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Abstract
Finding a proper coloring of a t-colorable graph G with t colors is a classic NP-hard problem
when t ≥ 3. In this work, we investigate the approximate coloring problem in which the objective
is to find a proper c-coloring of G where c ≥ t. We show that for all t ≥ 3, it is NP-hard to find a
c-coloring when c ≤ 2t− 2. In the regime where t is small, this improves, via a unified approach,
the previously best known hardness result of c ≤ max{2t − 5, t + 2bt/3c − 1} [9, 21, 13]. For
example, we show that 6-coloring a 4-colorable graph is NP-hard, improving on the NP-hardness
of 5-coloring a 4-colorable graph.

We also generalize this to related problems on the strong coloring of hypergraphs. A k-uniform
hypergraph H is t-strong colorable (where t ≥ k) if there is a t-coloring of the vertices such that
no two vertices in each hyperedge of H have the same color. We show that if t = d3k/2e, then
it is NP-hard to find a 2-coloring of the vertices of H such that no hyperedge is monochromatic.
We conjecture that a similar hardness holds for t = k + 1.

We establish the NP-hardness of these problems by reducing from the hardness of the Label
Cover problem, via a “dictatorship test” gadget graph. By combinatorially classifying all possible
colorings of this graph, we can infer labels to provide to the label cover problem. This approach
generalizes the “weak polymorphism” framework of [3], though interestingly our results are “PCP-
free” in that they do not require any approximation gap in the starting Label Cover instance.
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1 Introduction

A t-coloring of a graph G = (V,E) is a coloring of its vertices with t colors such that the
endpoints of every edge receive distinct colors, i.e., a map c : V → {1, 2, . . . , t} such that or
every (u, v) ∈ E, c(u) 6= c(v). The chromatic number of a graph G, denoted χ(G), is the
minimum t for which G admits a t-coloring. A graph G is said to be t-colorable if χ(G) ≤ t.
For t ≥ 3, finding a t-coloring of a t-colorable graph is one of the classic NP-hard problems.
The problem remains difficult even when one is allowed to use many more colors. In fact, the
best known efficient algorithms to color a 3-colorable graph require nΩ(1) colors. However,
the known NP-hardness results only rule out coloring a 3-colorable graph with a mere 4
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14:2 New Hardness Results for Graph and Hypergraph Colorings

colors [21, 13]. By an easy reduction on this implies the NP-hardness of coloring a t-colorable
graph with t + 2bt/3c − 1 colors. The work of Garey and Johnson [9] gave an elegant
reduction from 3-colorability using Kneser graphs to show NP-hardness of (2t− 5)-coloring
a t-colorable graph, for all t ≥ 6.1 Much stronger hardness results are known for larger t,
and as well as conditional hardness results for t = 3, 4 under variants of the Unique Games
conjecture; we review some of the literature on inapproximability of graph/hypergraph
coloring in Section 1.1.

In this work, we prove the following NP-hardness result for coloring t-colorable graphs
which improves the previous best known result in the challenging regime where t is small.
The result holds for graphs whose degree is bounded by a function of t, which can be taken
to be 5t6.

I Theorem 1.1. For every t ≥ 3, it is NP-hard to distinguish, given an input graph G,
whether χ(G) ≤ t or χ(G) ≥ 2t − 1. In particular, (2t − 2)-coloring a t-colorable graph is
NP-hard.

While the above does not improve the state of affairs for t = 3, it does yield new results
for other small t, such as the NP-hardness of 6-coloring a 4-colorable graph.2 We also note
that by plugging in the NP-hardness of telling if χ(G) ≤ 3 or χ(G) ≥ 5 from [21, 13] as
the starting point in the reduction of Garey and Johnson [9], together with bounds for
multicoloring Kneser graphs [26], one can show that it is NP-hard to 2t−3-color a t-colorable
graph for t ≥ 6 (improving the 2t− 5 bound in [9]).

The improvement in Theorem 1.1 is quantitatively modest, but we feel our proof method-
ology reveals insights into the source of the hardness, and also gives results stronger than
previous works for small t in a unified manner. Our reduction is inspired by techniques used
to show hardness of constraint satisfaction problems and employs dictatorship gadgets in a
modular fashion, and the analysis hinges on combinatorial arguments to classify colorings
of the gadget (more about our techniques in Section 1.2). It is worth pointing out that
Theorem 1.1, as well as our results for hypergraph coloring below, are “PCP-free” in that
they reduce from standard NP-hardness results for decision problems (as opposed to promise
problems with an approximation gap in the optimal value). This is also true of the hardness
results in [9, 13].

Hypergraph coloring. We also prove new hardness results for coloring hypergraphs. We
will be interested in k-uniform hypergraphs for small k where each hyperedge has exactly k
vertices. A hypergraph is t-colorable if its vertices can be colored with t colors so that there
is no monochromatic hyperedge. We say that a hypergraph is t-strong colorable (or t-partite)
if its vertices can be t-colored so that every hyperedge has no two vertices of the same color;
in other words, it is “t-partite” with vertices partitioned into t parts so that every hyperedge
has at most one vertex from each part. Note that t-strong coloring is equivalent to t-coloring
the graph obtained by converting each hyperedge into a clique.

Compared to graph coloring, the situation for hardness results for hypergraph coloring is
much better. We know that it is NP-hard to color a 2-colorable 3-uniform hypergraph with
any constant number of colors [7], and a recent line of work has led to quasi-NP-hardness

1 The applicability of this result to graphs with small chromatic number seems to have been somewhat
overlooked in the literature.

2 Note that the NP-hardness of 6-coloring 4-colorable graphs would immediately follow from the (as yet
unknown) NP-hardness of 5-coloring a 3-colorable graph by adding a new vertex adjacent to all nodes
in the graph.
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of coloring 2-colorable n-vertex hypergraphs of O(1)-uniformity with exp(Ω(log0.1−o(1) n))
colors [5, 11, 24, 27, 20], which is approaching the ballpark of polynomially many colors
needed by current algorithms.

The 2-coloring problem is easy on hypergraphs H = (V,E) which admit balanced partial
colorings. Namely, if there are subsets A,B ⊂ V such that for each e ∈ E, |e ∩A| = |e ∩B|,
then one can efficiently find a 2-coloring of H that leaves no hyperedge monochromatic [25].
In particular, a t-uniform t-partite hypergraph, is easy to 2-color. However, even a slight
relaxation of the perfect balance condition seems to render 2-coloring intractable. For
example, with the promise that there is a near-balanced 2-coloring, finding a 2-coloring
without monochromatic edges is still NP-hard [3], and further even c-coloring is NP-hard for
any constant c [14].

It will be really interesting to establish further powerful hardness results that show in
some formal sense that 2-coloring is hard unless the perfect balance promise is met. Towards
this end, the following ultra-strong conjecture postulates that the generally believed hardness
of O(1)-coloring 3-colorable graphs extends to all strongly colorable hypergraphs with one
more color than uniformity (i.e., just beyond the case of a perfectly balanced strong coloring).

I Conjecture 1.2. For all k, c ≥ 2, (k, c) 6= (2, 2), given a k + 1-strongly colorable k-
uniform hypergraph, it is NP-hard to find a c-coloring of its vertices that leaves no hyperedge
monochromatic.

Note that a k-uniform hypergraph that is strongly colorable with k + 1 colors is also
2-colorable, so the problem in the above conjecture makes sense for any c ≥ 2. Note the
conjecture would immediately yield as a corollary the NP-hardness of telling if a graph G
has χ(G) ≤ t or χ(G) > c for all c, t ≥ 3, so in this form the conjecture might be well beyond
current techniques. However, proving it for c = 2 would already be very interesting and
this challenge might be within reach by developing more sophisticated analysis tools in the
broader framework employed in this paper.

In this work, we prove the following hardness result for 2-coloring strongly colorable
hypergraphs, which is the first such result for any promise of strong coloring that implies
2-colorability. Note that a k-uniform hypergraph that is t-strongly colorable for t ≤ 2k− 2 is
also 2-colorable (as one can partition the 2k − 2 colors into two groups of k − 1 and each
hyperedge must have colors from both groups).

I Theorem 1.3. For k ≥ 3, given a k-uniform hypergraph, it is NP-hard to tell if it is
d 3k

2 e-strongly colorable or if it is not 2-colorable. Further, for k = 3, 4, it is NP-hard to
2-color a k + 1-strongly colorable k-uniform hypergraph.

The proofs of this theorem can be found in Sections 3.1.1, 3.3, 4, and A.2. In addition, in
Appendix A.3, using a simple Fourier-analytic argument, we note the hardness of a variant of
[k, k+ 1, 2], k-odd, in which the sought after two-coloring must be balanced (have discrepancy
1) — note that such a balanced 2-coloring exists if the hypergraph is k + 1-partite.

1.1 Prior related work
Towards describing the previous related results in a compact and easy to reference manner,
we introduce the following expressive notation, which we will also use in the body of the
paper. A k-uniform hypergraph is said to be t-rainbow colorable (for some t ≤ k) if its vertices
can be t-colored so that every hyperedge has vertices of every color (note that 2-rainbow
colorability is the same as 2-colorability, and for larger t the notion gives a more structured
coloring).

CCC 2016



14:4 New Hardness Results for Graph and Hypergraph Colorings

I Definition 1.4. Let t, k, c ≥ 2 be positive integers. Define [k, t, c]-coloring to be the
following decision problem: Given a be a k-uniform hypergraph H, distinguish between the
following two cases.

YES: If t < k, G is t-rainbow colorable; or if t ≥ k, G is t-strongly colorable. (Note that
when t = k, t-rainbow and t-strong colorability are the same notion.)
NO: H is not c-colorable.

Note that when k = 2, this is the well-known problem of deciding whether a graph can
be colored with at most t colors or requires more than c colors. The algorithm to 2-color a
hypergraph in the presence of a balanced partial coloring [25] shows that [t, t, 2]-coloring is
polynomial time solvable for all t ≥ 2. The known results on the complexity of [k, t, c]-coloring
are tabulated below. We will not discuss rainbow coloring further in the paper, but include it
in the table below, which also includes two conjectures that 2-coloring is hard if the t-uniform
t-strong/rainbow colorability is relaxed for either strong/rainbow coloring. The table does
not include algorithmic results for graph/hypergraph coloring where the number of colors
used is a function of the number of vertices, or recent hardness results which show hardness
of hypergraph coloring with super-polylogarithmically many colors.

