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Abstract
We define the notion of disk-obedience for a set of disks in the plane and give results for disk-
obedient graphs (DOGs), which are disk intersection graphs (DIGs) that admit a planar embed-
ding with vertices inside the corresponding disks. We show that in general it is hard to recognize
a DOG, but when the DIG is thin and unit (i.e., when the disks are unit disks), it can be done
in linear time.
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1 A Concise Introduction to Disk-Obedience

Consider a set of disks in the plane. The disk intersection graph (DIG) induced by the set
has a vertex for every disk and an edge between two vertices whose disks intersect. We
will often identify the DIG vertices with the disks that induce the graph, and speak, e.g.,
about “disks of the DIG”. An embedding of the DIG assigns a location in the plane for each
vertex of the DIG; the graph edges are straight-line segments connecting their endpoints. An
embedding is planar if the edges do not intersect except at common endpoints.
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The question we consider is whether a DIG can be embedded so that its vertices obey the
location constraints imposed by the disks, and the embedding is planar. The main definitions
in this paper are those of obedience and a DOG:

I Definition 1. An embedding of a DIG is called disk-obedient if each vertex is contained in
its corresponding disk.

I Definition 2. A DIG is a disk-obedient graph (DOG) if it admits a planar disk-obedient
embedding.

We study computational complexity of the following problem:

Is the DIG a DOG?

That is, for a given DIG, we want to find out whether or not it has a planar, disk-obedient
embedding.

1.1 Motivation and Related Work
DIGs have been extensively studied in the literature due to their wide applications in a
variety of domains. In particular, in wireless sensor networks (WSNs), the unit-disk graph
(UDG) has been the prevailing basic model for communication and sensing, and many
generalizations of the UDGs (civilized graphs [19], quasi-UDGs [21, 5, 14], Vietoris-Rips
complex [30, 13, 15], bisectored UDGs [27], etc.) have been introduced. The most natural
generalization is, of course, to disks of two radii (modeling, e.g., two types of communication
devices in the WSN or the asymmetry in sending/receiving range [12, 11]) or of arbitrary
sizes. Embedding DIGs in the plane (and/or finding a realization of a DIG) was viewed
as an important practical problem in WSN and ad hoc networks, because it translates the
network connectivity information into virtual coordinates [20] and can serve as the first step
in aiding topology extraction [18, 31], which may be subsequently used in geometric routing
algorithms (e.g., GOAFR [22] and GFG/GPSR [6]); a planar embedding may be preferred
since it provides the cleanest picture of the network.

In graph drawing and network visualization, minimizing crossings in the embedding is the
central investigated question. The problem in this paper is related to the so called Anchored
Planar Graph Drawing (AGD) (shown to be NP-hard in [1]): Given a planar graph G and
an initial placement for its vertices, produce a planar straight-line drawing of G such that
each vertex is at distance at most 1 from its original position. AGD was motivated by the
scenario in which the disks represent cities (disk sizes represent city sizes) and the graph
shows some relation between cities; in the drawing, it makes sense to keep a city vertex
inside the city. Our DIG/DOG problem is different from AGD since for us, the DIG G whose
planar disk-obedient drawing is sought, is fully defined by the disks (G is the DIG), while
in AGD, G can be an arbitrary planar graph given in the input in addition to the disks.
Moreover, [1] studied AGD only for non-overlapping disks (as observed in [1], if the disks
are allowed to overlap, AGD becomes as difficult as the long standing open problem of strip
planarity testing [2]; however, as also noted in [1], if the disks can have different radii and are
allowed to overlap, then AGD is trivially hard by reduction from planar drawing extension
[28]); for us, the disks must overlap, for otherwise the DOG recognition problem is void (G
is empty). Placing vertices inside the disks of a DIG disks to produce C-oriented planar
drawings of bounded-degree graphs was studied in [17]; however, the disks in [17] only touch
(no overlap), making crossings impossible.

