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Abstract
Recently, due to the widespread diffusion of smart-phones, mobile puzzle games have experienced
a huge increase in their popularity. A successful puzzle has to be both captivating and challen-
ging, and it has been suggested that this features are somehow related to their computational
complexity [5]. Indeed, many puzzle games – such as Mah-Jongg, Sokoban, Candy Crush, and
2048, to name a few – are known to be NP-hard [3, 4, 7, 10]. In this paper we consider Trainyard:
a popular mobile puzzle game whose goal is to get colored trains from their initial stations to
suitable destination stations. We prove that the problem of determining whether there exists
a solution to a given Trainyard level is NP-hard. We also provide an implementation of our
hardness reduction.1
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1 Introduction

The tension between human beings and machines in railroad building dates back to over
a century ago, as the famous tale of John Henry testifies. According to the story, John
Henry was a steel-driving man who challenged the efficiency of steam drill machines in a
competition. Eventually John prevailed, reportedly outperfoming the rival machine in a
contest that lasted more than one day. He unfortunately died of exhaustion shortly after his
feat and is now remembered by a statue and a plaque next to the entrance of the Big Bend
railroad tunnel in West Virginia. Here, we once again consider a (virtual) challenge between
humans and machines in railroad building, except that this time the human ingenuity is
put to the test instead of their brute strength. We do so by studying the computational
complexity of Trainyard, a smart-phone game where the player is responsible for suitably
building railroad tracks. In the words of its author, Trainyard is “a grid-based logic puzzle
game where the goal is to get each train from its initial station to a goal station. Every
train starts out a certain colour, and most puzzles require the player to mix and merge trains
together so that the correctly coloured trains end up at the right stations.” [13].

The game was conceived in 2009 and was first released for iPhones in 2010. In less
than five months it climbed the Apple App Store charts becoming the most downloaded
application in Italy and the United Kingdom, and the second most downloaded in the United

1 http://trainyard.isnphard.com
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States [12, 14]. It belongs to a class of games known as casual games, video games that
are targeted at a mass audience, have intuitive rules, and do not require a long-term time
commitment to play. The advent of smart-phones boosted the diffusion of casual games
and it is estimated that number of mobile games will surpass 1.8 billions in 2017 [2]. It has
been suggested that the reason of this success is somehow related to their computational
complexity, as David Eppstein famously said [5]:

If a game is in P, it becomes no fun once you learn “the trick” to perfect play, but
hardness results imply that there is no such trick to learn: the game is inexhaustible.
[. . . ]
There is a curious relationship between computational difficulty and puzzle quality. To
me, the best puzzles are NP-complete [. . . ].

Over the years several challenging puzzles have been shown to be at least NP-hard, e.g.,
Mah-Jongg [3], Fifteen-Puzzle [11], Rush Hour [6], Sokoban [4], Super Mario Bros and other
classical Nintendo games [1], Bejeweled, Candy Crush and similar match-three games [7],
2048 [10], just to cite a few. We refer the reader to [9] for a 2008 survey, although other
puzzles have been proved to be NP-hard ever since, and to [8] for a general framework for
showing NP- and PSPACE-hardness puzzles. It is also known that games exhibiting certain
mechanics are NP-hard [15]. Here we show that Trainyard is also NP-hard.

The paper is organized as follows: next section briefly describes the game rules; in
Section 3 we define our problem and state our main theorem, and in Section 4 we describe
the details of our hardness reduction.

2 Game Mechanics

The game is played on a board consisting of a rectangular grid divided into square cells. At
the beginning, each cell of the board is either empty or it contains a special tile. There are
several kind of tiles, the most important being departure stations and arrival stations: the
first ones host a number of trains while the latter are initially empty and have a maximum
capacity, i.e, a number of trains they are able to hold (see Figure 1 (a) and (b)).2 The player
can use empty cells to build different types of tracks. More precisely, the player can place
any rail piece on each of the empty cells, where rail pieces can be either straight tracks, 90
degree turns, crossings, or switches (see Figure 2). When the player is satisfied with his
design, he can check his solution by simulating it. The simulation proceeds in discrete time
steps. At each step the board is updated as follows: all the departure stations that are not
empty will output a train in one adjacent tile (depending on the initial orientation of the
station), trains will move by one tile following the user’s rails, and arrival stations that are
not full will receive incoming trains if they are coming from the right tile (again, depending
on the orientation of the arrival station).