Problem Parameters Known Hardness References

Graph coloring [2, t, 2t− 5] NP-hard [9]
[2, t, t + 2b t

3c − 1] NP-hard [21, 13]
[2, t, 2Ω(t1/3)], large t NP-hard [19]
[2, t, c], c ≥ t ≥ 3 UG-variant-hard [6, 8]
[2, t, 2t− 2] NP-hard this paper

k-uniform hypergraph coloring [k, k, 2] in P [25, 2]
[k, 2, c], k ≥ 4, c ≥ 2 NP-hard [12]
[3, 2, c], c ≥ 2 NP-hard [7]

t-strong hypergraph coloring [3, 4, 2], [4, 5, 2], [b 2t
3 c, t, 2], t ≥ 6 NP-hard this paper

[t− 1, t, 2], t ≥ 6 NP-hard (conjectured) this paper
t-rainbow coloring [2t, t, c], t ≥ 2, c ≥ 2 NP-hard [14]

[t + 1, t, 2], t ≥ 3 NP-hard (conjectured) this paper

Note that we prove the hardness of [3, 4, 2] and [4, 5, 2] coloring separately, for t ≥ 6, the
challenge of proving hardness of [t− 1, t, 2] coloring remains open.

We believe that our techniques can also be used to show that [4, 3, 2]-coloring and some
other problems in the setting of rainbow coloring are NP-hard, but for simplicity and a
focused presentation we decided to restrict our study to strong coloring in this version of the
paper.

1.2 Techniques
Previous hardness results for approximate coloring of graphs with chromatic number bounded
by a constant t fall into three categories:

NP-hardness for small t, e.g. the 2t − 5-coloring hardness in [9], or the hardness of
4-coloring for t = 3: these are based on clever ad hoc reductions from some NP-hard
coloring/independent set exact optimization problem (in [21] an approximation version
was needed, but the later proof in [13] required only hardness of exact independent set).
NP-hardness of f(t)-coloring for large constant t, such as f(t) = tΩ(log t) [22] or the current
record f(t) = exp(Ω(t1/3)) [19]: these are based on designing a PCP with very good
query vs. soundness error trade-off and reducing to graph coloring via the FGLSS graph.
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These results also show that finding an independent set of density 1/f(t) is NP-hard, but
they don’t kick in until t is reasonably large.
Hardness of O(1)-coloring for t = 3, 4 based on variants of the Unique Games Conjec-
ture [6]: these design a 2-query verifier checking the Not-Equal predicate that directly
corresponds to graph coloring, and the soundness analysis, which shows that there is no
large independent set, relies on appropriate invariance principles. The results showing
hardness of O(1)-coloring hypergraphs [12, 17, 23, 7] also proceed along this route, but
since the Not-All-Equal predicate makes more than two queries, the PCP can be analyzed
unconditionally using Fourier analytic tools of the sort pioneered by Håstad [16].

The primary method used to obtain the hardness results in this work departs from the
above approaches. We treat coloring as a constraint satisfaction problem (CSP), and our
approach is inspired by techniques in the CSP dichotomy literature, where NP-hardness
emerges due to the lack of non-dictator “polymorphisms” for the predicate. A polymorphism
gives a way to combine several assignments satisfying the predicate into another satisfying
assignment. Formally, for an arity k predicate P ⊆ Dk over domain D, a polymorphism for
P is a function f : DL → D (for some arity L) such that for all a1, a2, . . . , aL ∈ P , applying
f coordinate-wise to the i’th coordinates of a1, . . . , aL for 1 ≤ i ≤ k, yields b ∈ Dk that also
belongs P . The dictator functions f(z) = zj for j = 1, . . . , L are trivially polymorphisms. If
there are no other polymorphisms, then the associated CSP is NP-hard (this connection is
folklore, and is mentioned in [4] in a more algebraic language). For instance, if P ⊆ Z2

3 (for
domain Z3 = {0, 1, 2}) is the predicate {(x, y) | x 6= y}, then the only polymorphisms are
dictators (this is a nice exercise, and we will prove stronger forms of this for our results). As
a result, the associated CSP, which is simply graph 3-colorability, is NP-hard.

Since we seek hardness even when one is allowed more colors, we work in the framework
of “weak polymorphisms” from the recent work [3] on hardness of satisfiability even when
a near-balanced satisfying assignment exists. Here, the objects of study are relaxations
of polymorphisms that map assignments satisfying a predicate P into those that satisfy a
weaker predicate Q. For instance, to show hardness of 4-coloring 3-colorable graphs, we
study functions f : ZL3 → Z4 satisfying f(x) 6= f(y) whenever xi 6= yi ∀i ∈ {1, 2, . . . , L} (in
other words, we study 4-colorings of a dictatorship gadget graph with vertex set ZL3 where
two nodes are adjacent precisely when they differ in every coordinate). With 4 colors we
can no longer say that f must depend on only coordinate — indeed, we can start with a
dictator 3-coloring and corrupt it by recoloring any independent set with the 4’th color. We
prove that in fact this is the only thing that can happen — for some c ∈ Z4, f restricted to
ZL4 \ f−1(c) is a dictator. For t-colorable graphs, we prove a similar statement classifying
functions f : ZLt → Z2t−2 as comprising of a dictator function for t colors corrupted with
t− 2 independent sets.

Our proof of Theorem 1.1 follows the common paradigm of reducing from Label Cover,
with dictatorship gadgets at each node and cross edges testing the projection constraints.
However, our analysis ensures that one can decode, based on a (2t − 2)-coloring of the
resulting graph, a unique label to each vertex that satisfies all the label cover constraints.
Therefore, as a starting point, we only need the NP-hardness of deciding if a Label Cover
instance is satisfiable, and do not need a gap version based on PCPs. For the results in [3],
the functions which satisfy the dictatorship test are juntas which depend on few variables.
This requires starting the reduction from a gap version of Label Cover, as the decoding
of labels is not unique. On the other hand, the functions which pass the dictatorship test
in [3] are either exact juntas or very close to one, which interfaces nicely with the Label
Cover reduction. The challenge in our setting is that the characterization reveals a dictator
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14:6 New Hardness Results for Graph and Hypergraph Colorings

function corrupted with a large amount of “noise.” This is because we have to test functions
f : ZLt → Zc with a larger range (with c > t, for graph coloring), and for hypergraph
coloring, the weak 2-coloring predicate is much weaker than the strong t-coloring promise.
For example, for our hardness result for (2t − 2)-coloring t-colorable graphs, the dictator
could be corrupted on almost a 1− 2/t fraction of the hypercube by t− 2 independent sets.
However, the non-noisy portion has a nice structure which helps ensure that the decoded
dictatorial coordinate is unique, and further satisfies the projection constraints in the Label
Cover instance.

We also abstract a notion of robust decoding of a dictatorship test, which makes the
interface with Label Cover more modular, and might help with future reductions based on
dictatorship tests.

1.3 Discussion and Limitations
Although the techniques developed produce some new hardness results, there are technical
limitations which prevent us from proving better hardness results. For graph coloring,
there seem to be fundamental barriers preventing our robust decoding framework from
being extended to [2, t, 2t]. The primary challenge is that many colorings of the [2, t, 2t]
dictatorship test involve nontrivial dependence in multiple coordinates. For example, consider
f1 : ZLt → Z2t and f2 : ZLt → Z2t defined by f1(x) = x1 and f2(x) = x2 + t. Since the
colorings of f1 and f2 use separate color sets, any ‘interleaving’ f : ZLt → Z2t, for which
we choose f(x) = f1(x) or f(x) = f2(x) arbitrarily for each x, is a valid coloring of this
dictatorship test, too. Furthermore, in Appendix B, we formalize this intuition, we show
that there exists no robust decoder for the [2, 3, 6]-coloring gadget, which implies that our
current methods cannot be used directly to show the NP-hardness of [2, 3, 6]-coloring. For
similar but more subtle reasons, it also seems likely that no robust decoder exists for the
[2, 3, 5]-coloring gadget either.

On possible remedy to this technical challenge would be to use a stronger variant of Label
Cover known as smooth Label Cover. In smooth Label Cover, the edges and projection maps
are guaranteed to have pseudorandom properties, allowing for weaker inner verifiers to obtain
NP-hardness results. This variant of label cover has been able to prove the NP-hardness
of approximation of problems for which the basic variant does not appear to suffice, (e.g.,
[23, 15, 18, 14]). Currently though, smooth Label Cover does not seem to be sufficient in
itself to overcome these technical challenges.

On the other hand, to generalize hypergraph coloring, the primary challenge appears to be
the opposite problem. For certain instances, such as [5, 6, 2]-coloring, we have a conjectured
robust decoder which interfaces well with multipartite Label Cover, but at this time we are
unable to determine a combinatorial proof that the robust decoder captures all colorings
of the [5, 6, 2] dictatorship test. We conjecture, albeit less confidently, that the situation is
similar for [t− 1, t, 2]-coloring for t ≥ 6

1.4 Paper Organization
Section 2 constructs the dictatorship gadgets and formally defines the notion of a robust
decoder of a gadget. Section 3 combinatorially proves the existence of robust decoders for a
variety of gadgets. Section 4 uses label cover reductions similar to that of [3] to prove the main
theorems. Appendix A contains proofs omitted from Section 3, including a combinatorial
classification of the [4, 5, 2]-dictatorship test. Appendix B shows that our techniques cannot
directly obtain the NP-hardness of 6-coloring a 3-colorable graph.
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2 Preliminaries

2.1 The [k,t,c]-coloring Gadget
Adapting the techniques of [3], to prove hardness results we use a label cover reduction with a
combinatorial gadget as an inner-verifier long code test. Generalizing the Boolean hypercube,
we construct our long code with the tensor product of hypergraphs (e.g., [1]).

I Definition 2.1. Let G = (VG, EG) and H = (VH , EH) be a k-uniform hypergraphs. The
tensor product G⊗H of G and H is the k-uniform hypergraph on vertex set VG × VH such
that for all (g1, . . . , gk) ∈ EG and (h1, . . . , hk) ∈ EH and for all permutations σ : [k]→ [k],
((g1, hσ(1)), . . . , (gk, hσ(k))) is an edge of G⊗H.

We let ⊗nG to denote the tensor product of n copies of G. The most common graph
we will be taking the tensor product of is the complete k-uniform hypergraph on t vertices
(when k ≤ t), which we denote Kk

t . We identify the vertices of Kk
t with Zt and the edges

with k-element subsets of Zt.

I Definition 2.2 (Dictatorship test gadget). Let k, t, c ≥ 2 be positive integers such that
k ≤ t c ≥ t/(k − 1) and let L ≥ 1 be an integer. The dictatorship gadget for [k, t, c] on L

labels is the k-uniform hypergraph ⊗LKk
t , the vertices of which we identify with ZLt . A valid

coloring of the dictatorship gadget is a function f : ZLt → Zc such that for all k element
subset S ⊆ ZLt which corresponds to an edge of ⊗LKk

t , |{f(x) : x ∈ S}| ≥ 2. If f is a valid
coloring, then we say that f satisfies the [k, t, c]-coloring gadget.

The constraint c ≥ t/(k− 1) guarantees that a k-uniform, t-strongly colorable hypergraph
has a c-coloring. Note that if c < t/(k − 1), then Kk

t is not c-colorable.
We can identify the hyperedges of ⊗LKk

t with the k-tuples (x(1), . . . , x(k)) of ZLt such
that for all i ∈ [L] = {1, 2, . . . , L}, x(1)

i , . . . , x
(k)
i are all distinct. Since it is tedious to refer

to the underlying graph of a gadget coloring, we formulate a simple syntactic way to check if
f satisfies the [k, t, c]-coloring gadget. First, we define the notion of being disjoint which
captures the idea of strong coloring.