Our particular motivation for introducing disk-obedience comes from dealing with data
uncertainty [7, 26, 25, 8, 24] which arises, e.g., due to objects moving (possibly with different
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and/or unknown speeds) from some last-known locations (starting possibly at different
and/or unknown times). It is often known which objects could currently be close to each
other (potential incidents / dog fights / airplanes in conflict / criminal activities), which
defines the DIG. Now, one wants to show this graph as clearly as possible, which means (by
GD tradition) to draw it without crossings.

Just for FUN, we experimented with turning our problem into a game of trying to embed
a given DIG in a planar disk-obedient way. The game can be programmed in interactive
geometry software like GeoGebra. Initial experience indicates no concrete reason why any of
the variants would not make for an engaging game that should totally become the next hit on
the iStore. It has been a FUN tradition to analyze computational hardness of various games,
and for once, our paper gives the computational complexity treatment to a game before the
game storms the market. We invite the reader to play with our simple sample instance at
http://tube.geogebra.org/m/BzVYK21A; it is not hard, but requires a tiny bit of thinking
outside the circle (at least a few 9-year-old testers have politely found it non-trivial).

1.2 Paper Outline
Section 2 gives initial observations on disk-obedience, proving that a shallow DIG (a DIG
with depth 2) is always a DOG. It follows that triangle-free DIGs are DOGs, i.e., that
triangles are the only problematic places around which a DIG may be disk-disobedient. This
motivates us to look more closely at triangles in DOGs. In Section 3 we show that in general,
for DIGs which may have triangles close to each other, testing disk-obedience is NP-hard. In
Section 4 we prove that for unit DIGs (i.e., DIGs for unit disks) having close-by triangles is
essential for the hardness: we define thin unit DIGs whose triangles are well separated, and
give a linear-time algorithm to recognize a thin unit DOG. The biggest question we leave
unsolved is the hardness of recognizing general unit DOGs, i.e., deciding whether a given
unit DIG is a DOG; we discuss it (and possible related positive results) in Section 5.

2 DIGs with Depth 2 are DOGs

We assume that our DIGs are connected. Of course, only planar graphs can have planar
disk-obedient embeddings. However, not all of them do, as Figure 1 shows. Define the depth
of a point in the plane as the maximum number of disks containing the point, and the depth
of a DIG as the maximum number of disks having a point in common. If a DIG has depth 5
or larger, it cannot be a DOG since K5 is not planar. Depth-3 DIGs may be DOGs (e.g., 3
disks that coincide) or not (as Fig. 1 shows); similarly, depth-4 DIGs may be DOGs (e.g., 4
disks that coincide) or not (just add a disk to Fig. 1 to create a depth-4 point – adding more
disks to a DIG that is not a DOG will not make a planar disk-obedient embedding possible).

I Observation 3. Depth-2 DIGs are DOGs.

Proof. Let D1, D2, . . . , Dn be an arrangement of disks with depth at most two, where Di

has center ci. Embed vertices of the DIG at the disk centers. Suppose edges c1c3 and c2c4
intersect at point x (Fig. 2), and suppose wlog that x lies in D1 and D4. Let c1a = D1 ∩ c1c3
and c4b = D4 ∩ c2c4. Since D1 and D3 intersect, a ∈ D3 and since D2 and D4 intersect
b ∈ D2. Since c1a and c4b intersect at x, by the triangle inequality, |c1b|+ |c4a| < |c1a|+ |c4b|,
which implies either b ∈ D1 or a ∈ D4 and thus b or a is contained in three disks; a
contradiction. J

I Corollary 4. DIGs without triangles are DOGs.

FUN 2016
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Figure 1 An example of a planar DIG that
has no planar disk-obedient embedding.

c1

c3

c4

c2

x a
b

Figure 2 Either a or b is in three disks.

3 Recognizing a DOG is Hard

In this section, we prove that deciding whether a DIG is a DOG is NP-hard. We reduce from
planar 3-SAT [23].