If a train moves into an empty cell, in a cell where the rails have been misplaced, or out
of the board, it crashes and the level is lost. Trains will also crash if they try to enter a
special tile from the wrong direction (as we will discuss in the following) or if they try to
enter in an arrival station that is at full capacity. If the simulation reaches a state where all
the trains have reached their arrival stations and each of these stations is at full capacity,
without ever encountering a crash, then the player wins.

2 We will only use departure stations hosting a single train and arrival stations with a capacity of one.
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(a) (b) (c) (d) (e)

Figure 1 Different kinds of tiles: (a) departure station hosting one red train, (b) red arrival
station with a capacity of one, (c) rock, (d) red painter, (e) splitter. Images courtesy of Matt Rix.

When two trains happen to be traveling on the same rail in the same direction, they merge
into a single train. If two trains touch in any other way, they just proceed unobstructed, i.e.,
they pass through each other rather than crashing.

Colors

To add more complexity, departure and arrival stations are colored: all the trains exiting
a departure station will have its same color, while all the trains entering an arrival station
must have a matching color or they will crash. Trains can, however, change their color during
their course due to special tiles and by touching or merging with other trains. In our paper
we only care of four colors: red, blue, purple and brown. If two trains touch (resp. merge),
their color will be modified (resp. the color of the resulting train will be chosen) according to
the following rules. Let A and B be the color of the two trains and let C be their new color
(resp. the color of the resulting train). If A and B coincide, then we also have C = A = B.
If one of A and B is red and the other is blue, then C will be purple. In all the remaining
cases C will be brown (as a consequence, if A or B are brown, then C will be brown as well).

Rails and switches

The different kinds of rail pieces the user can place are shown in Figure 2. The behavior of
some of them is straightforward, while others deserve more attention. The user can rotate
the pieces by 90, 180 or 270 degrees before placing them; in the following we will refer to the
orientation shown in figure.

Figure 2 (d) shows two intersecting rails, these rails can be crossed in both the horizontal
and vertical direction but turns are not allowed. Also note that two trains can cross the tile
at the same time without crashing, as we already described. Figure 2 (e) shows a switch.
Notice that the rail turning to the left is highlighted, this means if a train comes from the
bottom it will continue to the left and the switch will flip to the right; if another train arrives,
it will turn to the right and the switch will flip again. If a single train comes from left or
right, it will proceed towards the bottom regardless of the current state of the switch, but
this will still cause the switch to flip. If two trains come from the sides at the same time,
they will merge into a single train and the switch will flip. Figure 2 (e) shows another type
of switch, consisting of a straight track and a left turn; here similar rules to the ones we just
described apply. When placing the rails, the player is able to choose the initial state of the
switches.

Finally, we note that if two trains are on different rails of the Figure 2 (c), they will not
touch and hence they won’t cause their colors to mix.

Special tiles

Apart from the departure and arrival stations, that we already described (see Figure 1 (a)
and (b)), there are also three other special tiles: the rock, the painter and the splitter. A
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(a) (b) (c) (d) (e) (f)

Figure 2 Different kinds of rails. Each of the pieces can be rotated by 90, 180 or 270 degrees.

(a) (b)

Figure 3 A level of Trainyard (left) and a possible solution (right).

rock is just a tile that causes any entering train to crash, effectively removing one position
available for the player to place a rail piece (see Figure 1 (c)).

A painter (shown in Figure 1 (d)) always has a color C that is either red or blue, and
will change the color of any incoming train to C. It has two inputs/outputs on opposite
sides and can be traversed in both directions (a train entering from a side will exit from the
opposite one). Any train trying to enter a painter from one of the other two sides will crash.