I Definition 2.3. Let L ≥ 1. A subset S ⊆ ZLt is disjoint if |S| ≤ t and for all i ∈ [L], |{xi :
x ∈ S}| = |S|. Similarly, we say that x, y ∈ ZLt are disjoint if {x, y} is a disjoint subset.

It is easy to verify that the following definition of a coloring of the dictatorship gadget is
equivalent.

I Proposition 2.4. Let k, t, c ≥ 2 and L ≥ 1 be positive integers such that k ≤ t, c ≥ t/(k−1).
Let f : ZLt → Zc be a function. We have that f satisfies the [k, t, c]-coloring gadget if and
only if for all S ⊂ ZLt such that |S| = k and S is disjoint, we have that |{f(x) : x ∈ S}| ≥ 2.

In our label cover reduction (see Lemma 4.5), a [k, t, c]-coloring gadget will be a long
code test for a specific vertex of the label cover instance. To represent the edges, we need to
construct a [k, t, c]-coloring co-gadget. This co-gadget is analogous to the edge constraints of
[3].

I Definition 2.5. Let k, t, c, L be positive integers such that k ≤ t, c ≥ t/(k − 1). Let
f1, f2 : ZLt → Zc be functions. We say that {f1, f2} satisfy the [k, t, c] co-gadget if for all
disjoint A ⊆ ZLt such that |A| = k, and for all partitions3 A = A1 ∪A2,

|{f1(x) : x ∈ A1} ∪ {f2(x) : x ∈ A2}| ≥ 2.

3 Some sets in the partition may be empty.

CCC 2016



14:8 New Hardness Results for Graph and Hypergraph Colorings

Notice that if f and g satisfy the [k, t, c] co-gadget, then f and g must both satisfy the
[k, t, c] gadget.

2.2 Decoding of Gadgets
With the dictatorship gadgets formulated, we move on to define what it means to decode the
coloring of a gadget. Toward this, we need to formally define what dictators and juntas are.

I Definition 2.6 (Dictators). A function f : ZLt → Zc is a dictator if there exists i ∈ [L] and
g : Zt → Zc such that f(x) = g(xi) for all x ∈ ZLt .

I Definition 2.7 (Juntas). A function f : ZLt → Zc is a `-junta if there exists a S ⊆ [L] with
|S| = ` and g : ZSt → Zc such that f(x) = g(x|S) for all x ∈ ZLt , where x|S is the restriction
of x to entries indexed by S.

If f satisfies the [k, t, c] gadget and is a dictator we would like to decode f into some
small subset S ⊆ [L] of coordinates which dictate f ’s behavior the most. In general though,
f is not necessarily a dictator or an `-junta for small `, but it will often be quite close to one.
This motivates the following definition.

I Definition 2.8. For a fixed choice of k, t, c ≥ 2, A decoder is a family4 of functions
Dec = {DecL[k,t,c] : (ZLt → Zc)→ P([L]) : L ∈ N} satisfying the following properties.

(nontrivial) For all f : ZLt → Zc satisfying the [k, t, c] gadget, Dec(f) 6= ∅.
(sensible) If f depends on the coordinates S ⊆ [L], then Dec(f) ⊆ S. In particular, if f
is dictated by the ith coordinate, then Dec(f) = {i}.
(compatible) For all pairs f, g : ZLt → Zc, which satisfy the [k, t, c] co-gadget, Dec(f) ∩
Dec(g) 6= ∅.
(bounded) There exists a constant C = C(k, t, c) independent of L, such that |Dec(f)| ≤ C
for all choices of f .

We say that Dec(f) is the decoding of f .

Due to the technical details of our label cover reduction, to obtain NP-hardness results we
need our decoder to have one additionally property, that the decoding of f needs to compose
nicely with projections.

I Definition 2.9. Let f : ZLt → Zc be a function. Let π : [L]→ [L] be a projection. Define
the restriction of f with respect to π, denoted f�π : ZLt → Zc to be the unique map satisfying

(f�π)(x) = f(y) where yi = xπ(i) for all i ∈ [L].

In other words, f�π applies f after ‘copying’ coordinates in the image of π to coordinates
with that projection.

Note that if f satisfies the [k, t, c] gadget, then f�π also satisfies the [k, t, c] gadget for
all π.

I Definition 2.10. We say that a decoder Dec = Dec[k,t,c] is robust if for all f : ZLt → Zc
satisfying the [k, t, c] gadget and all projections π : [L]→ [L], Dec(f�π) ⊆ π[Dec(f)].

4 For f : ZL
t → Zc, we use Dec(f) or Dec[k,t,c](f) as a shorthand for DecL

[k,t,c](f).
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3 Colorings of Dictatorship Gadgets

Now that have constructed our dictatorship gadgets/co-gadgets and defined the notion of
a robust decoder, we proceed to demonstrate to prove that a number of [k, t, c]-coloring
gadgets indeed have robust decoders.

3.1 Small Examples
To better understand gadget colorings, we often examine subsets S ⊆ ZLt such that no pair
of elements of S are disjoint. We call such an S an independent set. For any S ⊆ ZLt we let
the clique number ω(S) denote the size of the largest disjoint subset of S. The following fact
relates the clique number of S to the density of S in ZLt .

I Claim 3.1. For any S ⊆ ZLt ,

|S|
|ZLt |

≤ ω(S)
t

(1)

with equality if and only if the indicator function for S is a dictator.

I Remark. For independent sets (ω(S) = 1), this claim is well-known (e.g., [10]). See [1] for
a particularly elegant proof involving Fourier analysis.

Proof. See Appendix A. J

3.1.1 Strong coloring: [3,4,2] gadget
Using Claim 3.1, we may easily classify the colorings of [3, 4, 2] gadget. Recall that this
gadget corresponds to the 2-coloring of 3-uniform 4-strong colorable graphs.

I Claim 3.2. Let f : ZL4 → Z2 satisfy the [3, 4, 2]-coloring gadget. Then, there exists i ∈ [n]
and S ⊂ Z4 such that |S| = 2 and for all x ∈ ZL4 , f(x) = 0 iff xi ∈ S.

Proof. From the definition of the gadget ω(f−1(0)), ω(f−1(1)) ≤ 2. Thus, |f−1(0)|, |f−1(1)|
≤ 1

2 |Z
L
4 |. Since ZL4 = f−1(0)∪ f−1(1), we must have that |f−1(0)| = |f−1(1)| = 1

2 |Z
L
4 |. Thus,

the indicator function for |f−1(1)| must be a dictator in the ith coordinate, implying that f
is a dictator in the ith coordinate. This implies the conclusion of the claim. J

Since any f which satisfies this gadget must be a dictator, the natural choice for a decoder
Dec[3,4,2] is to decode the index of the dictatorial coordinate.

I Claim 3.3. There exists a robust decoder Dec = Dec[3,4,2] for [3, 4, 2]-coloring.

Proof. Let Dec(f) = {i}, where i is the coordinate that f is a dictator. Clearly Dec is
nontrivial, sensible, and bounded. To establish that Dec is compatible, assume for sake of
contradiction f1 and f2 satisfy the [3, 4, 2]-coloring co-gadget, but f1 and f2 are dictated by
different coordinates. Without loss of generality, we may assume that f1 is dictated by the
first coordinate, and f2 is dictated by the second coordinate. Furthermore, we may assume
without loss of generality that f1(x) = 0 if and only if x1 ∈ {0, 1} and that f2(x) = 0 if and
only if x2 ∈ {0, 1}. But then, we may select A1 = {(0, 2, 0, 0, . . . , 0), (1, 3, 1, 1, . . . , 1)} and
A2 = {(2, 0, 2, 2, . . . , 2)} such that A1 ∪A2 is disjoint, but f1(A1) ∪ f2(A2) = {0}, violating
the [3, 4, 2]-coloring co-gadget, a contradiction. Thus, Dec is indeed compatible. Therefore,
Dec is a decoder.
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Note that if f is a dictator in coordinate i, then for any projection π : [L]→ [L], f�π is
a dictator in coordinate π(i). Thus, Dec(f�π) ⊆ π(Dec(f)), establishing that Dec is robust,
as desired. J

If we combine Claim 3.3 with Lemma 4.5, we have that [3, 4, 2]-coloring is NP-hard.
In Appendix A.2, we give a combinatorial classification of the [4, 5, 2] dictatorship gadget.

3.1.2 Graph coloring: [2,3,4] gadget

Next, we classify the [2, 3, 4] gadget which corresponds to problem of coloring a 3-colorable
graph with 4 colors. This will form the base case for our more general [2, t, 2t− 2]-hardness
result in Section 3.2. The following lemma is a key ingredient in the proof of our main result.

I Lemma 3.4. Let f : ZL3 → Z4 satisfy the [2, 3, 4] gadget. Then, there exists a ∈ Z4 such
that f restricted to ZL3 \ f−1(a) is a dictator.

Proof. We say that three points x, y, z ∈ ZL3 form an axis-parallel line if x, y, z differ in
exactly one coordinate.

I Claim 3.5. There does not exist x ∈ ZL3 and lines {x, y, z} and {x, y′, z′} such that both
lines are axis-parallel to the coordinate axes and each line takes on 3 distinct values with
respect to f .

For ease of notation, when referring to a subset of ZL3 we may concatenate digits to
indicate an ordered tuple. For example,

012 is the ordered tuple (0, 1, 2).
12{0, 1}2 is the set {(1, 2, 0, 0), (1, 2, 0, 1), (1, 2, 1, 0), (1, 2, 1, 1)}
{12, 21} × {0} is {(1, 2, 0), (2, 1, 0)}.

Proof. If L = 1, the claim is trivial. Assume for sake of contradiction that such an x exists.
Without loss of generality, such x is 0 . . . 0 the two axis-parallel lines differ in the first and
second coordinates. Thus, we may assume without loss of generality that

f(0 . . . 0) = 0 f(10 . . . 0) = 1 f(20 . . . 0) = 2 .

We may also assume without loss of generality that

f(010 . . . 0) = 1.

Since 01 and 10 are disjoint, L = 2 is impossible. Now we have two cases.

Case 1, f(020 . . . 0) = 2. Notice that we may then deduce that

f(12{1, 2}L−2) = 3 f(21{1, 2}L−2) = 3 .