Let S be a planar 3-SAT formula. We can lay out its variable-clause graph in a planar
way. Globally speaking, we will emulate every edge leading from a variable to a clause
by a variable chain: a set of disks such that their DIG has exactly two possible planar
disk-obedient embeddings. One of these embeddings will encode the value true; the other
will encode the value false. Then, at each variable, we add a variable gadget: a configuration
of disks that ensures all chains belonging to the same variable have to be in the same state.
At each clause, we add a clause gadget: a configuration of disks that ensures at least one of
the three incident chains must be in the correct state (either true or false, depending on the
literal in the clause). Then, the entire configuration of disks will have a planar disk-obedient
embedding if and only if S can be satisfied.

Variable chains

A variable chain is a sequence of kissing unit disks (from now on called big disks), together
with a number of triples of disks (small disks) overlapping each kissing point, as shown in
Figure 3a. The embedding of the vertices corresponding to the big disks, together with the
edges connecting the vertices, will be called the variable path. The embedding of the vertices
corresponding to the small disks in a triple, together with the edges connecting the vertices,
will be called a small path. In a planar disk-obedient embedding a small path should not
intersect the variable path. This means that the whole small path will need to be embedded
either fully below or fully above the variable path. To be able to embed the small path below
(resp., above) the variable path, the variable path must have points of all three small disks
below (resp., above) the path. That is, the variable path must intersect either the top or
the bottom small disk of a triplet. Both are possible: see Figures 3b and 3c. Moreover, by
making the radii of the small disks sufficiently close to the radius of the big disks, we can
ensure that two neighbouring triples of small paths cannot be in opposite configurations
simultaneously. This way, the DIG of a variable chain will have exactly two distinct planar
disk-obedient embeddings.
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(a) (b) (c)

Figure 3 A variable chain and its two valid states.

(a) (b) (c)

Figure 4 An alignment gadget and its two valid states.

Alignment gadgets

We use the variable alignment gadget to force all chains emanating from the same variable
to have the same value. In principle, the number of times a variable appears in a 3-SAT
instance is unlimited (though of course bounded by the number of clauses). We will not
attempt to design a generic gadget working for an arbitrary-degree variable, but instead
replace each variable vertex by a tree of degree-3 nodes and install the alignment gadget at
each node. This way, using multiple gadgets each aligning only three chains, we can align as
many chains as required.

To align three chains, we let the three big disks at the ends of the chains kiss. Centered on
this location, we add a claw consisting of four small disks. Figure 4a shows the configuration.
If all three chains are in the same state, then there exists a planar disk-obedient embedding of
the entire alignment gadget, as can be seen in Figures 4b and 4c. It can be seen by inspection
that in any other combination of states, there is no planar disk-obedient embedding.

The alignment gadget can also be used as an inverter to make the chain arrive at the
clause in the correct orientation (in the inverter, one of the three variable chains will end
without connecting to a clause).

Clause gadgets

Finally, we design clause gadgets for the clause vertices of S. In a clause, three variable
chains end, and we place them so that they all kiss a single clause disk of the same radius as
the big disk in the variable chains. The chains make an angle of 150◦ before they kiss. On
top of this, we add a number of much smaller disks (from now on, tiny disks), as depicted in
Figure 5a.

FUN 2016
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(a) (b)

Figure 5 A clause gadget and a possible satisfied state.

The tiny disks essentially form walls that cannot be intersected by any edge in the solution
embedding. We place these walls in such a way that if a variable chain is in the wrong state,
the only way for the final variable disk to connect to the clause disk is if the vertex of the
clause disk is placed on a specific line (or, in fact, narrow cone) determined by the location of
the final vertex of the variable path and a gap in the wall. We generate three such lines—one
for each variable—and make sure the three lines do not pass through a common point. Now,
if at most two of the three variables are in the wrong state, we can still place the clause
vertex, but if all three are in the wrong state, this is no longer possible and there is no planar
disk-obedient embedding.

