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Abstract
Given a problem which is intractable for both quantum and classical algorithms, can we find a
sub-problem for which quantum algorithms provide an exponential advantage? We refer to this
problem as the “sculpting problem.” In this work, we give a full characterization of sculptable
functions in the query complexity setting. We show that a total function f can be restricted
to a promise P such that Q(f |P ) = O(polylogN) and R(f |P ) = NΩ(1), if and only if f has
a large number of inputs with large certificate complexity. The proof uses some interesting
techniques: for one direction, we introduce new relationships between randomized and quantum
query complexity in various settings, and for the other direction, we use a recent result from
communication complexity due to Klartag and Regev. We also characterize sculpting for other
query complexity measures, such as R(f) vs. R0(f) and R0(f) vs. D(f).

Along the way, we prove some new relationships for quantum query complexity: for example,
a nearly quadratic relationship between Q(f) and D(f) whenever the promise of f is small.
This contrasts with the recent super-quadratic query complexity separations, showing that the
maximum gap between classical and quantum query complexities is indeed quadratic in various
settings – just not for total functions!

Lastly, we investigate sculpting in the Turing machine model. We show that if there is any
BPP-bi-immune language in BQP, then every language outside BPP can be restricted to a promise
which places it in PromiseBQP but not in PromiseBPP. Under a weaker assumption, that some
problem in BQP is hard on average for P/poly, we show that every paddable language outside
BPP is sculptable in this way.
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1 Introduction

When are quantum algorithms useful? In general, quantum algorithms are believed to provide
exponential speedups for certain structured problems, such as factoring [18], but not for
unstructured problems like NP-complete problems.

In this work, we ask the question in a new way. Given a problem for which quantum
algorithms are not useful, can we nevertheless find a sub-problem on which they provide an
exponential advantage over classical algorithms? We call this the “sculpting” question: our
goal is to sculpt the original intractable problem into a sub-problem that’s still classically
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intractable, but for which there exists a fast quantum algorithm. The sculpting question
arises, for example, in adiabatic quantum computation: while it is not believed that adiabatic
quantum computing can solve NP-complete problems in polynomial time, a widely discussed
question is whether there is a sub-problem of SAT on which adiabatic computing provides
an exponential advantage over classical algorithms.

We study the sculpting question primarily in the query complexity model. The utility of
the model comes from its relative tractability: for example, in query complexity, Shor’s period
finding algorithm provides a provable exponential speedup over any classical algorithm [8].

In query complexity, we’re given a (possibly partial) function f : {0, 1}N → {0, 1} and an
oracle access to a string x ∈ {0, 1}N . The goal is to evaluate f(x) using as few oracle calls
to the entries of x as possible. The minimum number of queries required by an algorithm
for computing f(x) (over the worst-case choice of x) is the query complexity of f . If the
algorithm in question is deterministic, we denote this by D(f); if it is zero-error randomized,
we denote this by R0(f); if it is (bounded error) randomized, we denote this by R(f); and if
it is (bounded error) quantum, we denote it by Q(f).

In this query complexity setting, the sculpting question can be phrased as follows:
given a total function f : {0, 1}N → {0, 1} for which R(f) and Q(f) are both large (say,
NΩ(1)), is there a promise P ⊆ {0, 1}N such that f |P , the restriction of f to P , has
Q(f |P ) = O(polylogN) and R(f |P ) = NΩ(1)?

For example, if f is the OR function, such sculpting is not possible, as follows from
[1]. As another example, if f is defined to be 1 when Simon’s condition is satisfied and 0
otherwise, then sculpting is possible: the promise will simply restrict to inputs that either
satisfy Simon’s condition or are far from satisfying it; this promise suffices for an exponential
quantum speedup [7].

We fully characterize the functions f for which such a promise exists. In particular, we
show that sufficiently “rich” functions, such as Parity or Majority, are sculptable.

The sculpting problem has been previously studied by Zhan, Kimmel, and Hassidim
[20] for the case where f a recursive function such as the NAND-tree. They constructed
a promise on which this function gives a small super-polynomial speedup (polylog(n) vs.
(logn)Ω(log log logn)). Our results also apply to such recursive functions, and we improve the
speedup to polylogn vs. nΩ(1).

Our sculpting construction uses communication complexity in a novel way. In the other
direction, to prove non-sculptability, we prove new query complexity relationships. As
a corollary, we get nearly quadratic relationships between classical and quantum query
complexities for a wider class of functions than previously known.

Results

H-indices

We introduce a new query complexity measure, H(Cf ), defined as the maximum number
h for which there are 2h inputs to f with certificate complexity at least h. We call this
the H-index of certificate complexity (motivated by the citation H-index sometimes used to
measure research productivity [10]). This quantity measures the number of inputs there are
to a function f that have large certificate complexity. We prove various properties of H(Cf );
most notably, we show that for total functions, it is nearly quadratically related to H(bsf ),
the H-index of block sensitivity. This is analogous to the quadratic relationship between C
and bs.
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Sculpting in Query Complexity
Our main result is the following theorem, which neatly characterizes sculptability in the
query complexity model in terms of the H-index of certificate complexity.

I Theorem 1.1. Let f : {0, 1}N → {0, 1} be a total function. Then there is a promise
P ⊆ {0, 1}N such that R(f |P ) = NΩ(1) and Q(f |P ) = No(1), if and only if H(Cf ) = NΩ(1).
Furthermore, in this case we also have Q(f |P ) = O(log2N).

This theorem follows as an immediate corollary of the following more general characteri-
zation theorem.

I Theorem 1.2. For all total functions f : {0, 1}N → {0, 1} and all promises P ⊆ {0, 1}N ,
we have

R(f |P ) = O(Q(f |P )2 H(Cf )2).

Conversely, for all total functions f : {0, 1}N → {0, 1}, there is a promise P ⊆ {0, 1}N such
that

R(f |P ) = Ω
(

H(Cf )1/6

log11/6N

)
and Q(f |P ) = O(log2 H(Cf )).

We also prove an analogous theorem for D vs. R0, showing that the same H(Cf ) = NΩ(1)

condition also characterizes sculpting D(f) vs. R0(f). On the other hand, we show that
sculpting R0(f) vs. R(f) is always possible: for every total function f with R0(f) = NΩ(1),
there is a promise P such that R0(f |P ) = NΩ(1) and R(f |P ) = O(1).

Query Complexity on Small Promises
On the way to proving Theorem 1.2, we prove the following theorem, providing a quadratic
relationship between Q(f) and D(f) when the domain of f is small. This provides a ironic
twist to the query complexity story: for a long time, it was believed that D(f) and Q(f) are
quadratically related when the domain of f is very large (in particular, for total functions).
This conjecture was recently disproven by [3] (who showed a D(f) ∼ Q(f)4 separation) and
by [2] (who showed an f such that R(f) ∼ Q(f)2.5). Instead, we now show that the quadratic
relationship holds when the domain of f is very small.

I Theorem 1.3. Let f : {0, 1}N → {0, 1} be a partial function, and let Dom(f) denote the
domain of f . Then

Q(f) = Ω
( √

D(f)
log |Dom(f)|

)
.

Query Complexity for Unbalanced Functions
We show two relationships similar to Theorem 1.3 that hold for functions whose domain is
large, but which are unbalanced: they contain very few 0-inputs compared to 1-inputs, or
vice versa.

I Theorem 1.4. Let f : {0, 1}N → {0, 1} be a partial function. Define the measure
Bal(f) ∈ [0, N ] as Bal(f) := 1 + min{log |f−1(0)|, log |f−1(1)|} (or 0 if f is constant). Then

R(f) = O(Q(f)2 Bal(f))

D(f) = O(R0(f) Bal(f)).
A similar polynomial relationship between R0(f) and R(f) does not hold in general.

CCC 2016
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New Relationship for Total Functions
We prove the following new query complexity relationship for total functions, generalizing
the known relationship D(f) = O(Q(f)2 C(f)).

I Theorem 1.5. Let f : {0, 1}N → {0, 1} be a total function. Then

D(f) = O(Q(f)2 H(
√

Cf )2).

Here H(
√

Cf ) denotes the H-index of the square root of certificate complexity; this is the
maximum number h such that there are at least 2h inputs to f for which

√
C(f) is at least

h. We note that H(
√

Cf )2 ≤ C(f) for all total functions, so this is an improvement over the
relationship D(f) = O(Q(f)2 C(f)). Moreover, when f = OR, we have H(

√
Cf )2 = 1 and

C(f) = N , so this improvement is strict.
We remark that this result could let us improve the relationship D(f) = O(Q(f)6) if we

could show H(
√

Cf )2 = o(Q(f)4). Theorem 1.5 therefore provides a new approach for this
long-standing open problem.