Since there are disjoint elements in {12, 21} × {1, 2}L−2, we have a contradiction.
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Case 2, f(020 . . . 0) = 3. Now, we may deduce that

f(11{1, 2}L−2) = 1 (2)
f(12{1, 2}L−2) = 3 (3)
f(21{1, 2}L−2) = 2. (4)

Notice that this implies that

f(00ZL−2
3 ) = 0. (5)

From this, we may deduce that

f({22} × ZL−2
3 ) ⊆ {2, 3}. [using (2) and (5)]

If there exists, x, y ∈ {0, 1}2 × ZL−2
3 such that f(x) = 2 and f(y) = 3, then there is some

z ∈ {22} × ZL−2
3 that is disjoint from both x and y, a contradiction. Notice then, due to

symmetry, we may assume without loss of generality that

f(x) 6= 2, x ∈ {0, 1}2 × ZL−2
3 . (6)

Therefore, we have that

f(01ZL−2
3 ) ⊆ {0, 1}. [using (3) and (6)]

Thus, similar logic, there cannot be x, y ∈ {10} × ZL−2
3 such that f(x) = 0 and f(y) = 1.

Since f(10 . . . 0) = 1, we have that

f(x) 6= 0, x ∈ {10} × ZL−2
3 . (7)

Therefore,

f({10} × ZL−2
3 ) ⊆ {1, 3}. [using (4) and (7)]

But, this is at odds with f(020 . . . 0) = 3 and f(010 . . . 0) = 1, leading to a contradiction.
J

I Claim 3.6. If there exist x0, x1, x2 ∈ ZL3 which each differ in exactly one coordinate (that
is, form a line parallel to an axis) and f(x0) 6= f(x1) = f(x2), then f satisfies the conclusion
of Lemma 3.4.

Proof. Assume without loss of generality that x0 = 0 . . . 0, x1 = 10 . . . 0, and x2 = 20 . . . 0,
and

f(x0) = f(0 . . . 0) = 0 f(x1) = f(10 . . . 0) = 1 f(x2) = f(20 . . . 0) = 1 .

From this, we may deduce that

f({1, 2}L) ⊆ {2, 3}. (8)

Additionally, any two disjoint points of {1, 2}L must take on different values with f . Consider
any y0, y1 ∈ {1, 2}L which differ in exactly one coordinate but also differ with respect to f :

f(y0) = 2, f(y1) = 3.
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Let y2 be the third point on the axis-parallel line between y0 and y1, and let y′0 and y′1 be
the points of {1, 2}L disjoint from y0 and y1, respectively. Thus,

f(y′0) = 3, f(y′1) = 2.

Since y2 is disjoint from both y′0 and y′1, we have that

f(y2) ∈ {0, 1}.

Hence, we have deduced that for any y0, y1 ∈ {1, 2}L which differ in exactly one coordinate
and also differ with respect to f , the third point on the line between them must also differ
with respect to f . Therefore, by Claim 3.5, we necessarily have that for all y ∈ {1, 2}L, there
is at most one z ∈ {1, 2}L differing with f in exactly one coordinate with f(y) 6= f(z).
From this fact, we can assign a function g : {1, 2}L → [L]∪{None} such that if y, z ∈ {1, 2}L
are neighbors but f(y) 6= f(z) then g(y) = g(z) is the coordinate they differ in. Furthermore,
if g(y) 6= None, we claim that for all w ∈ {1, 2}L which differ by y in exactly one coordinate,
g(y) = g(w). If it were the case g(y) 6= g(w), let y0, w0 ∈ {1, 2}L which differ from y and w
in the g(y)th coordinate. Then f(y) = f(w) = f(w0) 6= f(y0), implying that g(y0) should be
both g(y) (due to y0)and g(w) (due to w0), a contradiction.
Since the Hamming graph on {1, 2}L connected and f takes on multiple values in {1, 2}L, we
have that g takes on a non-None value at at least one point and since the Hamming graph
is connected, we must have that g is a constant function. Thus, f restricted to {1, 2}L is a
dictator. Let i be the coordinate in which f restricted to {1, 2}L is a dictator. And assume
without loss of generality due to (8) that

x ∈ {1, 2}L, f(x) = 2 if and only if xi = 1.

From this and (8), we may deduce that for a general x ∈ ZL3 ,

xi = 0 then f(x) ∈ {0, 1}
xi = 1 then f(x) ∈ {0, 1, 2}
xi = 2 then f(x) ∈ {0, 1, 3}.

Notice that if there are x, y ∈ ZL3 (not necessarily disjoint) with xi, yi 6= 0 such that f(x) = 0
and f(y) = 1, then we can identify at least one z ∈ ZL3 with zi = 0 such that z is disjoint
from x and y, implying that f(z) 6∈ {0, 1}, a contradiction. Thus, without loss of generality,
we can say that f(x) 6= 1 if xi 6= 0. Therefore, f restricted to ZL3 \ f−1(0) is a dictator in the
ith coordinate (f(xi) = xi + 1), as desired. J

(Back to proof of Lemma 3.4) Assume for sake of contradiction that there is a counterexample.
From Claim 3.6, we know that no three of y0, y1, y2 ∈ ZL3 differing in exactly one coordinate
which take on two distinct values with respect to f . But, we also know from Claim 3.5 that
no x ∈ ZL3 has two axis-parallel lines through it that take on 3 different values. This implies
that for each x ∈ ZL3 , there is at most coordinate for which changing x changes the value of
f . As in the proof of Claim 3.6, we may construct g : ZL3 → [L] ∪ {None} such that if x and
x′ are neighbors which differ then g(x) = g(x′) is the coordinate they differ in. Again, for all
x ∈ ZL3 such that g(x) 6= None, we have that all the neighbors (at Hamming distance 1) of x
must take on the same value for g. Since f is not constant, g takes on at least one non-None
value. Thus by a flood-fill argument, g must be a constant function. Hence, f must be a
dictator, implying that there is no counterexample, as desired. J

We wait to show that the [2, 3, 4] gadget has a robust decoder until we establish the
generalization for the [2, t, 2t− 2] gadget.
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3.2 Graph coloring: The general case
I Lemma 3.7. Let f : ZLt → Z2t−2 satisfy the [2, t, 2t− 2]-colorability gadget where t ≥ 3.
Then there exists S ⊂ Z2t−2 such that |S| = t − 2 and f restricted to ZLt \ f−1(S) is a
dictator.

Since by Claim 3.1, we have that for all c ∈ Z2t−2, |f−1(c)| ≤ tL−1. Thus, by ‘discarding’
only t− 2 of the colors, we have an understanding of the structure of at least 2/t fraction of
the coloring. This is enough structure to obtain NP-hardness in our label cover reduction in
Section 4.

Proof. We proceed by induction on t. The base case t = 3 follows from Lemma 3.4.

I Claim 3.8. If t ≥ 4 and f restricted to ZLt−1 satisfies the [2, t− 1, 2t− 4]-colorability gadget
and we assume the result is true for t− 1, then f satisfies the conclusion of the lemma.

Proof. From the inductive hypothesis, we have that there is S′ ⊆ Z2t−4 with |S′| = (t− 1)−
2 = t− 3 such that f restricted to ZLt−1 \ f−1(S′) is a dictator. Since (t− 1) + (t− 3) = 2t− 4,
there is a subset S = Z2t−4 \ S′ ⊆ Z2t−4 of size t− 1 such that f restricted to f−1(S)∩ZLt−1
is a dictator in some coordinate. Assume without loss of generality that S = {0, 1, . . . , t− 2}.
Additionally, we may assume that f(x) = x1 when x ∈ f−1(S) ∩ ZLt−1. Thus, f in this
restricted domain is a dictator in the first coordinate.

Still working in ZLt−1, we let Ti be the set of colors in the image of f with respect to the
set of points where the first coordinate is i. More formally, Ti = {f(x) : x ∈ ZLt−1, x1 = i}.
Since Ti ⊂ Z2t−4 and by our assumption Ti ∩ S = {i}, we have that |Ti| ≤ t − 2 for all
i ∈ Zt−1.

As a key part of our inductive step, for each i ∈ Zt−1, we seek to select a color ci ∈ Ti
such that for all x ∈ ZLt , f(x) = ci implies that x1 = i. Note that it might be the case that
ci 6= i. Assume for sake of contradiction that there exists i ∈ Zt such that for all c ∈ Ti, there
is x(c) ∈ ZLt with x(c)

1 6= i but f(x(c)) = c. Since |Ti| ≤ t− 2, there must z ∈ ZLt−1 which is
disjoint from every element of the set {x(c) : c ∈ Ti}. Since we stipulated that x(c)

1 6= i for all
c ∈ Ti, we may select that z1 = i. Since z ∈ ZLt−1 and x1 = i, by definition of Ti, f(z) ∈ Ti.
But, by definition of z, z is disjoint from x(f(z)), so f(z) 6= f(xf(z)) = f(z), a contradiction.
Thus, for all i ∈ Zt−1, we can find an exclusive color ci; that is, f(x) = ci implies x1 = i for
all x ∈ ZLt .

To complete the claim, it suffices to find a color ct−1 such that f(x) = ct−1 implies
x1 = t − 1. Let Tt−1 = Z2t−2 \ {ci : i ∈ Zt−1}. That is, Tt−1 is set of colors that are not
already exclusive. Thus, if x ∈ ZLt and x1 = t− 1, then we must have that f(x) ∈ Tt−1. It is
easy to see that |Tt−1| = 2t− 2− (t− 1) = t− 1. Assume for sake of contradiction that an
exclusive color ct−1 does not exist. Thus, for all c ∈ Tt−1, there is y(c) such that f(y(c)) = c

but y(c)
1 6= t− 1. Thus, we may select z ∈ ZLt disjoint from every element of {y(c) : c ∈ Tt−1}.

Furthermore, since y(c)
1 6= t − 1 for all c ∈ Tt−1, we can let z1 = t − 1. By choice of z, we

have that f(z) 6∈ Tt−1. Thus, f(z) ∈ Z2t−2 \ Tt−1 = {ci : i ∈ Zt−1}. Thus, f(z) = ci for
some i ∈ Zt−1, implying that z1 = i, a contradiction. Therefore, there is ct−1 ∈ Tt−1 such
that f(x) = ct−1 implies that x1 = t− 1, as desired.

Hence, f restricted to f−1({ci : i ∈ Zt}) is a dictator, as desired. J

Consider any axis-parallel line ` of ZLt . If there exists x, y, z ∈ ` such that f(x) 6= f(y) =
f(z), then the (t−1)L subgrid disjoint from x cannot have either f(x) or f(y) in the image of
f . Thus this subgrid satisfies the [2, t− 1, 2t− 4] gadget and then we are done by Claim 3.8.
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Thus, every axis-parallel line must be entirely distinct or entirely the same. Next, we
seek to show that any counterexample cannot contain two perpendicular axis-parallel lines
which take on entirely distinct values. Without loss of generality, we may assume that
for all i ∈ Zt, f(i0 . . . 0) = i. We may also assume that f(010 . . . 0) = c ∈ {1, . . . t − 1}
since there are only t − 2 values in {t, . . . , 2t − 3} and f(0 . . . 0) = 0. Now notice that
f(c2{1, . . . , t − 1}L−2) ⊆ {t, t + 1, . . . , 2t − 3} Thus, this (t − 1)L−2 grid can only take on
t− 2 values. In order for every axis-parallel line to be completely the same or completely
distinct, we must have that f(c2ZL−2

t ) = c2 for some c2 6∈ Zt. Similarly, f(c`ZL−2
t ) = c`

for some c` 6∈ Zt. Since f(c0 . . . 0) = c, we cannot have any two ci be equal. Thus, we may
assume without loss of generality that ck = t+ k− 2 for all k ≥ 2. Since t ≥ 4, we must have
that f(c1{1, . . . , t− 1}L−2) cannot take on any element in {t, . . . , 2t− 3} without forcing a
non-distinct, non-homogeneous axis-parallel line. Thus, f(c1{1, . . . , t− 1}L−2) can only take
on the value c. Since every axis-parallel line through at least two points in c1{1, . . . , t−1}L−2

must take on the value c, by an inductive argument we can deduce that f(c1ZL−2
t ) = c.