Thus, S can be satisfied if and only if there is a planar disk-obedient embedding, i.e., if
the DIG built from S is a DOG.

4 Recognizing Thin Unit DOGs is Easy

In this section, we study disk-obedience for unit DIGs (i.e. unit disk graphs). We prove that
(in accordance with common sense) if potential disk-disobedience spots are distant, each of
them can be handled separately.

We start by defining some terms used later in the section:

I Definition 5. The hippodrome H(A,B) of two intersecting disks A,B is the union of all
possible segments that could realize the edge AB (i.e., the convex hull of A∪B). Each of the
two connected components of the difference H(A,B) \ (A ∪B) is called a delta and denoted
by ∆(A,B).

Suppose that vertices of a DOG are embedded at their disks centers, and (alas!) the
embedding is not planar. Recall from Section 2 that each crossing must involve a triangle (by
the proof of Observation 3, edges with endpoints in centers of depth-2 disks do not intersect).
Let abc be a triangle in the DOG; let A,B,C be the corresponding disks. If an edge pq of
the DOG intersects the edge ab, then the disks P and Q of p and q resp. are not too far from
A and B; in fact, they must be within some constant distance < 8 from the triangle (because
the hippodromes H(A,B) and H(P,Q) intersect, and a hippodrome has diameter < 4). But
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k

Figure 6 A schematic picture of a thin DOG. Our algorithm places green vertices at the disk
centers, and works on each red component independently.

in any DOG, the number of disks within a constant distance from any point cannot be too
large, or else a depth-5 point appears. Thus, there are only a constant number of disks
within distance k of the triangle for any constant k.

Before embedding the (potential) DOG, we color its disks red and green: the disks that
are closer than k to any triangle (including all the triangle disks themselves) are red, and the
others are green (the same color applies to both a disk and its vertex). Let monochromatic
edges inherit the color from their endpoints. Inspired by work on thin grids, suggesting that
problems on them tend to be easier than on general grids [3, 4], we define thin DIGs as
those composed from triangles connected by (longish) isolated paths such that far from the
triangles the different paths do not come close to each other. A path in a DIG is isolated
if the hippodrome of any adjacent disks A and B on the path may only intersect disks of
vertices adjacent to A or B.

I Definition 6. A DIG is thin if
the distance between any two triangles is larger than 3k (k = 16 suffices)
removal of all disks within distance k/2 of a triangle decomposes the graph into a set of
isolated paths.

I Definition 7. A thin DOG is a thin DIG admitting a planar disk-obedient embedding
(Fig. 6).

In what follows, we consider only connected thin DIGS, since a DIG is a DOG if and
only if its components are DOGs. The crucial properties of thin DIGs, following from the
definition, are that all green vertices have degree ≤ 2 and are adjacent to vertices (red or
green) of degree ≤ 2 (since they are far from any triangle); any pair of adjacent vertices that
are close (≤ 8) to a green vertex are part of an isolated path (thus their hippodrome does not
intersect the green disk or its adjacent disks unless they are part of the same path); and no
green vertex can be on a short cycle (length < k/2) in the DIG (otherwise the cycle would
be disconnected from the rest of the graph, since every vertex close to a green vertex has
degree ≤ 2).

Given a thin DIG, we check whether each red triangle and its red component is a DOG
and obtain a disk-obedient embedding for it. Since there is only a constant number of vertices
per red component (otherwise we know the red component is not a DOG), this can be done in
constant time (in an appropriate model of computation, like realRAM) – e.g., by formulating
DOG recognition as a mathematical program whose variables are the coordinates of the
vertices, and checking the program for feasibility. If no “local” red DOG can be found, this
certifies that the whole DIG is not a DOG either. Otherwise, if all red components are DOGs,

FUN 2016
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Figure 7 Left: If x ∈ A ∪ B, move a to x. Middle: The new edges are dotted and the new
location for a is the hollow circle. Right: x ∈ ∆(A, B), {g1, g2} ∩ (A ∪ B) = ∅: move g1 to x.

we claim that the whole DIG is also a DOG. To that end, we embed the green vertices at
their disk centers and resolve any edge intersections this might create. In what follows, we
consider the different cases depending on the colors of the endpoints of intersecting edges.
Note that all four of these endpoints cannot be red.

