
LOL: An Investigation into Cybernetic Humor, or:
Can Machines Laugh?∗

Davide Bacciu1, Vincenzo Gervasi1, and Giuseppe Prencipe1

1 Dipartimento di Informatica, Università di Pisa, Pisa, Italy
davide.bacciu@unipi.it

2 Dipartimento di Informatica, Università di Pisa, Pisa, Italy
vincenzo.gervasi@unipi.it

3 Dipartimento di Informatica, Università di Pisa, Pisa, Italy
giuseppe.prencipe@unipi.it

Abstract
We investigate literary theories of humour from a computational point of view. A corpus of
approximately 11,000 jokes is used to train a neural network generating jokes; the state space of
such network is then analyzed via appropriate discovery algorithms, and abstractions synthesized
by the neural network are compared to those predicted by existing theories.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, I.2.6 Learning,
I.5.4 Applications

Keywords and phrases deep learning; recurrent neural networks; dimensionality reduction al-
gorithms

Digital Object Identifier 10.4230/LIPIcs.FUN.2016.3

1 Prologue

Tony Stark: Attitude control is a little sluggish above 15,000 meters, I’m guessing icing is
the probable cause.

Jarvis: A very astute observation, sir. Perhaps, if you intend to visit other planets, we
should improve the exosystems.

Tony Stark: When was it that I programmed into you such a poor sense of humor? I don’t
recall ever doing it.

Jarvis: Sir, in fact you did not. I learned it myself from monitoring your conversations.
I would not judge it poor, it is rather on a par with your own. And now, with your
permission, I will retire. Have to see a lady tonight.

Tony Stark: Again? Come on, Jarvis. You cannot really have an affair with Siri.
Tony Stark: Jarvis?
Tony Stark: JARVIS?

2 Introduction

The mechanisms of humour have been the subject of much study and investigation, starting
with [1] and up to our days. Much of this work is based on literary theories, put forward by

∗ This work has been partially supported by the MIUR-SIR project LIST-IT (grant nr. RBSI14STDE).

© Davide Bacciu, Vincenzo Gervasi, and Giuseppe Prencipe;
licensed under Creative Commons License CC-BY

8th International Conference on Fun with Algorithms (FUN 2016).
Editors: Erik D. Demaine and Fabrizio Grandoni; Article No. 3; pp. 3:1–3:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FUN.2016.3
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


3:2 LOL: An Investigation into Cybernetic Humor

some of the most eminent philosophers and thinkers of all times, or medical theories, invest-
igating the impact of humor on brain activity or behaviour. Recent functional neuroimaging
studies [4, 5], for instance, have investigated the process of comprehending and appreciating
humor by examining functional activity in distinctive regions of brains stimulated by joke
corpora. Yet, there is precious little work on the computational side, possibly due to the
less hilarious nature of computer scientists as compared to men of letters and sawbones. In
this paper, we set to investigate whether literary theories of humour can stand the test of
algorithmic laughter. Or, in other words, we ask ourselves the vexed question: Can machines
laugh?

We attempt to answer that question by testing whether an algorithm – namely, a neural
network – can “understand” humour, and in particular whether it is possible to automatically
identify abstractions that are predicted to be relevant by established literary theories about
the mechanisms of humor. Notice that we do not focus here on distinguishing humorous
from serious statements – a feat that is clearly way beyond the capabilities of the average
human voter, not to mention the average machine – but rather on identifying the underlying
mechanisms and triggers that are postulated to exist by literary theories, by verifying if
similar mechanisms can be learned by machines.

3 Literary theories of humor

We have no hopes of surveying, in the limited space available, centuries of humor and laughter
research, and will instead refer the reader to [2] for an extensive treatment. For the purpose
of this work, we will focus on just three broad mechanisms, following [11], namely:

Release theories consider humor as a psychological mechanism that triggers the suppression
of inhibitions (as established by laws, social customs, etc.);
Incongruity theories focus on the juxtaposition of two or more elements which are not
normally associated;
Superiority theories apply to the amusement that is provoked by depicting certain
characters, considered of inferior social status, in ridicolous situations. These are at times
called Hostility theories, when the jokes are particularly aggressive or belittling.

As machines are supposed to have relatively few inhibitions1, we do not attempt to verify
Release theories, and focus instead on Incongruity and (particularly) Superiority in our
investigation.