Sculpting in the Turing Machine Model
In Section 8, we examine sculpting in the Turing machine model. We say that a language
L is sculptable if there is a promise set P such that the promise problem of deciding if an
input from P is in L is in PromiseBQP but not in PromiseBPP. We prove two sculptability
theorems, both of them providing evidence that most or all languages outside of BPP are
sculptable.

I Theorem 1.6. Assume PromiseBQP is hard on average for P/poly. Then every paddable
language outside of BPP is sculptable.

I Theorem 1.7. Assume there exists a BPP-bi-immune language in BQP. Then every
language outside of BPP is sculptable.

For the definitions of paddability and bi-immunity, see Section 8. These theorems assume
very little about BQP and BPP, and analogous statements hold for other pairs of complexity
classes.

2 Preliminaries

For a (possibly partial) function f : {0, 1}N → {0, 1}, we use D(f), R0(f), R(f), and
Q(f) to denote the deterministic query complexity, zero-error randomized query complexity,
bounded-error randomized query complexity, and bounded-error quantum query complexity
of f , respectively. For the definitions of these measures, see [6].

A partial assignment is a string p in {0, 1, ∗}N that represents partial knowledge of a
string in {0, 1}N . For x ∈ {0, 1}N , we say that p is a partial assignment of x if x extends p;
that is, if x and p agree on all the non-∗ entries of p. A partial assignment p for x is called a
certificate for x if all strings that extend p have that same value under f as x; that is, if for
all y ∈ {0, 1}N that extend p, we have f(y) = f(x). The certificate complexity of f on input
x, denoted by Cf (x), is the minimum number of bits in any certificate of x with respect to
f . The certificate complexity of f , denoted by C(f), is defined as the maximum of Cf (x)
over all strings x in the domain of f .
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The certificate complexity Cf (x) can be thought of as the deterministic query complexity
of f given the promise that the input is either x or else an input y such that f(x) 6= f(y).
Motivated by this observation, Aaronson [1] defined the randomized certificate complexity of
x, denoted by RCf (x), to be the (bounded-error) randomized query complexity of f on this
promise. He defined the quantum certificate complexity QCf (x) analogously. As with C,
we use RC(f) to denote the maximum of RCf (x) over all x in the domain of f , and define
QC(f) similarly.

For any string x ∈ {0, 1}N and set of bits B ⊆ {1, 2, . . . , N}, denote by xB the string x
with the bits in B flipped. For any f : {0, 1}N → {0, 1}, if f(x) 6= f(xB), we say that B is a
sensitive block for x with respect to f . The block sensitivity of x, denoted by bsf (x), is the
maximum number of disjoint sensitive blocks for x. Note that the block sensitivity is the
packing number of the collection of sensitive blocks of x. It can be seen that Cf (x) can be
interpreted as the hitting number of that collection (the minimum number of bits in a set
that has non-empty intersection with all the blocks).

The linear programming relaxation of the packing problem is the dual of the linear
programming relaxation of the hitting problem. We call the optimum of this LP the
fractional block sensitivity (or fractional certificate complexity). As it happens, this measure
is equal to RCf (x). This observation is implicit in [1], and was made explicit in [13].

Actually, the fractional block sensitivity differs by a constant factor from Aaronson’s
original definition of RC. In this work we will use RC to denote the fractional block sensitivity.
Another property of RC that we will need is that 1/RCf (x) is equal to the minimum infinity-
norm distance between x and the convex hull of the set of inputs y such that f(y) 6= f(x).
That is, if f(x) = 0 and S = f−1(1), we have

1
RCf (x) = min

µ∈∆S

max
i

Pr
y∼µ

[xi 6= yi],

where ∆S is the set of all probability distributions over S (equivalently, the convex hull of S).
In particular, this minimum is attained, so there is a probability distribution µ over f−1(1)
such that for all i = 1, 2, . . . , n, if we sample y ∼ µ we get Pr[yi 6= xi] ≤ 1/RCf (x).

Clearly, for all f : {0, 1}N → {0, 1} we have

{QC(f), bs(f)} ≤ RC(f) ≤ {C(f),R(f)} ≤ R0(f) ≤ D(f),

with Q(f) lying between QC(f) and R(f). Aaronson [1] showed that RCf (x) = Θ(QCf (x)2)
for all f and x, so in particular, RC(f) = Θ(QC(f)2). In addition, when f is total, we can
relate all these measures to each other: we have

D(f) = O(bs(f)3) = O(RC(f)3) = O(QC(f)6) = O(Q(f)6),

with the first equality following from [4].

Balance and H Indices
We will use Dom(f) to denote the domain of a partial function f . We define Bal(f) to be 0 if
f is constant, and otherwise, to be the minimum of 1 + log |f−1(0)| and 1 + log |f−1(1)| (we
use log to denote logarithm base 2). Note that since |f−1(0)|+ |f−1(1)| = |Dom(f)| ≤ 2N ,
we have Bal(f) ≤ N . Thus Bal(f) ∈ [0, N ].

We will use a new set of query complexity measures called H-indices (the name is motivated
by the H-index measure of citations, a common metric for research output). For a given
function g : {0, 1}N → [0,∞), we will define the H-index of g, denoted by H(g), as the

CCC 2016
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maximum number h such that there are at least 2h inputs with g(x) ≥ h. Alternatively,
the H-index of g can be defined as the minimum number h such that there are at most 2h
inputs with g(x) > h. It is not obvious that these definitions are equivalent (or even that the
minimum and maximum are attained); we prove this in Appendix A.

Note that H(g) ∈ [0, N ], and H(g) ≤ maxx g(x). Also, if g(x) ≥ g′(x) for all x ∈ {0, 1}N ,
we have H(g) ≥ H(g′).

We’ll primarily be interested in measures like H(Cf ), H(RCf ), and H(bsf ). We have
H(Cf ) ≤ C(f), H(RCf ) ≤ RC(f), and H(bsf ) ≤ bs(f). We also have

H(bsf ) ≤ H(RCf ) ≤ H(Cf ).

The H-index of certificate complexity can be much smaller than the certificate complexity
itself. For example, the OR function has only one certificate of size greater than 1, so
H(COR) = 1, even though C(OR) = n.

In Appendix A we show that if α : [0,∞)→ [0,∞) is an increasing function, then

H(α ◦ g) ≤ max{H(g), α(H(g))}.

In particular, this will imply H(C2
f ) ≤ H(Cf )2.

Shattering and the Sauer-Shelah Lemma
For a set of indices A ⊆ {1, 2, . . . , N}, let S|A ⊆ {0, 1}|A| be the set of restrictions of each
string in S to the indices in A. We say A is shattered by S if S|A = {0, 1}|A|. In other words,
A is shattered by S if S has all possible behaviors on A. The Sauer-Shelah lemma [16, 17] is
a classic result that upper-bounds the size of S in terms of the size of A. We will use the
following corollary of it.

I Lemma 2.1. Let S ⊆ {0, 1}N be a collection of strings. Then there is a shattered set of
indices of size at least

log |S|
log(N + 1) .

Lemma 2.1 follows straightforwardly from the Sauer-Shelah lemma, as we prove in
Appendix B. We will often use the weaker bound log |S|

2 logN instead, which holds for N ≥ 2.
This will sometimes lead to simpler formulas.

3 Non-Sculptability Theorems

In this section, we prove the non-sculptability direction of Theorem 1.2. The proof has
two parts: in Section 3.1, we prove a relationship between randomized and quantum query
complexities for “unbalanced” functions, and in Section 3.2, we use this to prove a sculpting
lower bound in terms of the H-index of certificate complexity.

3.1 Query Complexity for Unbalanced Functions
We wish to show a nearly-quadratic relationship between randomized and quantum query
complexities for functions f for which Bal(f) is small. Note that this is a generalization of the
relation RCf (x) = O(Qf (x)2) from [1]. That is, [1] showed that for the task of distinguishing
one input from a (possibly large) set of alternatives, randomized and quantum algorithms
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are quadratically related. We want a similar relationship for the task of distinguishing a
small set of inputs from a (possibly large) set of alternatives.

We start with the following lemma.

I Lemma 3.1. Let f : {0, 1}N → {0, 1} be a partial function. For a /∈ f−1(0), let fa,0 be the
problem of distinguishing a from f−1(0). That is, fa,0 is the function fa,0 : {a} ∪ f−1(0)→
{0, 1} with f(x) = 1 iff x = a. For a /∈ f−1(1), define fa,1 analogously. Then for all
a ∈ {0, 1}N , we have either R(fa,0) = O(Q(f)2) or R(fa,1) = O(Q(f)2).