First, suppose there is a green edge g1g2 that intersects an edge ab (a and b can be of
arbitrary colors); let G1, G2, A,B be the corresponding disks, and let x = g1g2 ∩ ab be the
intersection point. Since g1, g2 are at the disks centers, x ∈ G1 ∪G2. Consider the two cases
depending on where x is w.r.t. A ∪B:
x ∈ A ∪ B: Then (G1∪G2)∩(A∪B) 6= ∅, and hence there exists an edge (say, g1a) between

a green vertex and one of a, b. We move a to x (Fig. 7, left), removing the intersection
and, since the new edges are sub-segments of the old, creating no new intersection.

x ∈ ∆(A, B): There are 2 subcases:
If one of the green centers is inside A∪B (say, g1 ∈ A), we rotate g1a around g1 until a
has moved over g1g2 (we initially keep |g1a| fixed, i.e., moving a on the circular arc, but
if a gets onto the boundary of A, we move it along the boundary during the rotation);
ba rotates around b at the same time. There is no other edge that the rotated g1a and
ba could intersect, for otherwise there is a triangle or a degree-3 disk (Fig. 7, middle).
Otherwise, either there is a degree-3 disk among G1, G2, A,B (a contradiction), or x
is in one of G1, G2, meaning that there is an edge between a green vertex and one
of a, b (say the edge is g1a). In this case, we move g1 along g1g2 to x to resolve the
intersection (Fig. 7, right).

Finally, suppose there is an intersection of a bichromatic edge gr with an edge ab. We
may assume that ab is a red edge r1r2, since the bichromatic case is more restrictive, meaning
that the location of a green vertex is at the center of its disk, while a red vertex may be
anywhere within its disk. Let G,R,R1, R2 be the corresponding disks, and let x = gr ∩ r1r2
be the intersection point.

We claim that at most one of gr1, r1r, rr2, and gr2 exist. If two exist that share a vertex
(e.g., gr1 and r1r), then they form a triangle with one of gr or r1r2 (contradiction). If two
exist that do not share a vertex (e.g., gr1 and rr2), then they form a cycle with gr and r1r2,
contradicting the no-short-cycle property.

Suppose G intersects R1 or R2 (say wlog R1) so gr1 is an edge in the DIG. If x ∈ G, we
can move g to x and eliminate the crossing (Fig. 8, left). This doesn’t introduce any new
crossings since the new edge segments are sub-segments of the old ones. (Note: Vertex g has
one edge to r1 and one to r; the first is replaced by xr1 and the second by xr, both of which
are sub-segments of the original drawing. Vertex g has no further adjacent edges.) Similarly,
if x ∈ R1, we can move r1 to x to eliminate the crossing. If neither of these is true, we move
r1 to the intersection of gr with the boundary of R1 (Fig. 8, right).

Otherwise, suppose R intersects R1 or R2 (say wlog R1) so rr1 is an edge. As before, we
can eliminate the intersection if x ∈ R or x ∈ R1 (Fig. 9, left). If neither of these is true, we
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Figure 8 Edge gr1 is in DIG. Left: x ∈ G. The new location of g is the hollow circle. Right:
x 6∈ G ∪ R1. The new location for r1 is the hollow circle.

g

rr1

r2

g r

r1

r2 R

R1

g r

r1

r2 R

Figure 9 The fixes are dotted, the new locations for r are the hollow circles. Left: x ∈ R. Middle
and right: x /∈ R (r is shown already pulled onto ∂R).

move r back towards x along gr as much as possible, i.e., onto the boundary of R. We then
rotate gr around g, moving r along the boundary of R (again, no other edges can be in the
vicinity of the moved edges since that would imply a vertex with degree at least 3): if the
boundary of R intersects r1r2, then r is moved until it goes just over the intersection (Fig. 9,
middle); otherwise, r is moved until gr jumps over r1 (Fig. 9, right).