Each of the mechanisms above can be exercised through a number of different strategies.
Examples of such strategies include: the use of vulgar, pejorative or derogatory language; the
use of exaggeration; the (ab)use of referential incongruity; the purposeful rejection of social
norms and good manners; putting others down; using of allegories (e.g., animals in place of
humans) to produce fantasy scenarios, and so on. We will not investigate specific strategies
in detail here (although this would be an interesting extension for future work), but the
reader may be able to recognize some of these strategies in the various examples that follow.

4 Deep Recurrent Neural Networks for character-based jokes learning

Recurrent neural networks (RNN) are a family of learning models capable of processing
input information of variable-size under the form of sequential data. Generally speaking, a

1 We expect inhibitions to become a major issue in the future [15], and postpone applications of our
method to this case till that day.



D. Bacciu, V. Gervasi, and G. Prencipe 3:3

Figure 1 Unfolding over time of a deep recurrent neural network with 3 layers of hidden recursive
neurons: xt is the input at time t, hi

t are the associated outputs of the hidden neurons in the i-th
layer and yt are the network predictions at time t. Recurrent connections are marked as dashed
arrows and are unfolded over time (e.g. from time t − 1 to time t. The graph represents a typical
approach to next character prediction, where the network receives as input the current character of
the sequence and should predict the following character.

neural network is a collection of basic processing units, the neurons, performing a weighted
summation of their inputs followed by the application of a (often nonlinear) activation
function. Such units are typically organized in a layered structure, starting with an input
layer which serves to inject the input information into the network, followed by a variable
number of layers of hidden units which serve to learn neural encodings of increasing complexity
and terminated by a layer of output neurons which compute the learning model predictions.
These units are interconnected through weighted connections which determine information
exchange between neurons and layers. RNN are characterized by the presence of recurrent
connections, that are links determining cycles in the network structure. The presence of such
links endows the network with a memory of its past activations, allowing it to tackle learning
tasks involving the processing of sequential information, such as a piece of text in natural
language.

The actual structure of a RNN is determined by the unfolding over-time of the recurrent
connections following the input sequence evolution over time [7]. In this paper, we focus
on a deep recurrent architecture [9] entailing a variable number of recurrent layers whose
structure unfolds over time and that are organized into a hierarchy, where deeper layers (i.e.
closer to the output layer) are meant to extract higher level representations of the input
information and sequence contexts of longer-distance. Figure 1 shows a basic view of a deep
RNN with 3 recurrent layers unfolding over a text sequence: here xt represents the current
inputs at time t, while hi

t is the vector holding the outputs of the hidden neurons of the i-th
layer; finally, yt are the network predictions. The unfolding highlights how the hidden state
of the i-th layer depends on the current output of the preceding layer hi−1

t , on the current
input xt as well as on its output at time t, i.e. hi

t−1.
An hidden layer is typically realized by a collection of simple recurrent units which

perform a weighted summation of their inputs followed by a nonlinear activation function,

FUN 2016



3:4 LOL: An Investigation into Cybernetic Humor

forget 
gate

input 
gate

output 
gate

cell

Figure 2 Memory cell of a Long Short Term Memory: recurrent connections are represented as
dashed arrows, while continuous lines denote feedforward connections.

also referred to as squashing function, such as a logistic sigmoid. These RNN architectures
are subject to a phenomenon, known as vanishing gradient [3], which limits their ability to
capture long-term dependencies between elements of the input sequence. Simply put, the
gradient of the error used to train the network parameters tends to be large for short term
corrections while it annihilates on the long term. The Long Short Term Memory (LSTM)
[12] is a RNN architecture that has been proposed to tackle the vanishing gradient problem
and to learn sequential tasks with long term dependencies. The LSTM is based on a more
articulated form of recurrent unit, known as the memory cell, whose structure is summarized
in Figure 2. At the core of this structure sits the cell, that is a unit whose output ct is
computed as in the standard recurrent neuron by input summation followed by squashing.
The role of this cell is, as in the simple recurrent neuron, to maintain a memory of the
history of the input signals to the network. Differently form standard RNN, access to this
memory cell is guarded by a number of gating units which regulate what inputs are allowed
to influence the activation of the cell (input gate), when the memory cell is going to provide
an output (output gate) and when the cell should reset its state (forget gate). Such gating
units all receive inputs from feedforward and recurrent connections, performing the usual
weighted summation followed by a sigmoid activation function, producing outputs it, ot and
ft ∈ [0, 1].