Note that this holds even when a is not in the promise of f . The constant in the big-O
notation is a universal constant independent of a, f , and N .

Proof. Let Q be the quantum algorithm that achieves Q(f) quantum query complexity in
determining the value of f on a given input. When run on any a ∈ f−1(0), Q will output 0
with probability at least 2/3, and when run on a ∈ f−1(1), it will output 1 with probability
at least 2/3.

Consider running Q on an input a /∈ Dom(f). Then Q will output 0 with some probability
p and output 1 with probability 1− p. If p ≥ 1/2, then Q distinguishes a from f−1(1) with
constant probability. If p ≤ 1/2, then Q distinguishes a from f−1(0) with constant probability.
Thus for all a ∈ {0, 1}N , we have either Q(fa,0) = O(Q(f)) or Q(fa,1) = O(Q(f)). From
[1], we have RC(g) = O(QC(g)2) = O(Q(g)2) for all functions g, so we conclude that either
RC(fa,0) = O(Q(f)2) or RC(fa,1) = O(Q(f)2).

Finally, note that for a problem of distinguishing one input from the rest, randomized query
complexity equals randomized certificate complexity. Thus we get that for all a ∈ {0, 1}N ,
either R(fa,0) = O(Q(f)2) and or R(fa,1) = O(Q(f)2). J

We’re now ready to prove the desired relationship between R and Q.

I Theorem 3.2. Let f : {0, 1}N → {0, 1} be a partial function. Then

R(f) = O(Q(f)2 Bal(f)).

Proof. Without loss of generality, assume |f−1(0)| ≤ |f−1(1)|. We use Lemma 3.1 to
construct a randomized algorithm for determining f(x) given oracle access to x, assuming
that f−1(0) is small. The idea is to keep track of the subset Z ⊆ f−1(0) of strings that the
input x might feasibly be (consistent with the queries seen so far). We then construct a
string a from a majority vote of the elements of Z; that is, for each index i ∈ [n], ai will be
the majority of yi over all y ∈ Z (with ties broken arbitrarily).

This string a need not be in Dom(f). The important property of it is that if we query an
index i of the input x and discover that xi 6= ai, we can eliminate at least half of the strings
from Z, since they are no longer feasible possibilities for x.

We then get the following randomized algorithm for evaluating f(x):
Initialize Z = f−1(0).
While Z 6= ∅:
1. Calculate a from the entry-wise majority vote of Z.
2. Determine b ∈ {0, 1} such that R(fa,b) = O(Q(f)2) (this exists by Lemma 3.1).
3. Run the randomized algorithm evaluating fa,b on x with some amplification

(to be specified later).
4. If its output is 1 (i.e. the algorithm thinks x = a rather than x ∈ f−1(b)),

output 1− b and halt.
5. If its output is 0, a bit i was queried to reveal xi 6= ai, so update Z

(removing at least half its elements).
If Z = ∅, output 1.

CCC 2016
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We note a few things about this algorithm. First, in step 3, notice that x need not be in
the domain of fa,b. However, we may still run the randomized algorithm that evaluates fa,b,
and use the fact that if x does happen to be in the domain (in particular, if x ∈ f−1(b)),
then the algorithm will work correctly. This is exactly what we use in step 4: if the algorithm
that distinguishes a from f−1(b) says that x is equal to a, it need not mean that x is in fact
equal to a, but it does mean that x /∈ f−1(b).

Secondly, step 5 assumes that the randomized algorithm for evaluating fa,b will only
conclude that an input x is not equal to a if it finds a disagreement with a. This is a safe
assumption, as argued in Lemma 5 of [1].

Finally, we determine the number of queries this algorithm uses. The outer loop happens
at most blog |f−1(0)|c+ 1 ≤ Bal(f) times. Step 3 in the loop is the only one which queries
the input string. Since the loop repeats at most Bal(f) times, we can safely amplify the
algorithm in step 3 O(log Bal(f)) times. This gives a query complexity of O(Q(f)2 log Bal(f))
for step 3, so the overall number of queries is O(Q(f)2 Bal(f) log Bal(f)).

We can get rid of the log factor by being more careful with the amplification. Note that
if we ever find a disagreement with a when running the algorithm, we may immediately stop
amplifying and proceed to step 5. We keep a count c0 of how many times we had to amplify
in step 3 for functions of the form fa,0, and a count c1 for functions of the form fa,1.

If c0 ever reaches 2 Bal(f), we output 1 and halt. Similarly, if c1 ever reaches 2 Bal(f),
we output 0 and halt. This ensures the total amplification is O(Bal(f)), so the total query
complexity of the algorithm is O(Q(f)2 Bal(f)).

Note that if f(x) = 0 and the output of the algorithm was 1, it means that we ran the
algorithm evaluating fa,0 (for varying values of a) 2 Bal(f) times, and at most Bal(f) of
those times the algorithm said that x ∈ f−1(0). For each individual run, the probability is
at least 2/3 that the algorithm would say that x ∈ f−1(0). An application of the Chernoff
bound shows that the probability of this happening is exponentially small. Similarly, the
probability of the algorithm giving 0 when in actuality f(x) = 1 is also exponentially small.

We conclude that R(f) = O(Q(f)2 Bal(f)), as desired. J

3.2 Application to Non-Sculptability
Theorem 3.2 immediately gives the following non-sculptability result, which says that unbal-
anced functions cannot be sculpted.

I Corollary 3.3. Let f : {0, 1}N → {0, 1} be a total function. For any promise P ⊆ {0, 1}N ,
we have

R(f |P ) = O(Q(f |P )2 Bal(f)).

Proof. Note that Bal(f |P ) ≤ Bal(f) for any f and P . Then, by Theorem 3.2, we have

R(f |P ) = O(Q(f |P )2 Bal(f |P )) = O(Q(f |P )2 Bal(f)). J

We extend this result by showing that any function with a small number of large certificates
also cannot be sculpted. This gives us a non-sculptability result in terms of the H-index of
certificate complexity.

I Theorem 3.4. Let f : {0, 1}N → {0, 1} be a total function. For any promise P ⊆ {0, 1}N ,
we have

R(f |P ) = O(Q(f |P )2 H(C2
f )).
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Proof. We design a deterministic algorithm that reduces the set of possibilities for the input
to an unbalanced set. Specifically, the algorithm will reduce the possibilities for the input
to a set S ⊆ {0, 1}N such that Bal(f |S) ≤ H(C2

f ) + 1. We then use Theorem 3.2 to get the
desired non-sculptability result.

Note that every 1-certificate of f must conflict with every 0-certificate of f in at least one
bit. Therefore, by querying all non-∗ entries of a 0-certificate, we reveal at least one entry of
each 1-certificate.

We design a deterministic algorithm for computing f on an input from P . The algorithm
proceeds as follows: it repeatedly picks a 0-certificate p for f of size at most

√
H(C2

f ) that
is consistent with all the entries of the input that were revealed so far. It then queries all
the non-∗ entries of p. This is repeated

√
H(C2

f ) times, or until there are no 0-certificates of

size at most
√

H(C2
f ) (whichever happens first). Finally, the algorithm returns the set S of

strings that are consistent with the revealed entries of the input.
This algorithm uses at most H(C2

f ) queries. We check its correctness by examining the
set S. Clearly, the input is in S. Furthermore, if any certificate of f was revealed, then f is
constant on S, so S contains either no 0-inputs or no 1-inputs.

There are at most 2H(C2
f ) inputs with certificate complexity larger than

√
H(C2

f ).
If the algorithm terminated because there were no consistent 0-certificates, then the only

0-inputs in S have certificates of size larger than
√

H(C2
f ). There are at most 2H(C2

f ) of them,

so S has at most 2H(C2
f ) 0-inputs to f . Conversely, if the algorithm went through

√
H(C2

f )

iterations of querying consistent 0-certificates, then it must have revealed
√

H(C2
f ) entries

of each 1-certificate to f . If no 1-certificate was discovered, it means the revealed entries
contradicted all 1-certificates of size at most

√
H(C2

f ). Thus the only 1-inputs in S have

certificate size greater than
√

H(C2
f ), from which it follows that there are less than 2H(C2

f ) of
them.

We conclude that S contains either at most 2H(C2
f ) 0-inputs to f or at most 2H(C2

f )

1-inputs to f . This gives Bal(f |S) ≤ H(C2
f ) + 1.

