akari
Akari, or Light Up, is a pencil-and-paper puzzle consisting of a grid with light and dark
squares. Dark squares may be labelled with integers from {0, 1, 2, 3, 4}. The player places
lightbulbs on light squares which illuminate all light squares in the four directions around
the lightbulb (although light stops upon a dark square). Equivalently, a square is lit if there
exists at least one light bulb connected to it by a straight line of light squares. The goal is
to place lightbulbs so that every light square is lit, no two light bulbs illuminate each other,
and every numbered dark square has exactly that many light bulbs adjacent to it.

This problem is known to be NP-complete. We show that its FCP version is Σ2-complete.

I Lemma 14. FCP Akari is ΣP
2 -complete.
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1

1

a b cc

x'x
Figure 5 Akari entry gadget. If x or x′ is lit, then there is ambiguity regarding placing the light

in b or c, in the case of x, and a or b in the case of x′. Lighting up a means x′ must be lit, and
lighting up c means x must be lit.

Proof. In order to show FCP Akari is ΣP
2 -complete, we reduce from Σ2 Circuit SAT, using

the reduction from [5]. We add the following assign gadgets to a wire to assign the necessary
variables. The gadget is shown in Figure 5. Variables with existential quantifiers will need to
receive clues to resolve ambiguity. Therefore, clues in Akari will only be given to variables
corresponding to existential quantifiers in Σ2 Circuit SAT. J

5 FCP Versions of Easy Problems

In this section, we consider the complexity of the FCP versions of various problems in P.

5.1 Problems Closed under Cluing
I Definition 15. We call a problem closed under cluing if plugging any partial solution into
a problem instance results in another instance of the same problem.

For example, 2SAT is closed under cluing since plugging in values for some of the variables
will result in another instance of 2SAT.

I Proposition 16. If A is a problem closed under cluing in P, then FCP A ∈ NP.

Proof. We give the following nondeterministic polynomial time algorithm. FCP A asks us to
find a clue set of size at most k. First, nondeterministically pick a clue set of size k. Then
for each string character in the solution that has not been assigned a value, try all possible
settings of that character and accept if only one setting of that character produces a solvable
problem. This step relies on closedness, as we use the fact that the problems that result from
setting certain characters of the solution are still solvable in polynomial time.

If for any string character we find that multiple settings give a solvable problem, then
our clue set does not give a unique solution. If no setting gives a solvable problem, then our
clue set is not valid since no solution is possible. J

5.2 FCP 2SAT
Proposition 16 states that FCP 2SAT ∈ NP. Here, we show that this problem is in fact
NP-complete.

I Theorem 17. FCP 2SAT is NP-complete.

We reduce from the NP-hard problem, Minimum Independent Dominating Set (MIDS),
which asks whether a graph has an independent dominating set of size at most k.
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a

b

c

d

e
(¬a ∨ ¬b) ∧ (¬a ∨ ¬c)
∧ (¬b ∨ ¬c) ∧ (¬c ∨ ¬d)
∧ (¬d ∨ ¬e)

Figure 6 Reduction from Minimum Independent Dominating Set to FCP 2SAT.

Given a graph G = (V,E), does there exist S ⊂ V , with |S| ≤ k such that, for all
v ∈ V , either v ∈ S or (u, v) ∈ E, u ∈ S, and u, v ∈ S implies that there is no edge
between u and v.

We transform G into a formula φ. For each edge (u, v), we add the constraint (¬u ∨ ¬v)
to the 2SAT formula. The following two lemmas prove that this reduction is correct.

I Lemma 18. Suppose G contains an independent dominating set of size at most k, then
there exists a clue of the 2SAT formula containing at most k variables.

Proof. Suppose S ⊂ V is an independent dominating set of size k. Then for each s ∈ S,
assign s to true. We claim the formula is uniquely satisfiable.

If x is some variable in φ, then x corresponds to some node in G. Since S is a dominating
set, let s ∈ S be a neighbor of x. Then (¬x ∨ ¬s) is a clause in φ. For φ to be satisfied, x
must be false.

Since S is independent, we have no false clauses. J

I Lemma 19. Suppose φ contains a clue of size k. Then G contains an independent
dominating set of size at most k.

Proof. Let CT and CF be the set of variables set to true and false, respectively, in the clue
for φ. Without loss of generality, we may force CF to be empty. For any variable x in CF ,
consider a clause (¬x∨¬y) in φ. We can give a clue of identical size by removing x from CF

and including y in CT .
Also, we note that all variables assigned to true in the satisfying assignment must be in

CT . If a variable x set to true is not in CT , uniqueness is violated since setting x to false
gives another satisfying assignment.

Let S = CT . S must be an independent set because φ is satisfiable. In addition, if
v ∈ G− S, then since the satisfying assignment to φ is unique, v contains a neighbor whose
variable is set to true. So S is dominating. J

5.3 FCP versions of other easy problems
Consider the following language:

L = {φ′ = (φ ∧ z) ∨ z|φ is a Boolean formula and z does not appear in φ}.

Note that if we ask whether φ′ is satisfiable, the answer is trivially yes. So L ∈ P. FCP L

asks whether there exists a setting of k variables to φ′ which makes it uniquely satisfiable.

I Proposition 20. FCP L is ΣP
2 -complete.

FUN 2016



12:12 The Fewest Clues Problem

Proof. We reduce from FCP SAT. If φ has a clue of size at most k with a unique solution,
then φ′ = (φ ∧ z) ∨ z has a partial assignment of size at most k + 1 with a unique solution.
We simply add the assignment for variable z.

If φ has no satisfying assignment, then φ′ requires at least k + 1 assigned variables for a
partial assignment with a unique solution. Let x be a particular satisfying assignment to
φ′ that requires more than k assigned variables. If φ has a partial satisfying assignment x
and z ∈ x, then x needs at least n assigned variables to be specified. If z ∈ x, then we must
specify z in the clue, and by assumption we must specify more than k variables. Therefore,
if φ needs a clue of size greater than k, φ′ will need a clue of size greater than k + 1. J
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