Hence, f(c0 . . . 0) = f(c10 . . . 0) = c but f(c20 . . . 0) = c2 6= c, a contradiction. Thus, any
counterexample cannot contain two perpendicular axis-parallel lines taking on distinct values.

Clearly f cannot be constant. Thus, there is an least one distinct line. Using an argument
quite similar to the one in the proof of Lemma 3.4, for any x in this line, the neighbors of
x (those at Hamming distance at most 1 away) must also be on an axis-parallel-line in the
same direction. Thus, f is forced to be a dictator, as desired. J

Now that we understand the [2, t, 2t− 2] gadget well, we can now establish the existence
of robust decoders.

I Lemma 3.9. For all t ≥ 3, the [2, t, 2t− 2] gadget has a robust decoder Dec.

Proof. For any f : ZLt → Z2t−2, let Dec(f) ⊆ [L] be the set of coordinates i such that there
is a t-element subset S ⊂ Z2t−2 such that f restricted to f−1(S) is a dictator. We call S a
witness for i. We now show that our decoder meets all of the conditions of Definitions 2.8
and 2.10.

nontrivial: From Lemma 3.7, we know that Dec(f) 6= ∅.
sensible: If i ∈ Dec(f), let S be a witness for i. For every x ∈ f−1(S) and all x′ such
that x′ and x only differ in the ith coordinate, f(x) 6= f(x′). Thus, f has dependence in
the ith coordinate.
bounded: We claim that |Dec(f)| = 1 always, implying boundedness. Assume that there
exist i 6= j such that i, j ∈ Dec(f). Let Si and Sj be the subsets of t colors such that f
restricted to f−1(Si) and f−1(Sj) are dictators in the ith and jth coordinate respectively.
Let A = Si ∩ Sj . Clearly |A| ≥ |Si| + |Sj | − |Z2t−2| = 2. Let Bi = {xi : f(x) ∈ A}
and Bj = {xj : f(x) ∈ A}. It is easy to see that |Bi| = |Bj | = |A|. Now consider
K = {x ∈ ZLt : xi ∈ Bi, xj ∈ Bj}. It is easy to see that |K|/|ZLt | = |Bi||Bj |/t2 = |A|2/t2.
By definition of i and j, we can see that K is disjoint from f−1((Si ∪ Sj) \A).
We claim that for any color c ∈ Z2t−2, |f−1(c)∩K| ≤ |K|/|A|. The proof of this is similar
to the proof of Claim 3.1. Without loss of generality, assume that Bi = Bj = Z|A|. We
then can see the following is a partition of K into disjoint cliques of size K⋃

x∈K,xi=0
{(x, x+ (1, . . . , 1), . . . , x+ (|A| − 1, . . . , |A| − 1))},

where addition in the ith and jth coordinates is modulo |A|.
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Also, for any c ∈ A, it is apparent that |f−1(c) ∩K| ≤ |K|/|A|2. Combining these two
facts, |f(K)| ≥ 2|A| − 1 (the |A| colors in A and the additional |A| − 1 colors needed by
the bound above). Thus, 2t− 2 ≥ |f(K)|+ |(Si ∪ Sj) \A| ≥ 2|A| − 1 + 2t− 2|A| = 2t− 1,
a contradiction. Thus, |Dec(f)| = 1, as desired.
compatible: Consider any f, g : ZLt → Z2t−2 which satisfy the [2, t, 2t− 2] co-gadget. We
claim that Dec(f) = Dec(g). Consider h : ZL+1

t → Z2t−2 such that h(x, 0) = f(x) and
h(x, i) = g(x) for all i ∈ Zt \ {0}. Since f and g satisfy the [2, t, 2t − 2] co-gadget, h
satisfies the [2, t, 2t − 2] gadget. Thus, we can decode h in a unique coordinate i. Let
S be the witness for i of h. If i = L + 1, then h(ZLt × {0}) = f(ZLt ) can only have
2t− 2− (t− 1) = t− 1 colors, a contradiction. Thus, i ∈ [L]. It is easy then to see that
S is also a witness for f and g. Thus, due to unique decoding, Dec(f) = Dec(g) = {i}, as
desired.
robust: Consider any projection π : [L] → [L]. For {i} = Dec(f), let S our witness.
Since f is a dictator with respect to f−1(S), f�π is a dictator in coordinate π(i) respect
to (f�π)−1(S). Thus, S is a witness of π(i) for f�π, Dec(f�π) = {π(i)}. Thus,
Dec(f�π) ⊆ π(Dec(f)).

Hence, the [2, t, 2t− 2] gadget has a robust decoder. J

3.3 [k,d3k/2e,2] combinatorial characterization
To obtain hardness results for our hypergraph coloring problem, we first prove a characteri-
zation of the two-colorings of the strong hypergraph coloring dictatorship gadget.

I Lemma 3.10. Let f : ZLt → Z2 satisfy the [k, t, 2] gadget, where dt/2e+ 1 ≤ k ≤ b2t/3c.
Then, there exists i ∈ [L] and dictator-bounding Dj ⊆ Zt for all j ∈ [L] such that
|Dj | = 2t− 2k + 2 for all j ∈ [L]
there is a function g : Di → Z2 such that for all x ∈ ZLt such that xj ∈ Dj for all j,
f(x) = g(xi). Furthermore |g−1(0)| = |g−1(1)| = t− k + 1.

To motivate the structure of the proof, we first handle the special case t = 2k − 2.

Proof of t = 2k − 2 case. We seek to show that f must be a dictator with an even split of
0s and 1s. Assume without loss of generality that

f(00 . . . 0) = 0, f(10 . . . 0) = 1

Now, consider f restricted to S = {2, . . . , t− 1} × {1, . . . , t− 1}L−1. If this is not a dictator
in the first coordinate, then we may select axis parallel x, y ∈ S which are the same in the
first coordinate such that f(x) = 0, f(y) = 1. It is easy to see that there is a disjoint set
of size t − 3 = 2k − 5 which is disjoint from all of {0 . . . 0, 10 . . . 0, x, y}. Thus are at least
d(t− 3)/2e = k− 2 points in this disjoint set which are of the same value. Adding to this set
either {0 . . . 0, x} or {10 . . . 0, y}, we have that there is a disjoint set of size k all of which
take on the same value with respect to f , a contradiction. Thus, f restricted to S must be a
dictator in the first coordinate. In order to avoid any disjoint sets of size k, we must have
that f restricted to S has an equal number of 1s and 0s.

Now, take any axis-parallel pair x, y ∈ S differing in the first coordinate such that
f(x) = 0 and f(y) = 1. Using the same argument (where we replace 00 . . . 0 with x and
10 . . . 0 with y), we have that the set of points disjoint from x and y must be a dictator in the
first coordinate. Applying this fact to every such x and y in S, we can see that f restricted
to {0, 1} × ZL−1

t is a dictator in the first coordinate with f(0ZL−1
t ) = 0 and f(1ZL−1

t ) = 1.
Next, if we consider all axis-parallel pairs x ∈ {0} × ZL−1

t , y ∈ {1} × ZL−1
t , we may deduce
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Figure 1 Illustration of the proof of Lemma 3.10 in the case L = 2, k = 4, t = 6. The grids

represent values deduced of f : Z2
6 → {0, 1}. Left: if f(00) = f(21) = 0 and f(10) = f(22) = 1, it is

impossible to fill in the values of {3, 4, 5}2 without forcing a monochromatic 4-uniform hyperedge.
Right: if f(00) = 0, f(10) = 1, and f : {2, 3, 4, 5} × {1, 2, 3, 4, 5} → {0, 1} is a ‘balanced’ dictator in
the first coordinate, then in order to avoid a monochromatic 4-uniform hyperedge, f(0x) = 0 and
f(1x) = 1 for all x ∈ {1, 2, 3, 4, 5}.

that f restricted to {2, . . . , t − 1} × ZL−1
t is a dictator in the first coordinate. Thus, f is

a dictator in the first coordinate with an equal number of 0 and 1s (in order to avoid a
(t/2 + 1)-sized monochromatic hyperedge), as desired. J

Full argument. We proceed by strong induction on t. Our base case k = 4, t = 6 is handled
above.

Let x1 = 0 . . . 0, y1 = 10 . . . 0. Assume without loss of generality that f(x1) = 0, f(y1) = 1.
Now, consider the subgrid T = {2, . . . , t− 1} × {1, . . . , t− 1}L−1 which is disjoint from x1

and y1.

I Claim 3.11. There exists D′j ⊆ Zt (j ∈ [L]) such that |D′j | ≥ 2t− 2k for all j, f restricted
to the Cartesian product×j∈LD

′
j ⊆ T is a dictator in some coordinate `. Furthermore,

exactly t− k values of D′` set f to 0.

Proof. First, assume we can find axis-parallel x2, y2 ∈ T such that f(x2) = 0, f(y2) = 1,
but the coordinate x2 and y2 differ in is not the first coordinate. Without loss of generality
assume that x2 = 21 . . . 1 and y2 = 221 . . . 1. Now consider T ′ = {3, . . . t − 1}L which is
disjoint from x1, x2, y1, and y2. Clearly f restricted to T ′ satisfies the [k− 2, t− 3, 2] gadget
since if f were to have a disjoint set of size k − 2 in T ′, either {x1, x2} or {y1, y2} could be
augmented to yield a disjoint set of size k which is constant with respect to f . Clearly if
b2t/3c ≥ k then b2(t− 3)/3c ≥ k− 2. The last thing we need to check to apply the induction
hypothesis is that t− 3 ≥ 6. We can find a disjoint set of size d(t− 3)/2e which is constant
with respect to f , so k − 2 > d(t − 3)/2e. It is easy to check this is false if t < 9 since
k ≤ b2t/3c, yielding a contradiction. Thus, t ≥ 9, so t− 3 ≥ 6 so we may use the induction
hypothesis to find D′j which satisfy the claim.