Several LSTM versions exists with different gating units and internal connectivity: in
this paper, we refer to the, so called, Vanilla LSTM [10] in Figure 2 which, among the others,
include peephole connections that allow the cell to control the activation of the gating units
(thick blue arrows in Figure 2). Each unit in the memory cell is associated to a weight
matrix of the coefficients of the weighted summation, that are the neural network parameters
adapted through the learning process. Here, these are learned by the Back Propagation
Through Time (BPTT) algorithm described in [10].

The learning task addressed in this paper is the one-character ahead prediction from a
text sequence represented in Figure 1. The network architecture comprises multiple hidden
recurrent layers of LSTM cells, while the current input character is represented by a 1-of-K
encoding where xt is a K-dimensional vector with the k-th entry set to one if the current



D. Bacciu, V. Gervasi, and G. Prencipe 3:5

input is the k-th character of the alphabet. Similarly, the network is trained to output a
K-dimensional vector yt with the k′ feature set to 1 if the next character is the k′ element of
the alphabet and it is 0 otherwise. In practice, the outputs of the network will be values close
to 1 if the corresponding characters are likely to be the next ones in the sequence, otherwise
we will expect them to be closer to 0. The network outputs can thus be transformed in an
estimate of the posterior probability of the next character being the k-th (having observed
current character xt) by means of a softmax

P (yt = k|xt) = exp yk
t∑K

k′=1 yk′
t

,

where yk
t is the activation of the k-th output neuron at time time t (i.e. element k of vector

yt). Following the generative scheme in [9], the most probable character yt (according to the
predicted posterior P (yt|xt)) can then be fed back as next input xt+1, allowing a trained
network to generate sequences of whatever length that respect the linguistic structure of the
text used to train it. In Section 5, we apply an implementation of this character-level deep
LSTM2 to a dataset of English jokes with the intent of studying the neural representation
emerging from training on such a corpus and if this can be related somehow with the linguistic
theories of jokes. By approaching the problem from a character-based perspective, we believe
that we strengthen the computational model’s ability to extract a representation of those
aspects of the joke literature that are associated with letter substitutions and consonances,
such as with play-on-word humour. Such aspects would be lost, if adopting more monolithic
approaches, e.g. representing text on a word level.

5 Learning from jokes

We can now apply the theory presented above to our goal, namely: testing in an objective,
computational way whether the phenomena predicted by the literary theory on jokes can be
automatically identified in real jokes.

5.1 Experimental setup
We consider a corpus of 10942 English jokes collected by [8] for the purpose of assessing a joke
retrieval system and, in particular, the ability in recognizing if different texts are essentially
“telling” the same joke with different words. The original dataset3 has been annotated
by the authors of [8] using 10 semantic categories (animal, number, color, organization,
currency, person, location, time/date, music and vehicle), which have been stripped off
in our version of the dataset. For the purpose of our analysis, it is interesting to note
that the dataset is quite heterogeneous, containing jokes of different length and rhetorical
structures. For instance, it includes a wide selection of short question-answering jokes,
stereotyped situations (e.g. number of professionals required to change a lightbulb) and
recurring characters (e.g. pirates, stupid Mama’s, doctors). The dataset has been formatted
by introducing a newpage (formfeed) symbol at the end of each joke to support the RNN
in learning joke separation: note that the full corpus appears to the network as a unique
sequence of concatenated jokes.

2 Source code available on Github: https://github.com/karpathy/char-rnn
3 https://people.cs.umass.edu/~lfriedl/code/JokesCorpus-txt.tgz

FUN 2016

https://github.com/karpathy/char-rnn
https://people.cs.umass.edu/~lfriedl/code/JokesCorpus-txt.tgz