We design a randomized algorithm for f |P as follows. First, we run the above deterministic
algorithm to reduce the problem of computing f |P to the problem of computing f |S∩P . This
costs H(C2

f ) queries. By Theorem 3.2, there is a randomized algorithm that uses

O(Q(f |S∩P )2 Bal(f |S∩P )) = O(Q(f |P )2 Bal(f |S)) = O(Q(f |P )2 H(C2
f ))

queries to compute f |S∩P . Running this algorithm allows us to compute f |P . The total
number of queries used was

O(Q(f |P )2 H(C2
f ) + H(C2

f )) = O(Q(f |P )2 H(C2
f )). J

Note that Theorem 3.4 completes the first part of the proof of Theorem 1.2, since
H(C2

f ) ≤ H(Cf )2. It is natural to wonder whether Theorem 3.4 is always at least as strong
as Corollary 3.3. In Theorem 5.2, we will show that it is, up to a quadratic factor and a
logN factor.

4 Sculpting from Communication Complexity

In this section, we show that if a function f has many inputs with large randomized certificate
complexity then it can be sculpted: there is a promise P so that f |P exhibits a large quantum
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speedup. This means that if H(RCf ) is large, the function f can be sculpted. In Section 5,
we will relate H(RCf ) to H(Cf ), thereby completing the proof of Theorem 1.2.

Our sculptability proof will rely on the solution to a problem we call the “extended
queries problem,” which might be of independent interest. The solution to this problem will
in turn use results from communication complexity.

4.1 The Extended Queries Problem
We usually let an algorithm for computing a (possibly partial) function f : {0, 1}N → {0, 1}
query the bits of the input x. But what happens if we let the algorithm make other types of
queries? For example, if x is a Boolean string, we can let the algorithm query the parity
of x. How does this extra power affect the query complexity of f? In particular, is there
some special set of additional queries such that if a randomized algorithm is allowed to make
the special queries, it can simulate any quantum algorithm? If so, how many special queries
suffice for this property to hold?

To formalize this question, we need a few definitions.

I Definition 4.1. An extension function with extension G is an injective total function
φ : {0, 1}N → {0, 1}G (in particular, we need G ≥ N).

An extension function specifies, for each input x ∈ {0, 1}N , the types of queries an
algorithm is allowed to make on x. In other words, we will let algorithms query from φ(x)
instead of from x. Note that the extension function may provide easy access to information
about x that is hard to obtain otherwise (such as its parity).

I Definition 4.2. Let f : {0, 1}N → {0, 1} be a partial function, and let φ be an extension
function. The extended version of f with respect to φ is the partial function fφ : φ(Dom(f))→
{0, 1} defined by fφ(x) = f(φ−1(x)).

Note that fφ is a partial function from {0, 1}G to {0, 1}. We can consider D(fφ), R(fφ),
Q(fφ), and so on. To pose the extended queries problem, we will need a notion of the
complexity of a set of functions, defined as the maximum complexity of any function in that
set.

I Definition 4.3. For any set of functions S, we define D(S) := maxf∈S D(f). We define
R(S), Q(S), etc. similarly. Further, we define DG(S), the extended query complexity of S
with extension G, to be the minimum, over all extension functions φ with extension G, of
maxf∈S D(fφ). We define RG(S), QG(S), etc. similarly.

In other words, for any set of functions, the extended query complexity of the set with
G extension is the number of queries required to compute all functions in the set given the
best possible extension. We observe that if G ≥ |S|, the extended query complexity DG(S)
is 1, since the extension φ(x) for a given input x could simply specify the values of all the
functions in S on x. We also observe that for all G ≥ N , we have DG(S) ≤ D(S), since
the identity function is always a valid extension function. Moreover, the extended query
complexity of a set is decreasing in G. We now ask the following question.

The Extended Queries Problem. Is there a set of functions S for which Q(S) is small but
RG(S) is large, even when the extension G is exponentially large in the input size N? We
can also ask this question for other complexity measures, such as R(S) vs. RG

0 (S) or R0(S)
vs. DG(S).
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It turns out that a positive solution to the extended queries problem implies a sculptability
result in terms of H(RCf ), as the following theorem shows.

I Theorem 4.4. Let f : {0, 1}N → {0, 1} be a total function. Let A = H(RCf )
4 logN , and let S be

any set of partial functions from {0, 1}A to {0, 1}. Then there is a promise P ⊆ {0, 1}N such
that

Q(f |P ) = O(Q(S)), R(f |P ) = Ω(RN (S)).

Analogous statements hold for other pairs of complexity measures, such as D and R0 or R0
and R.

We delay the proof of Theorem 4.4 to Section 4.3. First, we settle the extended queries
problem for R vs. Q: Theorem 4.6 will provide an exponential lower bound on G by reducing
the extended queries problem to a problem in communication complexity.

4.2 Reducing Extension to Communication Complexity
For a partial function f : {0, 1}N1 × {0, 1}N2 → {0, 1}, we will denote the communication
complexities of f by DCC(f), RCC(f), QCC(f), and RCC

0 (f). We will use the following
definition.

I Definition 4.5. Let f : {0, 1}N1 × {0, 1}N2 → {0, 1} be a partial function. For any
x ∈ Dom(f), we write x = xAxB, with xA ∈ {0, 1}N1 and xB ∈ {0, 1}N2 . Let DomA(f) =
{xA : x ∈ Dom(f)} and DomB(f) = {xB : x ∈ Dom(f)}. For any a ∈ DomA(f), we
define the marginal of f with respect to a to be the partial function fa : {0, 1}N2 → {0, 1}
defined by fa(b) := f(a, b) for all b ∈ {0, 1}N2 such that (a, b) ∈ Dom(f). We define
Mar(f) = {fa : a ∈ DomA(f)} to be the set of all marginal functions for f .

We now connect communication complexity to the extended queries problem.

I Theorem 4.6. Let f : {0, 1}N1 × {0, 1}N2 → {0, 1} be a partial function. Then for all
G ≥ N ,

RG(Mar(f)) = Ω
(

RCC(f)
logG

)
.

Similarly, we also have DG(Mar(f)) = Ω(DCC(f)/ logG), RG
0 (Mar(f)) = Ω(RCC

0 (f)/ logG),
and QG(Mar(f)) = Ω(QCC(f)/ logG).

Proof. We prove the theorem for R. The statements for D, R0, and Q will follow analogously.
Let φ : {0, 1}N2 → {0, 1}G be the best possible extension function, so that RG(Mar(f)) =
maxg∈Mar(f) R(gφ).

We now describe a randomized communication protocol for computing f . Alice receives a
string a, and must compute f(a, b), where b is Bob’s string. This is equivalent to computing
fa(b). Since Alice knows fa, she also knows fφa . Let R a randomized algorithm that computes
fφa using at most RG(Mar(f)) queries. Alice will run this algorithm, and for each query,
she will send the index of that query to Bob (as a number between 1 and G). Bob will
reply with the corresponding bit of φ(y) (as a bit in {0,1}). This allows Alice to compute
fa(b) = f(a, b).

The total communication in this protocol is at most (dlogGe + 1) RG(Mar(f)). Since
this upper-bounds the randomized communication complexity of f (using private coins), the
desired result follows. J
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Theorem 4.6 allows us to use communication complexity as a tool for lower-bounding
the extended query complexity of certain sets of functions. To use it to solve the extended
queries problem, we need a function f that has large randomized communication complexity
but for which Q(Mar(f)) is small. To construct such a function, we start from a simple
function that was recently shown to separate randomized from quantum communication
complexity, called the Vector in Subspace problem.

The Vector in Subspace Problem. In this problem, Bob gets a unit vector v ∈ Rn, and
Alice gets a subspace H of Rn of dimension n/2. It is promised that either v ∈ H or v ∈ H⊥;
the task is to determine which is the case. We assume for simplicity that n is a power of 2.

This problem was first studied in [12] and was also described in [15]. Klartag and
Regev [11] showed that this problem has randomized communication complexity Ω(n1/3).
In addition, it is easy to see that the one-way quantum communication complexity of the
problem is at most logn: Bob can send a superposition over logn bits with amplitudes
determined by v; Alice can then apply the projective measurement given by (H,H⊥).

To apply this function to the extended queries problem, we need a few modifications.
First, we need a discrete version of the problem. [11] showed that a lower bound of Ω(n1/3)
for randomized communication complexity applies to a discrete version of the problem in
which each real number is described using O(logn) bits; that is, Alice’s subspace is given
using n/2 vectors of length n, whose entries are specified using O(logn) bits, and Bob’s
vector is specified using n real numbers of O(logn) bits each.