Finally, suppose none of the edges gr1, r1r, rr2, and gr2 exist. The intersection x must
happen in a delta of R1, R2, with the segment r1r2 “cutting off” a cap of R in which x lies
(Fig. 10). This implies that disk R intersects the hippodrome H(R1, R2), which violates the
path-isolation property.

5 Discussion

We showed that in general recognizing DOGs is hard, but recognizing thin unit DOGs is easy.
Our hardness proof in Section 3 uses disks of different radii, and a natural question is how
hard it is to recognize a unit DOG (i.e., the complexity of deciding planar disk-obedience for
unit DIGs). We were not able to settle the complexity of the problem, and comment on it
here.

Some parts of our hardness construction can be done with unit disks. For instance, the
variable chains can be made to work with unit disks by carefully placing them (see our game
instance at http://tube.geogebra.org/m/BzVYK21A). Similarly, it is possible to create a
splitter gadget with unit disks. However, the clause gadget crucially relies on the abilities to
build “walls” of small disks, and while it is possible to grow these small disks significantly, it
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Figure 10 r ∈ R is inside the hippodrome H(R1, R2), which violates path isolation.

appears not to be possible to make them the same size as the other disks. In principle, we
could potentially try to reduce from a different NP-hard version of SAT (not the standard
3SAT) to deciding disk-obedience for UDGs – Schaefer’s dichotomy theorem [29, 9] tells
which versions are hard; however, were not able to find a hard version whose true (and only
true) clauses could be encoded by DOGs.

As far as our positive result goes, we believe that our problem is fixed-parameter tractable
with the running time of the FPT algorithm depending on the ratio ρ of largest to smallest
radius of the disks. Indeed, the fact that it is enough to look only at a certain number k
of red vertices around each triangle is based on the packing argument (the disks that can
intersect a triangle edge must be close to the triangle, and if there are too many such disks,
they will define a point of high depth), which works for DIGs with arbitrary-radius disks
(k will be a function of ρ, of course). Similarly, the arguments about non-intersection of
the colorful edges (or about fixing the intersections) can be potentially adapted to apply to
different-size disks, thus possibly extending the whole algorithm to general DOGs.

Our problem can be naturally extended to shapes other than disks, defining the intersection
graph; for any class of shapes it may be asked whether a given -IG is a -OGs. For instance,
rectangle intersection graphs (RIGs) have also been studied earlier [10, 16] but the question
“Is the RIG a ROG?” has yet to be answered (even in its simplest form “Is the SIG a SOG?”
when the rectangles are squares). It could be interesting to see for which shapes the -IG/-OG
problem is polynomially solvable and also for which shapes the “shape-obedience game” is
fun to play.

Acknowledgements. We thank the anonymous reviewers for their helpful comments. We
also thank Boris Klemz for noticing that our thin DIGs were not quite thin enough in an
earlier draft.

References

1 Patrizio Angelini, Giordano Da Lozzo, Marco Di Bartolomeo, Giuseppe Di Battista, Seok-
Hee Hong, Maurizio Patrignani, and Vincenzo Roselli. Anchored drawings of planar graphs.
In Graph Drawing, volume 8871 of Lecture Notes in Computer Science, pages 404–415.
Springer, 2014.

2 Patrizio Angelini, Giordano Da Lozzo, Giuseppe Di Battista, and Fabrizio Frati. Strip
planarity testing. In Stephen K. Wismath and Alexander Wolff, editors, Graph Drawing,
volume 8242 of Lecture Notes in Computer Science, pages 37–48. Springer, 2013.