3:6 LOL: An Investigation into Cybernetic Humor

We have trained the character-level LSTM described in Section 4 using, mostly, the
standard hyperparameter configuration bundled with the software. The objective of this
analysis, in fact, is not the optimization of the predictive performance of the model but
rather an explorative analysis of the learned neural encoding of jokes. In this respect, we
have explored some alternative network configurations which might had an effect on the
development of different neural representations. In particular, we have considered network
configurations comprising 3 or 4 layers of LSTM cells to see if a deeper network was capable
of capturing more complex contexts and concepts in the additional layer. Similarly, we
have experimented by varying the length of the sequential context that was allowed to
influence parameter learning, controlled by a number of hyperparameters such as the length
of network unfolding in BPTT learning. Training of the different network configurations
has been performed using 95% of the available data as training set and the remaining 5%
as a validation set to select the best network for analysis. The number of training epochs
(i.e. how many times the learning model “sees” the full training data) has been set to 50 and
jokes were randomly shuffled in order to prevent formation of any artificial bias resulting
from a fixed joke order (e.g. the fact that a question-answering joke is typically followed
by another of the same type). The network ultimately selected for the following analysis is
the one achieving the lowest validation error and comprises 3 hidden layers of 512 LSTM
neurons, for a total of 560K parameters.

5.2 Jokes generation
A trained neural network can be used for recognizing patterns as well as for generating
sequences that present the same patterns as in the training set. Hence, our LSTM network
can be used to generate new jokes. This is obtained by priming the network (i.e., by providing
a prefix sequence, which may even be just random) and then sampling the most probable
next character from the network. This character is then added to the sequence, provided as
new input, and the process is iterated thus generating whole jokes.

We must admit that our network would not be particularly popular at a party (except,
maybe, if the party was thrown by computer scientists). Here is an example of generated
joke:4

Q: What do you call a car that feels married? A: A cat that is a beer!

It is remarkable that the network has learned enough of the English language and of the
structure of many jokes, to be able to sample correct sentences and joke-forms. However, it
clearly lacks sufficient understanding of the world at large to handle paradoxes, or to inject
hostility or incongruence in the generated text while walking the thin line that separates
“nonsense” humor from “no sense” gibberish. It is not our goal in this paper to create a joke
generator. Rather, the network’s handling of recurring roles, dialogue, rhetorical structure
and climax, deserve a more in-depth analysis.

5.3 Analysis and visualization of the neural encoding
The memory cells of a trained LSTM network develop an internal representation of the most
salient sequential features in the input data. They tune as detectors of certain patterns that
are used by the network to generate text streams that are coherent in style and structure

4 The authors have suffered through many hundreds of generated jokes in the course of the experiments
leading to the present work. None of them was particularly funny.



D. Bacciu, V. Gervasi, and G. Prencipe 3:7

with the input jokes. In this sense, we expect such neurons to, somehow, encode key aspect
of the jokes prosody, linguistic entities and rhetorical elements. Neural networks are often
accused of developing obscure internal representation of the input information, that are only
useful for the purpose of producing network prediction. We claim that the internal state of a
network can provide interesting insights into the data if investigated with approaches from
exploratory data analysis. For this purpose, we have collected the activation of the memory
cells of the trained LSTM for a random sample of 2482 jokes in the dataset. Each character of
the jokes is transformed into 3 vectors of 512 features corresponding to the activation of the
memory cells in the 3 LSTM layers. Each layer can be analysed and processed independently
as they encode sequential information at different resolution. In practice, the joke samples
considered in this analysis are transformed into 423K vectors of neuron activations for each
LSTM layer.

The neural encoding vectors are high-dimensional data that can be analyzed and visualized
on bi-dimensional maps by resorting to dimensionality reduction algorithms. Principal
Component Analysis (PCA) is a popular approach to dimensionality reduction which targets
the identification of the direction of maximum variance in the data, referred to as principal
components. We have applied PCA to the neural encoding datasets described above, focusing
on the first 2–3 principal components since we target visualization of the high dimensional
encodings on the screen space. Nonetheless, an analysis of the PCA results shows that the
first 2–3 principal components (PC) are sufficient to capture 95% of the variance in the data,
confirming our intuition that a couple of components already provide a good insight into the
original neural encodings. To make the analysis more robust with respect to the choice of the
dimensionality reduction algorithm, we have replicated PCA analysis using the t-Distributed
Stochastic Neighbor Embedding (t-SNE) algorithm [14]. This is a non-parametric embedding
technique for dimensionality reduction which has state-of-the-art-performance in numerous
high-dimensional data visualization tasks. Here, we use an efficient t-SNE version [13]
exploiting variants of the Barnes-Hut and dual-tree algorithm to approximate the gradient
used for learning of the embeddings, which has a complexity of O(N log N) rather than
O(N2) in the original t-SNE (where N is the dataset size).