Mar(f) is the set of functions where we know Alice’s subspace H, and are allowed to
query from Bob’s input vector. However, phrased this way, it is not clear how to use a
quantum algorithm to compute such functions using few queries. To solve this problem, we
modify the way Bob’s input is specified. Instead of specifying only the entries to the vector,
Bob’s input string also lists some “partial sums” of the vector entries.

The idea is for Bob’s vector to allow Alice to use the following algorithm to construct
the state with amplitudes specified by v. We interpret v as specifying a superposition over
strings of length logn. Alice starts by querying the probability p that the first bit of this
string is 0 when this state is measured. Alice will now place a √p amplitude on querying
the probability that the second bit is 0 conditioned on the first bit being 0, and a

√
1− p

amplitude on querying the probability that the second bit is 0 conditioned on the first bit
being 1. Alice keeps going in this way, until she gets to the final bit of the string of length
logn, at which point she queries the phase. This allows her to construct the state determined
by the amplitudes in v.

Of course, for this to work, Bob’s input must provide all of these conditional probabilities.
There is one such probability to specify for the first bit, two for the second, four for the third,
and so on. Since there are logn bits, Bob’s input needs to specify only O(n) probabilities.
Each can be specified with O(logn) precision, so Bob’s total input size is O(n logn). Moreover,
Alice constructs the desired state after O(logn) queries to the probabilities, or O(log2 n)
queries to the bits of Bob’s input.

We thus get the following theorem.

I Theorem 4.7. For all A ∈ N, there is a set S of partial functions from {0, 1}A to {0, 1}
such that for all G ≥ A,

Q(S) = O(log2A), RG(S) = Ω
(

A1/3

log1/3A · logG

)
.
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Proof. Let f be the function described above with n = A/ logA, and let S = Mar(f). Then
Q(S) = O(log2 n) = O(log2A) and RCC(f) = Ω(n1/3) = Ω(A1/3/ log1/3A). By Theorem 4.6,
we get RG(S) = Ω(A1/3/(log1/3A · logG)). J

Together with Theorem 4.4, this implies that any function with large H(RCf ) can be
sculpted, simply by plugging S from Theorem 4.7 into Theorem 4.4 and setting G = N .

4.3 Reducing Sculpting to Extended Query Complexity
We now prove Theorem 4.4, restated here for convenience.

I Theorem 4.4. Let f : {0, 1}N → {0, 1} be a total function. Let A = H(RCf )
4 logN , and let S be

any set of partial functions from {0, 1}A to {0, 1}. Then there is a promise P ⊆ {0, 1}N such
that

Q(f |P ) = O(Q(S)), R(f |P ) = Ω(RN (S)).

Analogous statements hold for other pairs of complexity measures, such as D and R0 or R0
and R.

Proof. There are at least 2H(RCf ·2 logN) inputs x with RCf (x) ≥ H(RCf ·2 logN)/(2 logN).
Let the set of such inputs be C. By Lemma 2.1, if N ≥ 2, there is a set B of

H(RCf ·2 logN)
2 logN ≥ H(RCf )

2 logN

indices in {1, 2, . . . , N} that is shattered by the inputs in C. We’ll restrict B to have size at
most H(RCf )/(4 logN), so |B| = A. Let φ : {0, 1}A → {0, 1}N be defined by mapping each
string x ∈ {0, 1}A to a string z in C such that restricting z to A gives x. This is an injective
mapping, so φ is an extension function with extension size N .

Next, consider the set S of partial Boolean functions from {0, 1}A to {0, 1}. Let Sφ =
{gφ : g ∈ S}. Then R(Sφ) ≥ RN (S). It follows that there is some function gφ ∈ Sφ such
that R(gφ) ≥ RN (S).

We will use the function gφ to define the desired promise P . The domain of gφ is contained
in C. Let x be in this domain, so that RCf (x) ≥ H(RCf ·2 logN)/(2 logN) ≥ 2A. Let µx
be a distribution over inputs y such that f(x) 6= f(y), with the property that for any bit
i, Pr[yi 6= xi] ≤ 1/RCf (x) ≤ 1/(2A). Then for all x ∈ C, a randomized algorithm has a
hard time distinguishing between x and µx. For each such x, let µ′x be the distribution µx
conditioned on the sampled input agreeing with x on the bits in B. Since the probability
of an input sampled from µx disagreeing with x on B is at most |B| · 1/(2A) ≤ 1/2, the
distribution µ′x is not too far from µx. In particular, any randomized algorithm that finds
a disagreement with x on an input sampled from µ′x with probability p will also find a
disagreement with x on an input sampled from µx with probability at least p/2. It follows
that a randomized algorithm must use Ω(A) queries to distinguish x from µ′x.

We construct the promise P as follows. Start with P = ∅. For each x ∈ Dom(gφ), we
add x to P if f(x) = gφ(x); otherwise, we add the support of µ′x to P .

It remains to lower-bound R(f |P ) and to upper-bound Q(f |P ). We start with the upper
bound. Let y ∈ P , and consider the value of y on B. If x is an input of the domain of gφ
that caused y to be added, then x and y agree on B. Further, the values of x on B are
simply φ−1(x) ∈ {0, 1}|B|, and g(φ−1(x)) = gφ(x) = f(y). This means g(y|B) = f(y). We
now have the quantum algorithm work only with the bits of y|B, ignoring the rest. The
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algorithm need only compute g(y|B). Since g ∈ S, we get Q(f |P ) ≤ Q(g) ≤ Q(S), as desired.
A similar argument would upper-bound other complexity measures, such as R, R0, or D.

For the lower bound, consider the hard distribution µ on inputs to gφ obtained from Yao’s
minimax principle [19]. This distribution has the property that any randomized algorithm
for gφ that succeeds with probability at least 2/3 on inputs sampled from µ must use R(gφ)
queries. We construct a new distribution µ′ over P by generating an element x ∈ Dom(gφ)
according to µ, and then outputting either x or a sample from µ′x, depending on which
of them was added to P . We lower-bound the number of queries a randomized algorithm
requires to compute f on an input sampled from µ′ by a reduction from either computing gφ
on inputs sampled from µ, or else distinguishing x from µ′x.

Let R be a randomized algorithm for f |P . Let x ∼ µ. We wish to compute gφ(x).
Although x may not be in P , consider running R on x anyway. The algorithm will correctly
output gφ(x) with some probability p, depending on both the internal randomness of R and
on µ. If p ≥ 3/5, we could amplify R a constant number of times to turn it into an algorithm
for g that works on inputs sampled from the hard distribution µ, which means R must use
Ω(R(gφ)) = Ω(RN (S)) queries. So suppose that p ≤ 3/5.

Next, given x ∼ µ, we let yx be either x or a sample from µ′x, as µ′ dictates. Then running
R on yx gives f(yx) = gφ(x) with probability at least 2/3. On the other hand, running R on
x gives output gφ(x) with probability at most 3/5. That is, we have

Pr
R,x∼µ

[R(x) = gφ(x)] = E
x∼µ

[
Pr
R

[R(x) = gφ(x)]
]
≤ 3/5

Pr
R,x∼µ,yx

[R(yx) = gφ(x)] = E
x∼µ

[
Pr
R,yx

[R(yx) = gφ(x)]
]
≥ 2/3

From which it follows that

E
x∼µ

[
Pr
R,yx

[R(yx) = gφ(x)]− Pr
R

[R(x) = gφ(x)]
]
≥ 1/15.

This means there must be some specific input x̂ such that the probability of R outputting
gφ(x̂) when run on yx̂ is at least 1/15 more than the probability of R outputting gφ(x̂) when
run on x̂. In particular, we must have yx̂ 6= x̂, so yx̂ is a sample from µ′x̂. Therefore, R
distinguishes x̂ from µ′x̂ with constant probability, so it uses at least Ω(A) queries.

We conclude that R(f |P ) = Ω(min{RN (S), A}). Since the domain of the functions in S
is {0, 1}A, their query complexity is at most A. Thus R(f |P ) = Ω(RN (S)), as desired. A
similar argument lower-bounds other complexity measures, such as R0 or D. J

This proof uses the fact that RC lower-bounds R, so it would not work on complexity
measures that are not lower-bounded by RC (for example, C(1)). For Q, it might be possible
to use a similar argument and suffer a quadratic loss, since Q is lower-bounded by

√
RC.

However, since there is no hard distribution for a quantum query complexity problem, this
might be trickier to prove (we will not need it in this paper).