3 Esther M Arkin, Michael A Bender, Erik D Demaine, Sándor P Fekete, Joseph SB Mitchell,
and Saurabh Sethia. Optimal covering tours with turn costs. SIAM Journal on Computing,
35(3):531–566, 2005.



W. Evans, M. van Garderen, M. Löffler, and V. Polishchuk 16:11

4 Esther M Arkin, Sándor P Fekete, Kamrul Islam, Henk Meijer, Joseph SB Mitchell, Yurai
Núñez-Rodríguez, Valentin Polishchuk, David Rappaport, and Henry Xiao. Not being
(super) thin or solid is hard: A study of grid Hamiltonicity. Computational Geometry,
42(6):582–605, 2009.

5 Lali Barrière, Pierre Fraigniaud, Lata Narayanan, and Jaroslav Opatrny. Robust position-
based routing in wireless ad hoc networks with irregular transmission ranges. WCMC,
3(2):141–153, 2003. doi:10.1002/wcm.108.

6 Prosenjit Bose, Pat Morin, Ivan Stojmenović, and Jorge Urrutia. Routing with guaranteed
delivery in ad hoc wireless networks. Wireless networks, 7(6):609–616, 2001.

7 Kevin Buchin, Irina Kostitsyna, Maarten Löffler, and Rodrigo I Silveira. Region-based
approximation algorithms for visibility between imprecise locations. In ALENEX, pages
94–103. SIAM, 2015.

8 Kevin Buchin, Maarten Löffler, Pat Morin, and Wolfgang Mulzer. Preprocessing imprecise
points for Delaunay triangulation: Simplified and extended. Algorithmica, 61(3):674–693,
2011. doi:10.1007/s00453-010-9430-0.

9 Hubie Chen. A rendezvous of logic, complexity, and algebra. ACM Comput. Surv.,
42(1):2:1–2:32, December 2009. doi:10.1145/1592451.1592453.

10 M.B. Cozzens. Higher and Multi-dimensional Analogues of Interval Graphs. PhD thesis,
Rutgers University, 1981.

11 Hongwei Du, Xiaohua Jia, Deying Li, and Weili Wu. Coloring of double disk graphs. J.
Global Opt, 28(1):115–119, 2004. doi:10.1023/B:JOGO.0000006750.85332.0f.

12 Alon Efrat, Sándor P Fekete, Joseph SB Mitchell, Valentin Polishchuk, and Jukka Suomela.
Improved approximation algorithms for relay placement. ACM Transactions on Algorithms,
12(2):20, 2015.

13 M. Gromov. Hyperbolic groups. In S. M. Gersten, editor, Essays in Group Theory, pages
75–263. Springer New York, 1987.

14 Marja Hassinen, Joel Kaasinen, Evangelos Kranakis, Valentin Polishchuk, Jukka Suomela,
and Andreas Wiese. Analysing local algorithms in location-aware quasi-unit-disk graphs.
Discr Appl Math, 159(15):1566–1580, 2011. doi:10.1016/j.dam.2011.05.004.

15 Jean-Claude Hausmann. On the Vietoris-Rips complexes and a cohomology theory for
metric spaces. In F. Quinn, editor, Annals of Mathematics Studies, volume 138, pages 175–
188, Princeton, N.J., 1995. Princeton University Press. Prospects in topology : proceedings
of a conference in honor of William Browder.

16 Hiroshi Imai and Takao Asano. Finding the connected components and a maximum clique
of an intersection graph of rectangles in the plane. Journal of Algorithms, 4(4):310–323,
1983. doi:http://dx.doi.org/10.1016/0196-6774(83)90012-3.

17 Balázs Keszegh, János Pach, and Domotor Palvolgyi. Drawing planar graphs of bounded
degree with few slopes. SIAM Journal on Discrete Mathematics, 27(2):1171–1183, 2013.

18 Alexander Kröller, Sándor P Fekete, Dennis Pfisterer, and Stefan Fischer. Deterministic
boundary recognition and topology extraction for large sensor networks. In SoDA, pages
1000–1009, 2006.