The splitter is more involved: it has only one input, marked in yellow, and two outputs
in the sides adjacent to the input. One of the outputs (clockwise w.r.t. the input) is marked
in blue and the other one is marked in red (see Figure 1 (e)). Whenever a train enters the
splitter from the input, two trains will exit from the two outputs in the next time step (and
the original train vanishes). The colors of these two new trains depend on the color C of the
input train: if C is red, blue, or brown then the two new trains will also be colored C. If C
is purple, then the train exiting from the red-marked output will be red, and other train
(exiting from the blue-marked output) will be blue. Any train trying to enter a splitter from
a side different from its input side will crash.

3 Our Results

In this paper we consider the problem of deciding whether a given level of Trainyard admits
a solution. More precisely, we define Trainyard as the following decision problem: given a
rectangular board and an initial placement of the tiles shown in Figure 1, is there a way to
place the rails pieces shown in Figure 2 on (a subset of) the empty cells so that the simulation
will reach a state where: (i) there are no trains left in the departure stations, (ii) there are
no moving trains, (iii) no train crash has happened, and (iv) all the arrival station received a
number of trains matching their capacity?

In the following section we will design a polynomial time reduction from a variant of the
boolean satisfiability problem to Trainyard, hence proving the following:

I Theorem 1. Trainyard is NP-hard.
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We also provide an actual implementation of our reduction which can be found at
http://trainyard.isnphard.com.

We note that we do not actually know if Trainyard lies in NP, i.e., we do not know
whether, given a level and a corresponding design for the rails, it is possible to check, in
polynomial time, that the solution is indeed correct. The trivial simulation strategy fails as
it is possible to create solutions that require an exponential number of time steps for the
simulation to stop. On the other hand, Trainyard is clearly in PSPACE as the simulation
algorithm only needs to keep track of the current state of the board. This requires polynomial
space since, due to the merge rule, the number of moving trains cannot be asymptotically
larger than the size of the board itself. We regard the problem of establishing whether
Trainyard ∈ NP as an interesting –and fun– challenge.

4 Our Reduction

We prove the NP-hardness of Trainyard by showing a polynomial reduction from (the
decision version of) Minimum Monotone Boolean Satisfiability Problem (Min-Mon-SAT for
short). In Min-Mon-SAT we are given (i) a CNF formula φ of n variables x1, . . . , xn and m
clauses C1, . . . , Cm such that each clause contains only positive literals, and (ii) an integer k.
The goal is to decide whether there exists a truth assignment for the variables that satisfies
φ and sets at most k variables to true. This problem is easily shown to be NP-hard as there
is a straightforward reduction from the decision version of Minimum Dominating Set: for
each vertex u of the input graph we add a variable xu and a clause

∨
v∈N [v] xv, where N [v]

denotes the closed neighborhood of v. Clearly, there exists a dominating set of size k iff the
formula can be satisfied by setting at most k variables to true.

In the following subsections we first give an high-level picture of our reduction and then
we move to the description of the gadgets we use.

4.1 Overview
The overview of our reduction is shown in Figure 4. In the bottom left we have k departure
stations –one per variable that can be set to true– each containing a single train. The clause
area, shown in yellow, encodes the formula φ using a n×m matrix of gadgets: the gadget on
the i-th row3 and j-th column will be one of two different types that we call Cross-Satisfy
and Cross-Ignore. More precisely, we use a Cross-Satisfy gadget whenever xi is contained
in Cj and a Cross-Ignore gadget otherwise.