We can use the previous theorems to get a sculptability result for R vs. Q in terms of the
H-index of randomized certificate complexity.
I Corollary 4.8. Let f : {0, 1}N → {0, 1} be a total function. Then there is a promise
P ⊆ {0, 1}N such that

Q(f |P ) = O(log2 H(RCf )), R(f |P ) = Ω
(

H(RCf )1/3

log5/3N

)
.

Proof. This follows from Theorem 4.4 together with Theorem 4.7. J

To complete the proof of Theorem 1.2, all that remains is relating H(RCf ) to H(Cf ).
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5 Relating H(Cf), H(RCf), and H(bsf)

In this section, we relate H(Cf ) to H(RCf ), completing the characterization of sculpting.
Actually, we will prove a relationship between H(Cf ) and H(bsf ), which implies the desired
relationship since H(bsf ) ≤ H(RCf ). The proof is somewhat involved, but splits naturally
into three parts. In Lemma 5.1, we show a relationship between Cf (x) and RCf (x) in terms of
the number of 0- and 1-inputs of f . In Theorem 5.2, we show that H(Cf ) = O(Bal(f) logN).
Finally, Theorem 5.3 gives the desired relationship between H(Cf ) and H(bsf ).

I Lemma 5.1. Let f : {0, 1}N → {0, 1} be a partial function, and let x ∈ Dom(f). If
f(x) = 0, then

Cf (x) ≤ RCf (x)(1 + log |f−1(1)|)

and if f(x) = 1, then

Cf (x) ≤ RCf (x)(1 + log |f−1(0)|).

Proof. For x ∈ f−1(1), we wish to upper-bound Cf (x) in terms of RCf (x), assuming f−1(0)
is small. A certificate for x consists of a partial assignment of x that contradicts all the
elements of f−1(0).

Consider the greedy strategy for certifying x, which works by repeatedly choosing the bit
of x that contradicts as many of the 0-inputs as possible, and adding it to the certificate. By
definition, this strategy produces a certificate for x of size at least Cf (x).

Let pi be the fraction of the remaining inputs which are contradicted by the i-th bit of the
greedy algorithm. The number of remaining inputs during the run of the greedy algorithm is
then

|f−1(0)|, |f−1(0)|(1− p1), |f−1(0)|(1− p1)(1− p2), . . .

The number of remaining inputs in the greedy algorithm will be upper-bounded by
a geometric sequence that starts at |f−1(0)| and has ratio 1 − mini pi. Such a sequence
decreases to 1 after at most

−1
log(1−mini pi))

(1 + log |f−1(0)|) ≤ 1 + log |f−1(0)|
mini pi

steps. It follows that

Cf (x) ≤ 1 + log |f−1(0)|
mini pi

.

It remains to show that RCf (x) = Ω(1/mini pi). Let j be the step of the greedy algorithm
that achieves this minimum, i.e. pj = mini pi. Then before the jth step of the algorithm,
there is a non-empty set S of 0-inputs for f such that for any bit of the input, at most a pj
fraction of the elements of S disagree with x on that bit. In other words, x is entry-wise very
close to the “average” of the elements of S. If we give each element of S weight 1/(pj |S|),
we would get a feasible set of fractional blocks with total weight 1/pj . Thus RCf (x) ≥ 1/pj ,
so Cf (x) ≤ RCf (x)(log |f−1(0)| + 1). An analogous argument works when x is a 0-input
to f . J

I Theorem 5.2. Let N ≥ 2, and let f : {0, 1}N → {0, 1} be a total function. Then

H(Cf ) ≤ 10 Bal(f) logN.
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Proof. Without loss of generality, suppose |f−1(0)| ≤ |f−1(1)|. The number of 0-inputs with
large certificates is at most |f−1(0)| ≤ 2Bal(f). Let S be the set of 1-inputs with certificates
of size greater than 5 Bal(f). We wish to show that S is small. Lemma 2.1 implies there
is a set B = {i1, i2, . . . , i|B|} of indices of the input of size at least log |S|/(2 logN) that is
shattered by S. Therefore, to show that S is small, it suffices to show that B is small.

From Lemma 5.1, we have Cf (x) ≤ RCf (x) Bal(f) for any 1-input x, so for all x ∈ S, we
have RCf (x) ≥ Cf (x)/Bal(f) > 5. This means for all x ∈ S, there is a distribution µx over
0-inputs such that for each i, the probability that yi 6= xi when y is sampled from µx is less
than 1/5.

Let µB be the uniform distribution over B. Let δ(b, c) = 1 if b 6= c and 0 otherwise. We
then write

1
5 > E

i∼µB

(
E

y∼µx

δ(xi, yi)
)

= E
y∼µx

(
E

i∼µB

δ(xi, yi)
)
.

We can conclude that for any x ∈ S, there exists a 0-input yx that differs from x in less than
one fifth of the bits of B. In other words, the distance between x|B and yx|B is less than
|B|/5. The idea is now to upper-bound |B| by using the fact that for every string in {0, 1}|B|
there is a 0 input y such that y|B is close to that string, and there are few 0-inputs overall.
Indeed, the number of strings in {0, 1}|B| is 2|B|, and each 0-input can only be of distance less
than |B|/5 from 2H(1/5)|B| of them (where H(1/5) denotes the entropy of 1/5). Therefore,
to cover all the strings in {0, 1}|B|, there must be more than 2(1−H(1/5))|B| 0-inputs. Then

Bal(f) ≥ log |f−1(0)| > (1−H(1/5))|B| ≥ (1−H(1/5)) log |S|
2 logN ,

so

log |S| < 2 Bal(f) logN
1−H(1/5) ≤ 8 Bal(f) logN.

This means there are less than 28 Bal(f) logN 1-inputs with certificate size at least 5 Bal(f).
There are also at most 2Bal(f) 0-inputs with certificate size at least 5 Bal(f) (because
there are at most that many 0-inputs in total). Thus the log of the total number of
inputs with certificates larger than 5 Bal(f) is at most 10 Bal(f) logN . It follows that
H(Cf ) ≤ 10 Bal(f) logN . J

I Theorem 5.3. Let f : {0, 1}N → {0, 1} be a total function. Then

H(Cf ) = O(H(bsf )2 logN).

Proof. Let A be the set of inputs that have certificate size more than H(Cf ). Let A0 be the
set of 0-inputs in A, and let A1 be the set of 1-inputs in A. Let B be the set of inputs that
have block sensitivity more than b, with b =

√
H(Cf )/2. Let B0 be the set of 0-inputs in B,

and let B1 be the set of 1-inputs in B. Without loss of generality, assume |A0| ≥ |A1|. Since
|A| ≥ 2H(Cf ), we have |A0| ≥ 2H(Cf )−1.

Now, let g : {0, 1}N → {0, 1} be the total function defined by g(x) = 1 if and only if
x ∈ B1. Suppose x is an element of A0\B0. Consider certifying that x is a 0-input for g; let
p be the smallest such certificate. Then p is consistent with x but inconsistent with all the
strings in B1. We claim that this certificate must be large: its size must be greater than
H(Cf ) − b2 = H(Cf )/2. To show this, we show that we can turn p into a certificate for x
with respect to f (instead of with respect to g) by adding only b2 bits to it.
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Let q be a minimal sensitive block of x (with respect to f) that is disjoint from p. Since
x is a 0-input for f , xq is a 1-input for f . Since q is disjoint from p, xq is consistent with p,
so xq /∈ B1. Thus the block sensitivity of xq is at most b. However, since q was a minimal
sensitive block, the sensitivity of xq is at least |q|; thus |q| ≤ b. It follows that all minimal
sensitive blocks of x that are disjoint from p must have size at most b.

In addition, since x ∈ A0\B0, the block sensitivity of x is at most b. We can now construct
a certificate for x by taking a maximal set of minimal disjoint sensitive blocks for x, all of
which are disjoint from p. There will be at most b such blocks, and each will have size at
most b. Therefore, this certificate for x has size at most |p| + b2. Since x ∈ A0, we must
have |p|+ b2 > H(Cf ), or |p| > H(Cf )− b2 = H(Cf )/2. We have shown that the elements of
A0\B0 all have certificate size greater than H(Cf )/2 even with respect to g.

Now, by Theorem 5.2, the number of inputs x that have certificate size more than
10(1 + log |B1|) logN with respect to g is at most 210(1+log |B1|) logN . It follows that either
H(Cf )/2 ≤ 10(1 + log |B1|) logN (so that the theorem doesn’t apply), or else |A0\B0| ≤
210(1+log |B1|) logN .