5.4 Endings and climax
The 3 LSTM layers encode information of increasing complexity. The first layer operates
at the level of character aggregation and is thus of reduced interest for the purpose of this
analysis. Figure 3 shows the projection on the first two PCs of the states in the second
and third hidden layer: the light-gray area is the result of the projection of the characters
in the two datasets, whereas the red circles denote the positions where the form-feed joke
separator character is projected. The yellow crosses, instead, highlight the points where the
final character of all jokes is projected, i.e. two consecutive newline characters after the form
feed separator.

Figure 3 shows that the joke separator and joke ending projections are spread all over the
map when considering the activations of the second layer, whereas at the level of the third
layer it emerges an organization of the state space where the joke separator/ending tends to
be projected in specialized and contiguous areas of the map. In other words, the network
seems to realize that a joke is coming to an end by the activations shifting towards the
top-left area of the map. In particular, the joke ending seems to be encoded in a very tightly
focused area of the bottommost plot. The form-feed separator, on the other hand, occupies
a larger area of the map with several outliers, which can be noted in the central area of the
plot. Each of these outliers corresponds to a joke; the fact that they are outliers suggests

FUN 2016



3:8 LOL: An Investigation into Cybernetic Humor

Figure 3 Projection on the first two principal components of the neuron activations for the second
and third LSTM layers, respectively on the top and bottom plots. The light-gray area denotes the
projection of all characters in the dataset: coloured placeholders identify the points where the joke
ending and form-feed separator are projected. Numbers identify examples of joke outliers discussed
in Section 5.4.



D. Bacciu, V. Gervasi, and G. Prencipe 3:9

that the network was not expecting the jokes to end at that point of the sentence. In order to
understand what characteristics of the jokes make them outliers, we have extracted a sample
of them, identified by numbers in the bottommost plot of Figure 3. Sample 1 corresponds to
the following joke

The Boston taxi driver backed into the stationary fruit stall and within seconds he
had a cop beside him. “Name?” “Brendan O’Connor.” “Same as mine. Where are
you from?” “County Cork.” “Same as me . . . . . . ” The policeman paused with his pen
in the air. “Hold on a moment and I’ll come back and talk about the old county. I
want to say something to this fella that ran into the back of your cab.” <center> <

whose outlier nature might be the result of the joke ending with HTML tags which have not
being removed by the authors of the benchmark. The neighboring jokes, i.e. i2 and 3 on the
map, are very short ones:

Q: What do monsters make with cars? A: Traffic Jam

Q: What hotel do vampires prefer? A: The Coff Inn

confirming the fact that the network might not have understood that the joke has ended.
Another set of outlier jokes puzzles the network due to the last sentence being an attribution
statement, such as in the following joke (4 on the map):

There are three kinds of lies: lies, damned lies, and statistics. Attributed by Mark
Twain to Benjamin Disraeli

Then, there appears to be other jokes, marked as 5 on the map, that are outliers despite
their style and structure being coherent with many other jokes in the corpus:

Q: Why did Helen Keller have yellow fingers? A: from whispering sweet-nothings in
her boyfriend’s ear

Whats a blondes favorite nursury rhyme? humpme dumpme

Q: What’s this (slowly waving fingers)? A: Helen Keller moaning

Finally, another outlier type seems to be associated with short fact-like jokes such as the one
marked as 6 on the map:

A nuclear war can ruin your whole day.

In general terms, we can say that a portion of the state-space of the higher level neurons of
the network becomes responsive to normal joke conclusion. On the other hand, a piece of
text which terminates unexpectedly with respect to the learned joke styles would result in it
being mapped to a different region of the state-space, such as the outliers above. One may
also argue that such outliers correspond to jokes that are not very much funny or, at least,
not enough to induce the network in understanding that they have reached the climax.