To describe how our reduction works, let us look at the case where the formula is satisfiable
using k true variables. Consider, e.g., the instance of Figure 4 and the satisfying assignment
x2 = x4 = x5 = true, x1 = x3 = false. Here the rails are designed so that the k trains
exiting from the departure stations will traverse the rows of the matrix corresponding to the
variables set to true. When a train enters a Cross-Ignore or Cross-Satisfy gadget from
the left it will proceed to the right, thus entering the next gadget on the same row. After a
train finishes traversing a row (i.e, when it exits from the right side of last the gadget on the
row), it is collected by a dedicated Terminus gadget containing an arrival station. Moreover,
when a train enters a Cross-Satisfy gadget from the left, it is possible to create a copy of
it by suitably placing the rails. If this copy is created, the new train will necessarily exit
from the top of the gadget. Intuitively this means satisfying the clause corresponding to

3 We are counting rows from bottom to top.
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x5

C1 C2 C3

x1

x2

x3

x4

Departure stations

Replicator

One-Time-Pass

C4
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AND

Figure 4 A high-level picture of our reduction for an instance of Min-Mon-SAT having 5 variables,
4 clauses, and k = 3. The corresponding formula is (x1 ∨x3 ∨x4)∧(x1 ∨x5)∧(x2 ∨x4)∧(x1 ∨x4 ∨x5).
Cross-Ignore gadgets are shown in white while Cross-Satisfy gadgets are in gray.

the column using the variable corresponding to the row. Since we started with a satisfying
assignment, it is possible to duplicate a train for each column. These trains will move from
bottom to top: each time a train enters a Cross-Ignore or Cross-Satisfy gadget from the
bottom it will only be allowed to exit from the top. Eventually, all these trains will exit the
clause area and they will enter the AND gadget: this gadget allows a train to exit form the
top iff all m trains are entering from the bottom, i.e., iff all the clauses have been satisfied.

Notice that, at this point, we still have to bring a train to the Terminus gadgets of
the rows corresponding to false variables, e.g., x1 and x3. Moreover, due to their actual
implementation, the gadgets on these rows also need to be traversed by a train going in the
left-right direction. In order to successfully complete the level, we make n− k copies of the
single train exiting from the AND gadget using a Replicator gadget, and we feed them into
such rows. To guarantee that two or more trains can not enter the same row of the matrix,
we a suitable One-Time-Pass gadget which is placed at the beginning of each row.

Now consider the case where the k departing trains traverse a set of rows whose corres-
ponding variables do not satisfy the formula, e.g., x2, x3 and x4. In this case it will not be
possible to both (i) satisfy the Terminus gadgets of these rows and (ii) allow a train for each
column to reach the AND gadget. As a consequence, if the formula is not satisfiable, every
possible assignment will necessarily result in a loss.

It is to be noted that, although the player can place the rails in any empty tile of the
board, our construction is such that the layout of the rails is essentially forced, except for
the green area –which encodes the truth assignment– and for the Cross-Satisfy gadgets
where rails can be placed in two different ways, as we will discuss in the following.

4.2 Handling Parity Issues
Consider two train stations with one train each are placed next to each other, according to
the mechanics of the game, the two exiting trains will never be able to merge. This can be
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Figure 5 A lane and the corresponding design of rails.

Figure 6 Implementation of the Terminus gadget.

easily seen by considering the parity of the trains: if a train occupies the i-th row and the
j-th column of the board, then its parity is (i+ j) mod 2. As the two stations are adjacent,
the initial parity of the two trains will differ. Now, according to the mechanics of the game,
each train moves by exactly one cell per time step, hence flipping its parity. We refer to the
initial parity of a train as its phase.

Actually, it is possible to show that two trains can merge iff they have the same phase
(also notice that trains exiting from a splitter will have the same phase of the entering train).
In order to avoid being distracted by parity issues, in the following we will assume that all
trains have the same phase. This can be easily achieved by restricting the placement of the
departure stations to tiles in a checkerboard pattern.

4.3 Description of the Gadgets

Here we describe how the gadgets used in our reduction can be implemented and we argue
on their correctness.

4.3.1 Rails and Lanes

In our reduction we will need to move the trains from one gadget to another. However, as
we cannot directly place rails in our instance, we need to force the player to build the correct
railways between gadgets. This is easily done by creating a lane of rocks, leaving a single
empty tile in-between so that there is only one way for the player to design the rails without
causing a train to crash. An example of a lane where rails have already been placed is shown
in Figure 5.

4.3.2 Terminus Gadget

The Terminus gadget is just an arrival station preceded by a painter to ensure that the
incoming train will be of the correct color, as it is shown in Figure 6.