In the former case, we have

log |B| ≥ log |B1| ≥
H(Cf )

20 logN − 1.

In the latter case, we have

2H(Cf )−1 ≤ |A0| ≤ |B0|+ 210(1+log |B1|) logN = |B0|+ (2|B1|)10 logN ≤ (2|B|)10 logN ,

so in that case,

log |B| ≥ H(Cf )− 1
10 logN − 1.

Thus, in both cases,

log |B| ≥ H(Cf )− 1
20 logN − 1 = Ω

(
H(Cf )
logN

)
.

This means there are 2Ω(H(Cf )/ logN) inputs with block sensitivity more than
√

H(Cf )/2.
We thus have

H(bsf ) = Ω
(

min
{

H(Cf )
logN ,

√
H(Cf )

})
= Ω

(√
H(Cf )
logN

)
. J

Theorem 1.2 now follows from Theorem 3.2 (the non-sculptability theorem in terms
of H(C2

f )), Corollary 4.8 (the sculptability result in terms of H(RCf )), and Theorem 5.3
(relating H(bsf ) to H(Cf )), together with the properties that H(C2

f ) ≤ H(Cf )2 and that
H(bsf ) ≤ H(RCf ). We restate Theorem 1.2 here for convenience.

I Theorem 1.2. For all total functions f : {0, 1}N → {0, 1} and all promises P ⊆ {0, 1}N ,
we have

R(f |P ) = O(Q(f |P )2 H(Cf )2).

Conversely, for all total functions f : {0, 1}N → {0, 1}, there is a promise P ⊆ {0, 1}N such
that

R(f |P ) = Ω
(

H(Cf )1/6

log11/6N

)
and Q(f |P ) = O(log2 H(Cf )).

Theorem 1.1 follows as a corollary. This completes the proof of our main result.
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6 Sculpting Randomized Speedups

Now that we’ve characterized sculpting quantum query complexity, we turn our attention to
sculpting other measures. Recall that

Q(f) ≤ R(f) ≤ R0(f) ≤ D(f).

We showed that sculpting R(f) vs. Q(f) is possible if and only if f has a large number of
large certificates. We now show that the exact same condition characterizes sculpting D(f)
vs. R0(f). On the other hand, we show that R0(f) vs. R(f) behaves differently: it’s always
possible to sculpt a function f to a promise P such that R(f |P ) is constant and R0(f |P ) is
almost as large as R0(f).

We start by characterizing sculpting for D vs. R0.

6.1 Sculpting D vs. R0

The proof of this characterization will follow that of Theorem 1.2. For the non-sculptability di-
rection, we need an analogue of Theorem 3.2, relating deterministic and zero-error randomized
query complexities in terms of Bal(f). We prove the following theorem.

I Theorem 6.1. Let f : {0, 1}N → {0, 1} be a partial function. Then

D(f) ≤ 2R0(f) Bal(f).

Proof. Consider the zero-error randomized algorithm that takes R0(f) expected queries to
evaluate f . By Markov’s inequality, if we let this algorithm make 2 R0(f) queries on input x,
it will succeed in computing f(x) (and provide a certificate for x) with probability at least
1/2. This gives us a probability distribution µ over deterministic algorithms, each of which
makes 2 R0(f) queries, such that for each input x the probability that an algorithm sampled
from µ finds a certificate when run on x is at least 1/2.

For a deterministic algorithm D and an input x, let c(D,x) = 1 if D finds a certificate
for x, and c(D,x) = 0 otherwise. Let Z ⊆ {0, 1}N . Then

E
D∼µ

[∑
x∈Z

c(D,x)
]

=
∑
x∈Z

E
D∼µ

[c(D,x)] ≥
∑
x∈Z

(1/2) = |Z|2 .

It follows that there is a deterministic algorithm DZ that makes 2 R0(f) queries and finds a
certificate when run on half the inputs in Z.

Suppose without loss of generality that |f−1(0)| ≤ |f−1(1)|. Now, on input x, set
Z = f−1(0), and run DZ on x. If it fails to find a certificate, then we have eliminated half of
Z as possibilities for the input. Repeating this blog |f−1(0)|c+ 1 ≤ Bal(f) times suffices to
eliminate all of f−1(0) as possibilities for x, and hence to determine the value of f(x). The
total number of queries used is at most 2 R0(f) Bal(f). J

Note that Theorem 6.1 and Theorem 3.2 together complete the proof of Theorem 1.4.
Next, we turn Theorem 6.1 into a non-sculptability theorem in terms of H(Cf ). The

argument in Theorem 3.4 follows verbatim, and we get the following sculpting lower bound.

I Corollary 6.2. Let f : {0, 1}N → {0, 1} be a total function. For any promise P ⊆ {0, 1}N ,
we have

D(f |P ) = O(R0(f |P ) H(Cf )2).
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We now prove the other direction: we show that sculpting is possible when H(RCf ) is
large. Using the arguments from Section 4, it suffices to solve the extended queries problem
for D vs. R0. We do this using the reduction to communication complexity in Theorem 4.6.

I Theorem 6.3. For all N ∈ N, there is a set of partial functions S from {0, 1}N to {0, 1}
such that for all G ≥ N ,

R0(S) = O(1), DG(S) = Ω
(

N

logG

)
.

Proof. We start with Equality, in which Alice and Bob are each given an n-bit string and
wish to know if their strings are equal. This problem has deterministic query complexity
Ω(n), but small randomized query complexity. To make the zero-error randomized query
complexity small as well, we give Alice and Bob two strings each, with the promise that
either their first strings are equal and the second strings are not, or vice versa. The goal will
be to determine which is the case. It is not hard to see that the deterministic communication
complexity of this problem is still Ω(n).

We need to get the zero-error randomized query complexity of the marginal functions to
be small. To do this, we introduce another modification: we encode each of Bob’s strings
using a fixed random code of length 3n. This code will have the property that the distance
between any pair of codewords is Ω(n). To compute a marginal function fa1,a2 indexed
by Alice’s strings, we can simply randomly sample from each of Bob’s strings; after O(1)
samples, we will discover which of his strings do not match the codeword corresponding to
a1 and a2.

This construction gives us a function f : {0, 1}2n ×{0, 1}6n → {0, 1} such that DCC(f) =
Ω(n) and R0(Mar(f)) = O(1). Setting N = 6n and using Theorem 4.6 finishes the proof. J

Putting this together, we get the following sculpting theorem which, together with
Corollary 6.2, is analogous to Theorem 1.2.

I Theorem 6.4. For all total functions f : {0, 1}N → {0, 1}, there is a promise P ⊆ {0, 1}N
such that

D(f |P ) = Ω
(√

H(Cf )
log5/2N

)
and R0(f |P ) = O(1).

Proof. This follows from Theorem 6.3 together with Theorem 4.4 and Theorem 5.3. J

We also get the following corollary, analogous to Theorem 1.1.

I Corollary 6.5. Let f : {0, 1}N → {0, 1} be a total function. Then there is a promise
P ⊆ {0, 1}N such that D(f |P ) = NΩ(1) and R0(f |P ) = No(1), if and only if H(Cf ) = NΩ(1).
Futhermore, in this case we also have R0(f |P ) = O(1).

6.2 Sculpting R0 vs. R
While it is possible to use the above argument to get a sculptability result for R0 vs. R, we
can get a stronger result by a direct argument. In fact, unlike R vs. Q or D vs. R0, sculpting
R0 vs. R is always possible (there is no dependence on any H-index).

I Theorem 6.6. Let f : {0, 1}N → {0, 1} be a non-constant total function. Then there is a
promise P ⊆ {0, 1}N such that

R(f |P ) = 1, R0(f |P ) ≥ R0(f)1/3

6 .
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Proof. We actually prove a stronger result, finding a promise P such that R(f |P ) = 1 and
R0(f |P ) ≥ bs(f)/6. We then use the known relationship R0(f) ≤ bs(f)3 for total functions
to get the desired result. Note that finding P with R(f |P ) = 1 and R0(f |P ) ≥ bs(f)/6 is
trivial when bs(f) ≤ 6; thus we assume bs(f) > 6.

Let x ∈ {0, 1}N be such that bsf (x) = bs(f). Assume without loss of generality that
f(x) = 0. Let S1 be the set of all 1-inputs with Hamming distance at least (2/3)N from x.
For any partial assignment p consistent with x, let Sp1 ⊆ S1 be the set of all inputs y in S1
that are consistent with p.