19 Sven O Krumke, Madhav V Marathe, and SS Ravi. Models and approximation algorithms
for channel assignment in radio networks. Wireless networks, 7(6):575–584, 2001.

20 Fabian Kuhn, Thomas Moscibroda, and Rogert Wattenhofer. Unit disk graph approxima-
tion. In Proceedings of the 2004 joint workshop on Foundations of mobile computing, pages
17–23. ACM, 2004.

21 Fabian Kuhn, Roger Wattenhofer, and Aaron Zollinger. Ad hoc networks beyond unit disk
graphs. Wireless Networks, 14(5):715–729, 2007. doi:10.1007/s11276-007-0045-6.

22 Fabian Kuhn, Rogert Wattenhofer, Yan Zhang, and Aaron Zollinger. Geometric ad-hoc
routing: of theory and practice. In PoDC, pages 63–72, 2003.

FUN 2016

http://dx.doi.org/10.1002/wcm.108
http://dx.doi.org/10.1007/s00453-010-9430-0
http://dx.doi.org/10.1145/1592451.1592453
http://dx.doi.org/10.1023/B:JOGO.0000006750.85332.0f
http://dx.doi.org/10.1016/j.dam.2011.05.004
http://dx.doi.org/http://dx.doi.org/10.1016/0196-6774(83)90012-3
http://dx.doi.org/10.1007/s11276-007-0045-6


16:12 Recognizing a DOG is Hard, But Not When It is Thin and Unit

23 David Lichtenstein. Planar formulae and their uses. SIAM J. Comput., 11(2):329–343,
1982. doi:10.1137/0211025.

24 Maarten Löffler. Existence and computation of tours through imprecise points. IJCGA,
21(1):1–24, 2011. doi:10.1142/S0218195911003524.

25 Maarten Löffler and Wolfgang Mulzer. Unions of onions: Preprocessing imprecise points
for fast onion decomposition. JoCG, 5(1):1–13, 2014. URL: http://jocg.org/index.php/
jocg/article/view/140.

26 Maarten Löffler and Marc van Kreveld. Largest and smallest convex hulls for imprecise
points. Algorithmica, 56(2):235–269, 2010.

27 John Nolan. Bisectored unit disk graphs. Networks, 43(3):141–152, 2004. doi:10.1002/
net.10111.

28 Maurizio Patrignani. On extending a partial straight-line drawing. Int. J. Found. CS,
17(5):1061–1070, 2006. doi:10.1142/S0129054106004261.

29 Thomas J. Schaefer. The complexity of satisfiability problems. In SToC’78, STOC’78,
pages 216–226. ACM, 1978. doi:10.1145/800133.804350.

30 L. Vietoris. Über den höheren zusammenhang kompakter räume und eine klasse von
zusammenhangstreuen abbildungen. Mathematische Annalen, 97(1):454–472, 1927. doi:
10.1007/BF01447877.

31 Yue Wang, Jie Gao, and Joseph S B Mitchell. Boundary recognition in sensor networks
by topological methods. In 12th annual conference on Mobile computing and networking,
pages 122–133, 2006.

http://dx.doi.org/10.1137/0211025
http://dx.doi.org/10.1142/S0218195911003524
http://jocg.org/index.php/jocg/article/view/140
http://jocg.org/index.php/jocg/article/view/140
http://dx.doi.org/10.1002/net.10111
http://dx.doi.org/10.1002/net.10111
http://dx.doi.org/10.1142/S0129054106004261
http://dx.doi.org/10.1145/800133.804350
http://dx.doi.org/10.1007/BF01447877
http://dx.doi.org/10.1007/BF01447877

	A Concise Introduction to Disk-Obedience
	Motivation and Related Work
	Paper Outline

	DIGs with Depth 2 are DOGs
	Recognizing a DOG is Hard
	Recognizing Thin Unit DOGs is Easy
	Discussion