FUN 2016
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Figure 7 Implementation of the One-Way gadget.

Figure 8 Implementation of the One-Time-Pass gadget.

4.3.3 One-Way Gadget
The One-Way gadget has one input and one output on the opposite side. As the name
suggests, it can only be traversed in the input-output direction. Any attempt to traverse
the gadget in the opposite direction will cause a train to crash and hence the player to lose
the level. Its implementation is shown in Figure 7 and it consists of a single splitter with
suitable spacing. Notice that there is only one way to design the rails for this gadget that
does not cause an incoming train to crash. This gadget will be useful as a component in our
other gadgets.

4.3.4 One-Time-Pass Gadget
This gadget is similar to the One-Way gadget but it has the additional constraint that it must
only be traversed exactly once in the whole level. Its implementation is a straightforward
modification of the One-Way gadget and its shown in Figure 8.

4.3.5 Cross-Ignore Gadget
The Cross-Ignore gadget is used in the matrix in the clause area each time a variable xi

does not appear in a clause Cj . The only ways of placing the rails in this gadget without
losing the level ensures that a train can exit from the right (resp. top) only if a train is
entering from the left (resp. bottom). The gadget, along with such a design of the rails, is
shown in Figure 9. Notice that the train coming from the left will always be colored red
while the one coming form the bottom will be colored blue. To show the correctness of the
gadget we only need to argue on rail piece placed on the tile adjacent to the two painters,
since the rest of the rail design is forced. If the rails in that tile cross, as in figure, then it is
clear that if only one train arrives the gadget works as expected. If two trains arrive, one
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Figure 9 Implementation of the Cross-Ignore gadget. The One-Way subgadget is highlighted.

from the left and one from the bottom, then either they touch or they do not. If they do not
touch, then the red train is split so that one copy can continue to the right while the other
goes into the arrival station. If they touch, then they will both become purple. This does
not cause any problems since the train going to the right will be split into one blue and one
red train: the red train goes into the arrival station and the blue train exits from the top of
the gadget.

If the rails on the tile are placed in any way that causes that the left train to go up, then
the arrival station will always remain empty (as the blue train cannot be sent there), thus
losing the level. Otherwise, if the rails merge and continue to the right, then the level will be
lost unless both trains come at the same time. In that case the arrival station will receive a
train and another train will exit from the right, but no train will exit from the top. This
case, however, does not cause any problems since it corresponds to “forgetting” that Cj has
already been satisfied by some variable in x1, . . . , xi−1, which is never convenient.

Finally, notice that no train can come from the right (due to the final splitter) or from
the top (due to the One-Way subgadget).

4.3.6 Cross-Satisfy Gadget
The Cross-Satisfy gadget is used in the matrix in the clause area each time a variable xi

appears in a clause Cj . It works similarly to the Cross-Ignore gadget but the player also
has the option to place the rails so that a train is able to exit from the top when the left
train reaches the gadget. This encodes the fact that the clause Cj has been satisfied using
variable xi. The implementation is shown in Figure 10 where a One-Way and a Cross-Ignore
subgadgets are highlighted in white and red, respectively. Apart from the Cross-Ignore
subgadget that we already discussed, the only sensible rail designs that do not make the
player lose the level, are those shown in Figure 10 (a) and (b). The first one acts exactly as
a Cross-Ignore gadget: the train entering from the left is just split and rejoined. In the
second design, the train is also split but now a copy continues towards the top while the
other serves as an input for the Cross-Ignore gadget. The two rails going to the top are
then joined together in a single rail which is the output of the gadget (here the two One-Way
gadgets ensure that no train can go back into the gadget). Notice that, when the left and

FUN 2016
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(a) (b)

Figure 10 Implementation of the Cross-Satisfy gadget with two possible rail designs. The
One-Way and Cross-Ignore subgadgets are highlighted in white and red, respectively.

the bottom train both enter the gadget, the second design can cause two trains to exit from
the top and one to reach the Cross-Ignore subgadget. However, doing this never helps in
completing the level and the first design can be chosen instead.