Now, assume that no such x2, y2 ∈ T exist. Then, f restricted to T is a dictator in the
first coordinate. All we need to check is that there are at least t − k choices for the first
coordinate so that f restricted to T is equal to 0 (respectively 1) in the first coordinate.
If we cannot find t − k choices for, without loss of generality 0, then there are at least
(t− 2)− (t− k − 1) = k − 1 choices for 1. Since there are at least t− 2 (which is at least
k− 1) choices in each of the other coordinates, we can select k− 1 disjoint points which take
on the value 1 within T . If we add in y1, we have a set of k disjoint points which take on the
value 1 within T . J

Thus, we have that f restricted to T ′ =×j∈[L]D
′
j is a dictator in the `th coordinate for

`. We would like to let D′j = Zt in every coordinate except `. If this is not the case, then
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there exists x ∈ ZLt such that x` ∈ D′`, but f(x) is not equal to the the common value of
f(y) where y ∈ T ′ and x` = y`. Let Tx be the subset of ZLt disjoint from x. We claim that f
restricted to Tx satisfies the [k − 1, t− 1, 2] gadget. If there were a disjoint set of size k − 1
within Tx which all take on the value f(x), then adding in x, we get a disjoint set of size k
which all take on the value f(x), a contradiction. Now, consider the case when there is a
disjoint set of size k − 1 within Tx which all take on the value 1− f(x), Since b2t/3c ≥ k,
2(t− k) > k − 1, and no point in this set take on the value x` in the `th coordinate, there
exists y ∈ T ′ such that y` = x` which is disjoint from every element of this set. Since
f(y) = 1−f(x), we have that there then is a disjoint of size k such that f takes on a constant
value, yielding a contradiction. Thus, f restricted to Tx satisfies the [k − 1, t− 1, 2] gadget.
Since k − 1 > d(t − 1)/2e and k − 1 ≤ b2(t − 1)/3c, we have by the induction hypothesis
there is a grid of width at least 2((t− 1)− (k − 1)) + 2 = 2(t− k) + 2 which has the desired
properties. Thus, we are done.

Hence, we may now assume that D′j = Zt for all j 6= `. Since 2(t− k) ≥ 2, we may select
x`, y` such that f(x`) = 0, f(y`) = 1 and x``, y`` ∈ D′`. Repeating the same argument where
we replace x1, y1 with x`, y` we may deduce that either we have the desired conclusion or
there exists a set D′′m ⊂ Zt of size 2(t− k) such that f is a dictator in the mth coordinate
when the mth coordinate is in D′′m If m 6= `, then f(x) must be a function of only xm
(respectively x`) when (xm, x`) ∈ D′′m ×D′`. Since both dictators take on both the value 0
and 1, this is impossible. Thus, ` = m. Let D` = D′` ∪D′′` . Since x``, y`` 6∈ D′′` we have that
|D`| ≥ 2(t− k) + 2, and there are at least t− k+ 1 values of D` which take on 0 with respect
to f (respectively 1). For the other Dj ’s we can select an arbitrary 2(t − k) + 2 element
subset of Zt. J

I Corollary 3.12. If k ≤ d2t/3e, then the choice of i is unique.

Proof. For sake of contradiction, imagine that there are i 6= i′ and and families Dj and
D′j satisfying the properties of Lemma 3.10. For all j ∈ [L], we have that |Dj ∩ D′j | ≥
|Dj |+ |D′j | − t = 3t− 4k + 4. Note that f restricted to×j

(Dj ∩D′j) is a dictator in i and a
dictator in i′. Thus, f must be a constant function. Since the dictator is evenly split between
0s and 1s, we have that |Di ∩D′i| ≤ t− k + 1. Thus, 3t− 4k + 4 ≤ t− k + 1 or k ≥ 2t/3 + 1,
which contradicts the assumed bound on k. J

Thus, if k ≤ b2t/3c, a natural choice for Dec(f) is this unique i for which there is a large
“sub-dictator.” We now show that this is indeed a dictator.

I Claim 3.13. Let f : ZLt → Z2 satisfy the [k, t, 2] gadget for k ≤ b2t/3c. Let Dec(f) be the
unique i ∈ [L] from Corollary 3.12. Then, Dec is a decoder.

Proof. From Lemma 3.10 and Corollary 3.12, we have that Dec is nontrivial, sensible, and
bounded. It remains to prove that Dec is compatible. Assume for sake of contradiction
that there exists f, g : ZLt → Z2 which satisfy the [k, t, 2] co-gadget, but {i} = Dec(f) 6=
{i′} = Dec(g). Let Dj ⊆ Zt and D′j ⊆ Zt be the sets guaranteed by Lemma 3.10 for f
and g, respectively. Additionally, let T0 ⊂ Di for which f takes on the value 0. Note that
|T0| = t − k + 1, so |D′i \ T0| ≥ (2t − 2k + 2) − (t − k + 1) = t − k + 1. Thus, there exists
disjoint Ag ⊂ ZLt such that |Ag| = t− k + 1, and g[Ag] = {0}. Since |Ag| = t− k + 1 and
ai 6∈ T0 for all ai ∈ Ag, we have that we may select Af ⊂ ZLt such that |Af | = t − k + 1,
f [Af ] = {0}, and Af ∪Ag is disjoint. Since f and g satisfy the [k, t, 2] co-gadget, we have
that k − 1 ≥ |Af ∪Ag| = 2t− 2k + 2. Thus, k ≥ 2t/3 + 1, a contradiction. J

For this decoder to work well with our label cover reduction in Section 4, we need to
show that this decoder is robust.

CCC 2016
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I Lemma 3.14. Let f : ZLt → Z2 satisfy the [k, t, 2] gadget for k ≤ b2t/3c. Then for all
projections π : [L]→ [L],

π[Dec(f)] = Dec(f�π).

That is, Dec is robust.

Proof. Assume for sake of contradiction that there exists π and i 6= i′ such that Dec(f) = {i},
Dec(f�π) = {i′} and π(i) 6= i′. Let Dj ⊆ Zt be the family of ‘dictator-bounding’ sets of f
guaranteed by Lemma 3.10, and likewise let D′j ⊆ Zt be the corresponding family of sets for
f�π. Let T0 ⊂ Di be the subsets of values for which f takes on the value 0 in the Cartesian
product of the D`’s. Similarly, let T ′0 ⊂ D′j be the subset of values for which f�π takes on
the value 0 in the Cartesian product of the D′`’s.

Note that |T0| = |T ′0| = t− k+ 1. Thus, |D′π(i) \T0| ≥ 2t− 2k+ 2− (t− k+ 1) = t− k+ 1.
Therefore, we may select a disjoint set S′ ⊆ ZLt such that |S′| = t− k + 1, fπ(s) = 0, and
si ∈ D′π(i) \T0 for all s ∈ S′. Let S0 = {s ∈ ZLt : exists t ∈ S′ such that sj = tπ(j) for all j ∈
[L]}. Note that S0 is also disjoint and |S0| = |S′|. Since for all s ∈ S0, si 6∈ T0, we may select
a disjoint set S1 of size t− k + 1 disjoint from S0 such that f(s) = 0 for all s ∈ S1. Thus,
S0 ∪ S1 is a disjoint set of size 2t− 2k + 2 which takes on only 0s as values. Since f satisfies
the [k, t, 2] gadget, 2t− 2k + 2 ≤ k − 1. Thus, k ≥ 2t/3 + 1, a contradiction. J

4 Hardness of Gadget Decoders

4.1 The projection co-gadget
In our label cover reduction in this section, we need to be able to integrate projections in
our co-gadget constraints. To do that, we generalize the co-gadget to deal with arbitrary
projections. The co-gadget constraints are similar to the edge constraints in [3].

I Definition 4.1. Let k, t, c, ` ≥ 2, L ≥ 1 be positive integers such that k ≤ t, c ≥ t/(k− 1).
Let f, g : ZLt → Zc be a functions and π : [L]→ [L] be a projection. We say that (f, g) satisfy
the [k, t, c] π-co-gadget if for all A ⊂ ZLt disjoint with |A| = k and all partitions A1 ∪A2 = A

such that
(Strong constraint) for all x ∈ A1, y ∈ A2, a ∈ [L], then xa 6= yπ(a)

we have that

|{f(x) : x ∈ A1} ∪ {g(y) : y ∈ A2}| ≥ 2.

From the definition, it is clear that the π-co-gadget constraint can be implemented as a
k-uniform t-strong hypergraph. The following claim is the main motivation for the previous
definition.

I Lemma 4.2. Let k, t, c, L be positive integers such that k ≤ t, c ≥ t/(k − 1). Let f, g :
ZLt → Zc be functions and π : [L]→ [L] a projection. If (f, g) satisfy the [k, t, c] π-co-gadget,
then (f�π, g) satisfy the [k, t, c] co-gadget.

I Remark. It turns out the converse is false: the π-co-gadget between f and g is strictly
stronger than the co-gadget on the projections. In spite of this, the reduction in power is
offset by the modularity achieved by having the robust decoder act as a liaison between the
coloring gadget and the label cover reduction.
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Proof. It suffices to show that every [k, t, c] co-gadget constraint on (f�π, g) is reflected in
a constraint in π-co-gadget for (f, g).

Consider every disjoint A ⊆ ZLt such that |A| = k. Let A1 ∪A2 = A be a partition of A.
We seek to show that

|{(f�π)(x) : x ∈ A1} ∪ {g(y) : y ∈ A2}| ≥ 2.

Define B1 ⊆ ZLt to be

B1 = {z ∈ ZLt : there exists x ∈ A1 such that zj = xπ(j) for all j ∈ [L]}.

For each x ∈ A1, there is a unique corresponding z ∈ B1, and vice versa, so |A1| = |B1| We
claim that (B1, A2) is a hyperedge constraint in Definition 4.1. Clearly |B1|+ |A2| = k since
|A1| = |B1|. For any z ∈ B1, y ∈ A2, we have that there is a x ∈ A1 such that zj = xπ(j) for
all j ∈ [L]. Since (A1, A2) is a valid hyperedge for the co-gadget, xπ(j) 6= yπ(j) for all j ∈ [L].
Thus, zj 6= yπ(j) for all j ∈ [L]. Therefore, (B1, A2) is a valid hyperedge in the π-co-gadget
so

|{f(z) : z ∈ B1} ∪ {g(y) : y ∈ A2}| ≥ 2.

Now, by definition of B1, we have that {f(z) : z ∈ B1} = {(f�π)(x) : x ∈ A1}. Thus,

|{(f�π)(x) : x ∈ A1} ∪ {g(y) : y ∈ A2}| ≥ 2.

Thus, (f�π, g) satisfy this constraint in the co-gadget. Since the choice of this constraint
was arbitrary, we have that (f�π, g) satisfy the [k, t, c] co-gadget, as desired. J

4.2 The main reduction
Like [3], to obtain NP-hardness results, we reduce from Label Cover.

I Definition 4.3. An instance of Label Cover consists of Ψ = (U, V,E, [L], {πe : [L] →
[L]}e∈E) a bipartite graph for which each edge has been assigned a projection constraint.
The constraint satisfaction problem is to find labelings σ1 : U → [L], σ2 : V → [L] of the
vertices such that for all (u, v) ∈ E, π(u,v)(σ1(u)) = σ2(v).