5.5 The Sexist neuron (and its fellows Dark and Racist)
The analysis of the state-space maps can also provide a useful insight into the semantic
concepts and linguistic structures that might emerge in the network as the result of training.
For instance, we are interested in understanding if the network can learn from scratch a
neural representation of prototypical aspects of the joke literature, such as recurring themes,

FUN 2016



3:10 LOL: An Investigation into Cybernetic Humor

characters and rhetorical constructs. Figure 4 shows how the network encodes a specific
subset of words appearing in the joke corpus: again, no clear structure emerges at the level
of the second LSTM layer (topmost plot). On the other hand, the third layer has learned an
internal representation where these words are grouped together in a specific area of the map
(see bottommost plot). In other words, these terms produce very similar neural activations
in the third layer. By taking a closer look at the word list, one can note that these terms
can be associated with a specific female character, characterized by being good-looking and
possibly a bit stupid. In a sense, the network seems to have learned neurons responding to
sexist humour.

The state-space map obtained by the t-SNE algorithm shows a similar organization:
see the topmost plot in Figure 5 showing the t-SNE map for the activations of the third
LSTM layer. Terms having a sexist interpretation are projected close on the map, whereas
words associated with different interpretation of the female role are plotted in other areas.
For instance, a neutral term such as girl activates a different set of neurons with respect
to those responding to sexist humor. Similarly, words related with the role of a woman
within a family activate a set of neurons that is responsive also to terms indicating male
family members. The bottommost plot in Figure 5 provides a clearer characterization of this
latter area of the map. In particular, this seems to represent those neurons that respond to
prototypical characters of the joke narration, such as bartenders, engineers and, of course,
family members.

The same organization of the state space can be identified in the PCA map in the topmost
plot of Figure 6. The same plot highlights an additional group of interesting joke characters
that can be associated with black humour, for which the network has developed a very specific
neural representation (see the cluster of red crosses in the plot). Another popular theme in
joke literature, deals with humour associated with a country-based characterization of the
persona. The bottommost plot in Figure 6 shows that the network has again conceptualized
words pertaining with nationalities developing two distinct areas of the state-space devoted
to two different groups of words (here we show only results for t-SNE due to the lack of space,
but the same division has been found in PCA). The presence of two clusters in state-space
might depend on different morphological features (i.e., nationality adjectives ending in -sh
vs. -an); we might hypothesize that the two clusters would be joined in a single “nationality”
concept on a deeper network.

5.6 Tracing the fun
As a joke is sequentially presented to the network (character by character), the network’s
internal state evolves, and the “current position” of the network moves in the high-dimensional
space that represents the internal state. We can plot a trace of such movements to inspect
not only the kind of abstractions that the network has synthesized, as done in previous
sections, but also how a joke manages expectations and surprises while heading towards its
climax.

Figure 7 shows two such traces, where for clarity we have plotted only the points
corresponding to full words on a 2-dimensional space as given by our PCA; the red circle
indicates the beginning of the joke, whereas the red cross indicates its ending. In most jokes,
it seems that there are three main attractors: short non-function words (1 or 2 characters
such as “a”) in the top-left quadrant; longer non-function words (such as “why” or “what”)
in the top-right quadrant, and function words (such as names or verbs) in the lower-right
quadrants (with a more marked vertical diffusion along the right edge). Hence, the trajectory
of a joke often describes linear or triangular shapes between these attractors, as shown



D. Bacciu, V. Gervasi, and G. Prencipe 3:11

Figure 4 PCA projection on the second (top) and third (bottom) LSTM layers for selected words
related to sexist humour.

FUN 2016



3:12 LOL: An Investigation into Cybernetic Humor

Figure 5 t-SNE embedding for selected words related to sexist humour (top) and for prototypical
joke characters (bottom).



D. Bacciu, V. Gervasi, and G. Prencipe 3:13

Figure 6 PCA projection for prototypical joke characters (top) and t-SNE embedding for words
from jokes with a country-based characterization (bottom).

FUN 2016



3:14 LOL: An Investigation into Cybernetic Humor

Figure 7 Climax trajectories for a single-laugh joke (left) and a three-laughs one (right).

in Figure 7(left). There are however other common moves: for example, the climax of a
joke (i.e., where the reader or listener is expected to smile or laugh) is often mapped to a
significant skew towards the left (negative x coordinates in Figure 7). In many cases, the
cue word for the climax is in fact the left-most point among function words. The joke that
generates the traces in Figure 7(left) is:

Q: Why do elephants have short tails? A: Because they haven’t got long memories.