4.3.7 AND Gadget

The AND gadget takes a number of train as inputs from the bottom. If all these trains
eventually reach the gadget, then the rails can be designed so that a single train will reach
the top. On the converse, if at least one train is missing, then there is no way of placing the
rails to make a train exit the gadget. Here we describe how such a gadget with two inputs is
implemented. In order to extend the construction to an arbitrary number of inputs trains it
suffices to chain together multiple copies of this gadget.

The implementation is shown in Figure 11 where two distinct areas can be seen. The
bottom one is a buffer area: here there is some empty space where rails can be placed so
that the incoming trains (which are colored in read and blue by the painters) can be merged
into a single purple train. This purple train can then proceed to the upper area. In this area
there is only one possible rail design that will not result in a train crash, namely the one
shown in Figure 11. It is easy to see that if a single purple train reaches the upper area, this
correctly causes two trains (one red and one blue) to reach the arrival stations and one to
exit from the top of the gadget. Any other number of trains or any single non-purple train
will result in a crash.

4.3.8 Replicator Gadget

This gadget takes a train from the top as an input and creates a number of copies of it,
so that n − k trains will exit from the bottom. Intuitively, in a yes instance, these trains
should enter the rows corresponding to the negated variables. The implementation of a
Replicator with three outputs is shown in Figure 12. The construction can be adapted in a
straightforward way in order to create as many copies of the incoming train as necessary.
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Figure 11 Implementation of the AND gadget.

4.4 Final Remarks
Combining together all the above gadgets, as indicated by Figure 4, allows us to build the
instance of Trainyard corresponding to the instance of Min-Mon-SAT. We can now sketch
the proof of Theorem 1, whose correctness follows from the correct operation of the single
gadgets.

Sketch of the proof of Theorem 1. If there is a truth assignment for Min-Mon-SAT, then
the k trains exiting from the departure stations can be fed into the rows of the clause matrix
corresponding to variables set to true. For each clause Cj let rj be the index of the first
variable that satisfies Cj , i.e., rj = min{1 ≤ i ≤ n : xi = true ∧ xi ∈ Cj}. By construction,
the j-th column of the matrix will have a Cross-Satisfy gadget on the rj-th row. This
means that we can design the rails in the Cross-Satisfy gadgets of coordinates (rj , j) so
that a train will exit from the top. The rails for all the other gadgets in the matrix can be
designed so that incoming trains just cross to the opposite sides. This allows exactly one
train per column to reach the AND gadget, and n− k trains to exit the Replicator. These
trains are fed into the n− k remaining rows to win the level.

On the other hand, if we have a solution for the instance of Trainyard, then this means
that exactly one train is entering in each row of the matrix (since they are all preceded by a
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Figure 12 Implementation of a Replicator gadget with three outputs.

One-Time-Pass gadget). As there are only k departure stations, and the only way to make
more trains reach the green area is by using the Replicator gadget, this implies that at
least k trains reached the AND gadget (one train per column). This, in turn, implies the
existence of at least one Cross-Satisfy gadget per column where a train is entering from
the left. Hence, this Cross-Satisfy gadget must necessarily be placed on a row traversed
by a train coming from a departure station. This means that we can find a satisfying truth
assignment for the instance of Min-Mon-SAT by setting to true the variables corresponding
to the rows where the k departing trains are entering. J

A solved instance of Trainyard corresponding to the formula (x1∨x2)∧ (x2∨x3) can be
seen in Figure 13. Moreover at http://trainyard.isnphard.com it is possible to generate
instances of Trainyard corresponding to arbitrary (small) Min-Mon-SAT formulas and
even simulate the possible solutions.
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2:14 Trainyard is NP-Hard

Figure 13 A solved instance of Trainyard corresponding to the formula (x1 ∨ x2) ∧ (x2 ∨ x3).
The green area is shown in green and the various gadgets are highlighted in different colors:
One-Time-Pass in white, Terminus in yellow, Cross-Ignore in red, Cross-Satisfy in blue, AND in
orange, and Replicator in purple.
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