Although label cover is well-known to be hard with a large approximation gap, we only
need that the problem of finding a fully correct labeling is NP-hard.

I Lemma 4.4. It is NP-hard to determine if a Label Cover instance Ψ is satisfiable (whether
a correct labeling exists), where L is a constant.

Proof for completeness. We show that we can take L = 6 by reducing from 3-coloring. Let
G = (V,E) be a graph we seek to three color. We let the U of our Ψ be the set of edges E
and we let V of our Ψ be the vertices V . If our color set is {0, 1, 2}, we identify our label set
with {(0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)}, the six possible colorings of an edge (u, v) ∈ E.
We also identify our label set with {0, 1, 2, 3, 4, 5}. For (u, v) ∈ E, we have edge from (u, v)
to u and one from (u, v) to v. The projection constraints are

π(u,v)→u((c1, c2)) = c1, π(u,v)→v((c1, c2)) = c2

Note that we do not use labels 3, 4, and 5 on the right side of Ψ. Now, it is easy to check
given these constraints that if G has a three coloring γ : V → {0, 1, 2}, then the labelings for
all (u, v) ∈ E and u ∈ V

σ1((u, v)) = (γ(u), γ(v)), σ2(u) = γ(u)

will satisfy Ψ. Conversely, any correct labeling for Ψ will correspond to a proper coloring
from G. Thus, since 3-coloring is NP-complete, Label Cover is NP-hard, as desired. J
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I Lemma 4.5. If the [k, t, c]-coloring gadget (k ≤ t) has a robust decoder Dec = Dec[k,t,c]
such that Dec always decodes into a unique coordinate (C(k, t, c) = 1), then [k, t, c]-coloring
is NP-hard.

Proof. We reduce from label cover. Let Ψ = (U, V,E, [L], {πe : [L] → [L]}e∈E) be our
instance of label cover. Replace each vertex u ∈ U and v ∈ V with [k, t, c]-gadgets whose
colorings are represented by fu and fv, respectively. Replace each (u, v) ∈ E with projection
π(u,v) with the π(u,v)-co-gadget for fu and fv. Call the resulting (hyper)graph GΨ. Since L
is a constant GΨ is polynomial (in fact, linear) in the size of Ψ. To complete the reduction it
suffices to prove the following

I Claim 4.6 (Completeness). If Ψ is satisfiable, then GΨ is t-strong colorable.

Proof. Let σ1 : U → [L] and σ2 : V → [L] be the labelings. For all u ∈ U and v ∈ V and
x ∈ ZLt let

fu(x) = xσ1(u), fv(x) = xσ2(v).

Clearly this is a t-coloring of GΨ. Now, we show that every hyperedge is t-strong colored.
In every [k, t, c]-gadget every two vertices in each hyperedge differ in every coordinate, so
their colors must be different. For any (u, v) ∈ E, if not every [k, t, c] π(u,v)-co-gadget
constraint is t-strongly colored, then there are x, y ∈ ZLt such that fu(x) = fv(y) but
xj 6= yπ(u,v)(j) for all j (we cannot possible have two vertices of the same color in the
same hyperedge on the same side of the bipartite graph). In particular, this implies that
xσ1(u) = fu(x) = fv(y) = yσ2(v) = yπ(u,v)(σ1(u)), contradicting our assumption about the
labeling. Thus, GΨ is indeed t-strong colorable. J

I Claim 4.7 (Soundness). If GΨ is c-colorable, then Ψ is satisfiable.

Proof. From the assumption we know there exist {fu : u ∈ U} and {fv : v ∈ V } which
satisfy the [k, t, c] gadget. Thus, since Dec does unique decoding, we may set

σ1(u) = Dec(fu), σ2(v) = Dec(fv).

It suffices to check for all (u, v) ∈ E that π(u,v)(σ1(u)) = σ2(v). Since fu and fv satisfy the
[k, t, c] π(u,v)-co-gadget (by construction), we have that fu�π(u,v) and fv satisfy the [k, t, c]-
co-gadget. Thus, since Dec is a decoder with unique decoding, Dec(fu�π(u,v)) = Dec(fv).
Because Dec is robust, π(u,v)(Dec(fu)) = Dec(fu�π(u,v)). Thus, π(u,v)(σ1(u)) = σ2(v) for all
(u, v) ∈ E, so Ψ is satisfiable, as desired. J

Thus, we have reduced from Label Cover to [k, t, c]-coloring, so [k, t, c]-coloring is NP-
hard. J

From this, Theorem 1.1 follows from Lemma 3.9. Theorem 1.3 follows from Claim 3.3,
Lemma 3.14, and Lemma 1.6.
I Remark. Using the techniques of [3], we can drop the constraint that C(k, t, c) = 1 by
reducing from Label Cover with an approximation gap.
I Remark. Label Cover is also NP-hard if Ψ has bounded degree. This follows from the
hardness of 3-coloring on bounded-degree graphs and applying the reduction in Lemma 4.4.
Our reduction then shows that bounded degree [k, t, c]-coloring is NP-hard, obtaining a result
similar to that of [13].
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A Combinatorial Gadget Classifications

A.1 Claim 3.1

Proof of Claim 3.1. The proof given is similar to the combinatorial proof in [1] (Claim 4.1).
Let I = {(i, . . . , i) ∈ ZLt : i ∈ Zt}. Clearly I and all of its translates are disjoint, so for all
x ∈ ZLt , |S ∩ (x+ I)| ≤ ω(S). Since |I| = t,

t|S| =
∑
x∈ZL

t

|S ∩ (x+ I)| ≤ |ZLt |ω(S)

which implies (1). Note that equality holds if and only if |S ∩ (x+ I)| = ω(S). In fact, I can
be replaced by any set of t disjoint points in ZLt . It is easy to then see that if S is a dictator,
equality always holds.

Now, we show if equality holds, then S is a dictator. We present a proof using the Fourier
Analysis techniques of [1]. Let f : ZLt → {1,−1} be the indicator function for S in the sense
that f(x) = −1 if and only if x ∈ S. Using the notation of [1], let f̂ : ZLt → C be f ’s Fourier
transform, and consider the following function:

A(f)(x) = 1
(t− 1)L

∑
y∈(Zt\{0})L

f(x+ y)
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Due to the structure proven above, it is easy to see that for all x ∈ ZLt ,

A(f)(x) = 1
t− 1

t−1∑
i=1

f(x+ (i, . . . , i))

= − f(x)
(t− 1) + 1

t− 1

t−1∑
i=0

f(x+ (i, . . . , i))

= − f(x)
(t− 1) + 1

t− 1(t− 2ω(S))

Thus,

Â(f)(0, . . . , 0) = t− 2ω(S)
t− 1 − f̂(0, . . . , 0)

t− 1
and if x 6= (0, . . . , 0),

Â(f)(x) = −f̂(x)/(t− 1).

Let |x| be the number of nonzero coordinates of x. Claim 4.3 of [1] shows though that

Â(f)(x) = f̂(x)
(
−ω(S)
t− 1

)|x|
,

Combining these two, we must have that f̂(x) = 0 unless |x| ≤ 1. Thus, f is nonzero on only
its first two levels which Lemma 2.3 of [1] implies that f is a dictator, as desired.

A.2 Hardness of [4,5,2]-coloring
I Claim 1.1. Consider f : Z3 ×ZL−1

4 → {0, 1} such that for all x, y, z ∈ Z3 ×ZL−1
4 disjoint,

{f(x), f(y), f(z)} = {0, 1}. Then, either there exists a ∈ Z3 such that f(x) is constant for
all x ∈ {a} × ZL−1

4 or f is a dictator in one of the coordinates {2, . . . , L}.

Proof. If L = 1, the claim is obvious. This proof proceeds by casework. If f is constant on
all of coordinates {2, . . . , L}, then we are done. Otherwise, without loss of generality, we are
in one of the following two cases
1. f(0 . . . 00) = f(0 . . . 01) = f(0 . . . 02) = 0, f(0 . . . 03) = 1
2. f(0 . . . 00) = f(0 . . . 01) = 0, f(0 . . . 02) = f(0 . . . 03) = 1

Case 1. If f(1 . . . 1) = 1, then we must have that f(2 . . . 2) = 0 which is “equivalent” to
f(1 . . . 1) = 0. Thus, we only need to consider the case f(1 . . . 1) = 0. Now we have that
following series of implications

f(2{2, 3}L−2{0, 2, 3}) = 1. (9)
f(1{1, 2, 3}L−2{0, 1, 2}) = 0. (10)

f(2{1, 2, 3}L−2{0, 1, 2, 3}) = 1. (11)

If f(1x) = 0 for all x ∈ ZL−1
4 , then we are done. Otherwise, there exists x0 ∈ ZL−1

4 such
that f(1x0) = 1. Using (11), this implies that f(0y) = 0 for all y ∈ ZL−1

4 disjoint from x0.
Furthermore, by (10) we can conclude that f(2z) = 1 for all z ∈ ZL−1

4 where z is disjoint
from y. Since for all z ∈ ZL−1

4 , we can find y0 ∈ ZL−1
4 such that y0 is disjoint from both x0

and z, we must have that f(2z) = 1 for all z ∈ ZL−1
4 , as desired.
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Case 2. First assume that f(1 . . . 1) = 1, then we get that

f(2{2, 3}L−2{0, 2, 3}) = 0. (12)
f(1{1, 2, 3}L−2{0, 1, 2, 3}) = 1. (13)
f(2{1, 2, 3}L−2{0, 1, 2, 3}) = 0. (14)

if f(1x) = 1 for all x ∈ Zl−1
4 , we are done, else f(1x0) = 0 for some x0 ∈ ZL−1

4 . Applying the
same reasoning as in Case 1, we reach the same conclusion.
Now, we may assume that for all x ∈ {1, 2} × {1, 2, 3}L−2 × {0, 1, 2, 3}, f(x) = 0 if and only
if xL ∈ {0, 1}. Otherwise, we fall into a case already covered by permuting the coordinates
or output labels. If f(x) is a dictator in the last coordinate, we are done. Else, we may
assume without loss of generality that there is x ∈ Z3 × ZL−2

4 such that f(x0) = 1. Thus,
f(y{2, 3}) = 0 for all y ∈ Z3 × ZL−2

4 disjoint from x. But we also know that there is some
y′ ∈ {1, 2} × {1, 2, 3}L−2 disjoint from x such that f(y′{2, 3}) = 1, a contradiction. Thus,
we have exhausted all cases. J

I Corollary 1.2. Consider f : Zk3 × ZL−k4 → {0, 1} such that for all x, y, z ∈ Zk3 × ZL−k4
disjoint, {f(x), f(y), f(z)} = {0, 1}. Then, either there exists a ∈ Zk3 such that f(x) is
constant for all x ∈ {a} × ZL−k4 or f is a dictator in one of the coordinates {k + 1, . . . , L}.