Since many jokes reach their climax at the end, gradually building tension until the final
release, it might be difficult to distinguish climax from termination. However, our data set
included a few multiple-release jokes, and in analyzing the corresponding traces the same
phenomenon could be observed for each of the climaxes. As an example, Figure 7 right shows
the trace for the following joke:5

What do u call a blonde with 1 brain cell? GIFTED! What do u call a blonde with 2
brain cells? PREGNANT! What do u call a blonde with 3 brain cells? A GOLDEN
RETRIEVER!

6 Conclusions

In this work, we have reported on our results with a computational approach to literary
theories of humor. We trained a particular form of neural network on a corpus of jokes, and
“dissected” the artificial mind so generated by analyzing its contents. Our results confirm
that certain typical humorous constructions, such as those postulated by Superiority or
Incongruity theories, really exist in our corpus, and are sufficiently objective that the learning
algorithm underlying the workings of a neural network can identify them.

What is even more striking, it appears that the neural network seems to have concep-
tualized some key aspects, characters and themes of humour literature by simply looking
at joke texts character by character. The network is, in fact, oblivious of the structure of

5 It is worth to remark that the joke was on a single line, as reported verbatim, so the presence of new-line
characters is ruled out as an explanation for the detection of climax. Also, while in this particular
example the comic answers are in all capitals, other jokes using lower case exhibit the same behaviour,
so all-caps is also ruled out as a marker.



D. Bacciu, V. Gervasi, and G. Prencipe 3:15

the grammar or even the structure of legal words in the language. Nevertheless, it is able
to construct a representation of the world where a blonde and a goose are associated to a
common interpretation, that is radically different from the representation associated to girl or
to words identifying other animals. In a sense, we have seen how teaching a network on joke
literature makes it quite prone to develop a sexist and racist view of the world, apparently
confirming the very old idea that our language helps shaping the way we see the world.

References
1 Aristotle. Poetics, volume two: On Comedy. IV century BCE. Last surviving copy re-

portedly lost in the fire of the Abbey’s Library in 1327, according to [6].
2 Salvatore Attardo. Linguistic Theories of Humor. De Gruyter Mouton, Berlin, 1994.
3 Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term dependencies with

gradient descent is difficult. Neural Networks, IEEE Transactions on, 5(2):157–166, 1994.
4 Yu-Chen Chan. Emotional structure of jokes: A corpus-based investigation. Bio-medical

materials and engineering, 24(6):3083–3090, 2014.
5 Yu-Chen Chan and Joseph P Lavallee. Temporo-parietal and fronto-parietal lobe contribu-

tions to theory of mind and executive control: an fMRI study of verbal jokes. Frontiers in
psychology, 6, 2015.

6 Umberto Eco. Il nome della rosa. Bompiani, 1980.
7 Paolo Frasconi, Marco Gori, and Alessandro Sperduti. A general framework for adaptive

processing of data structures. Neural Networks, IEEE Transactions on, 9(5):768–786, 1998.
8 Lisa Friedland and James Allan. Joke retrieval: Recognizing the same joke told differently.

In Proceedings of the 17th ACM Conference on Information and Knowledge Management,
CIKM’08, pages 883–892, New York, NY, USA, 2008. ACM.

9 Alex Graves. Generating sequences with recurrent neural networks. CoRR, abs/1308.0850,
2013. URL: http://arxiv.org/abs/1308.0850.

10 Alex Graves and Jürgen Schmidhuber. Framewise phoneme classification with bidirectional
lstm and other neural network architectures. Neural Networks, 18(5):602–610, 2005.

11 Ulrich Günther. What is in a laugh? Humour, jokes and laughter in the conversational
corpus of the BNC. PhD thesis, Albert-Ludwigs-Universität, Freiburg, 2003.

12 Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

13 Laurens Van Der Maaten. Accelerating t-sne using tree-based algorithms. The Journal of
Machine Learning Research, 15(1):3221–3245, 2014.

14 Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of
Machine Learning Research, 9(2579-2605):85, 2008.

15 Wendel Wallach and Colin Allen. Moral Machines: Teaching Robots Right from Wrong.
Oxford University Press, November 2008.

FUN 2016

http://arxiv.org/abs/1308.0850

	Prologue
	Introduction
	Literary theories of humor
	Deep Recurrent Neural Networks for character-based jokes learning
	Learning from jokes
	Experimental setup
	Jokes generation
	Analysis and visualization of the neural encoding
	Endings and climax
	The Sexist neuron (and its fellows Dark and Racist)
	Tracing the fun

	Conclusions