Proof. For any three x0, y0, z0 ∈ Zk3 disjoint, construct the map f ′x0,y0,z0 : Z3 × ZL−k4 , such
that for all w ∈ ZL−k4 ,

f ′x0,y0,z0({0}w) = f(x0w)
f ′x0,y0,z0({1}w) = f(y0w)
f ′x0,y0,z0({2}w) = f(z0w).

It is clear that f ′x0,y0,z0 meets the hypothesis of Claim 1.1. Thus, either f ′x0,y0,z0 is a dictator
in of coordinates {2, . . . , L−k+ 1}, or for one of w0 ∈ {x0, y0, z0}, f(w0×ZL−K4 ) is constant.
Since the latter is sufficient to establish the claim, we assume the former in all cases. That
is, for all disjoint {x0, y0, z0} ⊆ Zk3 , f ′x0,y0,z0 is a dictator. Notice that this implies for all
x0 ∈ Zk3 there is ix0 ∈ {k + 1, . . . , L} such that f restricted to {x0} × ZL−k4 . Additionally,
note that for all x0, y0 ∈ Zk3 disjoint we must have that ix0 = iy0 since there exists z0 ∈ Zk3
disjoint from both x0 and y0. Since the “disjoint” property induces a connected graph on Zk3 ,
we have that ix0 is constant for all x0 ∈ Zk3 . Thus, f is a dictator on one of {k + 1, . . . L}, as
desired. J

I Lemma 1.3. For all f : ZL5 → Z2 satisfying the [4, 5, 2] gadget, there exists i ∈ [L] and
a, b ∈ Z5 distinct such that for all x ∈ {x ∈ ZL5 : xi = a or xi = b}, f(x) is constant.

Proof. First, we show (up to symmetry) a wide class of f have this property.

I Claim 1.4. Let f : ZL5 → Z2 satisfy the [4, 5, 2] gadget and assume that f restricted to ZL4
satisfies the [3, 4, 2] gadget. Then f satisfies the conclusion of Lemma 1.3.

Proof. Clearly by Claim 3.2 f restricted to ZL4 is a dictator in one of the coordinates. Assume
without loss of generality that f({0, 1} × ZL−1

4 ) = 0 and f({2, 3} × ZL−1
4 ) = 1. In order for

the claim to not be immediately true, we must have without loss of generality that there
exist x, y ∈ ZL−1

4 such that f(0x) = 1 and f(2y) = 0. Thus, f(4z) = 0 for all z ∈ ZL−1
5

disjoint from x and f(4z) = 1 for all z ∈ ZL−1
5 disjoint from y. Since there are z ∈ ZL−1

5
disjoint from both x and y, we have a contradiction. Thus, the claim is true. J
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Now, we show an even wider class of f satisfy the lemma.

I Claim 1.5. Let f : ZL5 → Z2 satisfy the [4, 5, 2] gadget and assume that f restricted to
{0} × ZL−1

4 is always 0. Then either f restricted to {0} × ZL−1
5 or f satisfies the conclusion

of Lemma 1.3.

Proof. Assume the first conclusion is false. Thus, there is x ∈ ZL−1
5 such that f(0x) = 1.

Consider the hypercube H0x of points disjoint from 0x. If any three disjoint points in H0x
have the same value, we could find a fourth value in ZL−1

5 which is disjoint from all three but
has the same value, a contradiction. Thus, f restricted to H0x satisfies the [3, 4, 2] gadget.
Thus, by Claim 1.4 we have that f satisfies the conclusion of Lemma 1.3. J

Now, we may finish the proof. Clearly f must depend in at least one coordinate. Assume
that f(0 . . . 0) = 0 and f(10 . . . 0) = 1. Thus, f restricted to S = {2, 3, 4} × {1, 2, 3, 4}L−1

meets the hypothesis of Claim 1.1. Therefore, either f restricted to this set is a dictator
or f has be constant on {a} × {1, 2, 3, 4}L−1 for some a ∈ {2, 3, 4}. First, assume that the
former case occurs and that f is dictated by coordinate i ∈ {2, . . . , L}. Now, assume without
loss of generality that f(20 . . . 0) = 1. Thus, f restricted to T = {1, 3, 4} × {1, 2, 3, 4}L−1

also meets the hypothesis of 1.1. Because S and T have a large overlap, it is not possible
for f restricted to T to T to be dictated by any coordinate other than i. But it is possible
for f({1} × {1, 2, 3, 4}L−1) to be constant. In the first case, f restricted to {1, 2, 3, 4}L
is also a dictator. Thus, f restricted to this set satisfies the [3, 4, 2] gadget. Thus, by
Claim 1.4, f satisfies the conclusion. In the second case, by Claim 1.5 f f({1} × ZL−1

5 ) = 1
or else we are done. This yields a contradiction since we can pick x ∈ {1} × ZL−1

5 and
y, z ∈ {3, 4} × {1, 2, 3, 4}L−1 such that x, y, z, and 20 . . . 0 are all disjoint but f(x) = f(y) =
f(z) = f(20 . . . 0) = 1 since f restricted to {3, 4}×{1, 2, 3, 4}L−1 is a dictator in a coordinate
other than than the first.

Thus, we may now assume without loss of generality that f restricted to {2}×{1, 2, 3, 4}L−1

is always 1. By 1.5, we may assume that f({2}×ZL−1
5 is always 1 (or else we are immediately

done). Since f(0 . . . 0) = 0 6= f(20 . . . 0) = 1, we have that f restricted to {1, 3, 4} ×
{1, 2, 3, 4}L−1 also satisfies the [3, 4, 2] gadget. Thus, f({a} × {1, 2, 3, 4}L−1 is constant and
so we may assume that f({a} × ZL−1

5 ) is constant. Clearly if this constant value is 1 we are
done, otherwise Thus, assume that f({a} × ZL−1

5 ) = 0. Therefore, f(a0 . . . 0) = 0. Thus, f
restricted to (Z5\{2, a})×ZL−1

4 also satisfies the [3, 4, 2] gadget. Thus, there is b ∈ Z5\{2, a}
such that f(b× {1, . . . , 4}L−1) is constant, so f(b× ZL−1

5 ) is constant (or else we are done).
Thus, i = 1 and either {a, b} or {1, b} is the desired pair, as desired. J

I Lemma 1.6. The [4, 5, 2]-coloring gadget has a robust decoder.

Proof. We omit the proof. The proof is similar to that of Claim 3.13 and Lemma 3.14. J

A.3 Classification of 〈t− 1, t, 2〉

In this subsection, we examine a balanced variant of the strong hypergraph coloring problem.

I Definition 1.7. Let k, t, c ≥ 2 be positive integers with t ≥ k. Define 〈k, t, c〉-coloring to
be the following promise problem. Let G be a k-uniform hypergraph which is promised to be
t-strong colorable. Can G be efficiently colored with c colors such that the discrepancy is
minimal?
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I Definition 1.8. Let L, k, t, c be positive integers with t ≥ k, and let f : ZLt → Zc be a
function. We say that f satisfies the 〈k, t, c〉 gadget if for all S ⊂ ZLt such that |S| = k and
S is disjoint otherwise, we have that the multiset {f(x) : x ∈ S} is as equi-distributed as
possible.

Note the 〈3, 4, 2〉 is equivalent to [3, 4, 2] (both gadget and problem) and that 〈4, 5, 2〉 is
equivalent to [4, 5, 2]. We now prove a result that holds for 〈t− 1, t, 2〉 for all odd t.

I Lemma 1.9. If f : ZLt → Z2 satisfies the 〈t− 1, t, 2〉 gadget, where t is even, then f is a
dictator.

Proof. We present a proof using the Fourier Analysis techniques of [1]. Using their notation,
remap f so that its output if {−1, 1} instead of {0, 1}, let f̂ : ZLt → C be f ’s Fourier
transform, and consider the following function:

A(f)(x) = 1
(t− 1)L

∑
y∈(Zt\{0})L

f(x+ y)

For combinatorial reasons, it is easy to see in our context that A(f)(x) = −f(x)/(t− 1) for
all x ∈ ZLt . Thus, Â(f)(x) = −f̂(x)/(t− 1). Claim 4.3 of their paper shows though that

Â(f)(x) = f̂(x)
(
−1
t− 1

)|x|
.

Combining these two, we must have that f̂(x) = 0 unless |x| = 1. That is, x has only one
nonzero coordinate. Thus, f is nonzero on only its first two levels which Lemma 2.3 of their
paper implies that f is a dictator, as desired. J

We omit the proof that there exists a robust decoder and the subsequent Label Cover
argument.

IDefinition 1.10. A function f : ZLt → Z2 is an almost dictator if there exists an independent
set I of ZLt (i.e., a subset no two of whose elements are disjoint) such that f restricted to
ZLt \ I is a dictator.

I Conjecture 1.11. If f : ZLt → Z2 satisfies the 〈t− 1, t, 2〉 gadget, where t is odd, then f is
an almost dictator.

This conjecture, with a suitable application of Label Cover, would imply that finding a
discrepancy two 2-coloring of a t-colorable graph is NP-hard. J

B Nonexistence of Robust Decoding of [2, 3, 6]

I Claim 2.1. There does not exist a robust decoding of the [2, 3, 6]-coloring gadget. Even if
the projections considered are p(L)-to-1 for any p(L) = ω(1).

Proof. Assume for sake of contradiction that there exist a robust decoding Dec. Let
p(L) : N→ N be any function in ω(1). For all L ≥ 1, consider f : ZL3 → Z6 with the following
properties.

For any x ∈ ZL3 such that there is s ∈ Z3 such that |{i ∈ [p(L)] : xi = s}| > p(L)/2, then
f(x) = s+ 3.
Otherwise, f(x) = x1.
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As a sanity check, note that for each s ∈ Z6, f−1(s) is an independent set. For each
S ⊆ [p(L)] such that |S| > p(L)/2, let πS be the projection such that πS(i) = minS if i ∈ S
and πS(i) = i otherwise. Since |S| > p(L)/2, f�πS has a range of {3, 4, 5}. Furthermore,
f�πS is a dictator in coordinate minS, so Dec(f�πS) = {minS}. Since Dec is robust,
(πS)−1(minS) = S must have nontrivial intersection with Dec(f). Thus, Dec(f) must have
nontrivial intersection with every S such that |S| > p(L)/2. Thus, |Dec(f)| ≥ p(L)/2 = ω(1)
(since otherwise we could exhibit a non-intersecting S), but |Dec(f)| ≤ C for some constant
C independent of L, a contradiction. J

Note that this arguments suggests that the ‘robust decoder’ techniques could not work,
unless we use a d-to-1 variant of label cover, of which hardness is only conjectured. A similar
argument shows that there does not exist a robust decoding of the [2, t, 2t]-coloring gadget.
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