There are two cases. If Sp1 is non-empty for all partial assignments p consistent with
x of size less than bsf (x)/6, then we can pick the promise to be P = {x} ∪ S1. It then
follows that certifying that f |P is 0 on input x takes at least bsf (x)/6 queries, whence
R0(f |P ) ≥ bsf (x)/6. On the other hand, a randomized algorithm can make 1 query to check
if the input differs from x. Thus R(f |P ) = 1.

The other case is that there is some partial assignment p of size less than bsf (x)/6 such
that Sp1 is empty. We restrict our attention to inputs consistent with p. Since x has bsf (x)
disjoint sensitive blocks, it has at least (5/6) bsf (x) disjoint sensitive blocks that do not
overlap with p. We exclude blocks of size larger than N/3. Since there are at most 2 such
blocks, this leaves at least (5/6) bsf (x)− 2. Let B be the set of inputs we get by flipping
one of these blocks of x. Then B contains only 1-inputs to f that are consistent with p, all
of which have Hamming distance at most N/3 from x. Since bsf (x) = bs(f) > 6, we have
B 6= ∅.

Let S be the set of inputs consistent with p that have Hamming distance at least (2/3)N
from x. Since Sp1 is empty, S contains only 0-inputs to f . Let P = B ∪ S. Now, consider
certifying that an input y to f |P is a 1-input. Since all inputs of Hamming distance at least
(2/3)N from x that are consistent with p are 0-inputs, this requires showing at least N/3−|p|
bits of y. Since |p| < bsf (x)/6 ≤ N/6, this is at least N/6. Thus R0(f |P ) ≥ N/6 ≥ bs(f)/6.

On the other hand, a bounded-error randomized algorithm can simply query a bit of the
input at random, and check for agreement with x. If the bit agrees, the algorithm can output
1, and if the bit disagrees, the algorithm can output 0. This works because 0-inputs have
distance at least (2/3)N from x, while all 1-inputs have distance at most N/3 from x (since
the sensitive blocks used to construct B were of size at most N/3). Thus R(f |P ) = 1. J

7 Other Query Complexity Results

We can use some of the tools introduced in the previous sections to prove some new relations
in query complexity. In Section 7.1, we prove a quadratic relationship between D(f) and
Q(f) for partial functions f that have small domain. In Section 7.2, we prove a quadratic
relationship between D(f) and Q(f) for total functions f for which H(Cf ) is small.

7.1 Query Complexity on Small Promises

We prove Theorem 1.3, which we restate for convenience.

I Theorem 1.3. Let f : {0, 1}N → {0, 1} be a partial function, and let Dom(f) denote the
domain of f . Then

Q(f) = Ω
( √

D(f)
log |Dom(f)|

)
.
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Proof. We follow the proof of Theorem 3.2. The randomized algorithm used in that proof
relies only on the existence of a randomized algorithm distinguishing a string a ∈ {0, 1}N from
either f−1(0) or f−1(1), which is in turn guaranteed by Lemma 3.1. To make that algorithm
deterministic, we only need to turn this distinguishing algorithm into a deterministic one.
By Lemma 5.1, we have Cf (x) = O(RCf (x) log |Dom(f)|). On the task of distinguishing a
single input from a set of inputs, certificate complexity equals deterministic query complexity.
Using this observation, we can modify the proof of Theorem 3.2 to get the result

D(f) = O(Q(f)2 Bal(f) log |Dom(f)|) = O(Q(f)2 log2 |Dom(f)|),

from which the desired result follows. J

7.2 Relationship for Total Functions
We can use H-indices to improve some of the relationships between complexity measures on to-
tal functions, proving Theorem 1.5. Recall that for total functions, we have D(f) ≤ C(f) bs(f)
and bs(f) = O(Q(f)2), from which we have D(f) = O(Q(f)2 C(f)). We strengthen this result
to D(f) = O(Q(f)2 H(

√
Cf )2) for total Boolean functions. Since H(

√
Cf ) ≤

√
C(f), this

result is always stronger. In addition, since C(OR) = n and H(COR) = 1, this improvement
is sometimes very strong.

We restate Theorem 1.5 for convenience.

I Theorem 1.5. Let f : {0, 1}N → {0, 1} be a total function. Then

D(f) = O(Q(f)2 H(
√

Cf )2).

Proof. The proof follows the proof that D(f) ≤ C(f) bs(f) [4]. We start by reviewing this
proof. The deterministic algorithm repeatedly picks possible 0-certificates that are consistent
with the input observed so far, and queries the entries of these certificates. If the queried
entries match the 0-certificate, the algorithm is done (the value of f(x) is known to be 0). If
ever there are no additional 0-certificates consistent with the observed part of the input, the
value of the function is known to be 1.

The key insight is that if this process repeats k times, then the block sensitivity of the
function is at least k. Indeed, let p be the partial assignment revealed after k iterations. Pick
a 1-input y for f that is consistent with p. Let Bi be the set of entries queried in the i-th
iteration of the algorithm. Then for each i, there is a way to change only the variables in Bi
to form a 0-certificate for f . It follows that each Bi contains a sensitive block for y. Since
the Bi sets are disjoint, we get bsf (y) ≥ k, so bs(f) ≥ k.

We modify the algorithm as follows. In each step, we only allow the algorithm to
pick 0-certificates that are of size at most H(

√
Cf )2. Thus the algorithm uses at most

bs(f) H(
√

Cf )2 queries before it gets stuck. When it gets stuck, either the value of f on the
input is determined, or else there are no more 0-certificates that are small enough.

Next, we repeat the same process with 1-certificates instead of 0-certificates. If the value
of f is not yet determined, it means that the input is not consistent with any small enough
certificates, so the certificate complexity of the input x is greater than H(

√
Cf )2. This gives√

Cf (x) > H(
√

Cf ).
By definition of the H-index, there are now at most 2H(

√
Cf ) possibilities for the input.

We’ve therefore restricted f to a small domain P . We now use Theorem 1.3 to evaluate f
using

O(Q(f)2 log2 |Dom(f |P )|) = O(Q(f)2 H(
√

Cf )2)
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deterministic queries. This is added to the bs(f) H(
√

Cf )2 queries from before. Using
bs(f) = O(Q(f)2), we get

D(f) = O(Q(f)2 H(
√

Cf )2). J

8 Sculpting in the Computational Complexity Model

In this section, we examine sculpting in the computational complexity model. We start
with some notation. Given a language L ⊆ {0, 1}∗, we let L(x) ∈ {0, 1} be its characteristic
function. Also, given a language L together with a promise P ⊆ {0, 1}∗, we let L|P be the
promise problem of distinguishing the set P ∩ L from the set P \ L.

Now, we call the language L sculptable if there exists a promise P , such that the promise
problem L|P is in PromiseBQP but not in PromiseBPP. We will use the following definition.

I Definition 8.1 ([5]). A language L is called paddable, if there exists a polynomial-time
function f(x, y) such that
1. f is polynomial-time invertible, and
2. for all x, y, we have x ∈ L ⇐⇒ f(x, y) ∈ L.

In other words, L is paddable if it is possible to “pad out”any input x with irrelevant
information y, in an invertible way, without affecting membership in L.

The paddable languages were introduced by Berman and Hartmanis [5], as part of their
exploration of whether all NP-complete languages are polynomial-time isomorphic: they
showed that the answer was ‘yes’ for all paddable NP-complete languages. Under strong
cryptographic assumptions, we now know that there exist NP-complete languages that are
neither paddable nor isomorphic to each other [14]. Nevertheless, it remains the case that
almost all the languages that “naturally arise in complexity theory” are paddable.

Next, let us say that PromiseBQP is hard on average for P/poly if there exists a promise
problem H|S ∈ PromiseBQP, as well as a family of distributions {Dn}n with support on the
promise set S, such that
1. Dn is samplable in classical poly(n) time, and
2. there is no family of classical circuits {Cn}n, of size poly(n), such that for all n,

Pr
y∼Dn

[Cn(y) = H(y)] ≥ 3
4 .

So for example, because of Shor’s algorithm [18], combined with the worst-case/average-
case equivalence of the discrete log problem, we can say that if discrete log is not in P/poly,
then PromiseBQP is hard on average for P/poly.

We now prove Theorem 1.6, which we restate here for convenience.

I Theorem 1.6. Assume PromiseBQP is hard on average for P/poly. Then every paddable
language outside of BPP is sculptable.

Proof. Let L be a paddable language, and let f be the padding function for L. Also, let H|S
be any problem in PromiseBQP that is hard on average for P/poly, and let {Dn}n be the
associated family of hard distributions. Then we need to construct a promise, P ⊆ {0, 1}∗,
such that the promise problem L|P is in PromiseBQP but not in PromiseBPP.

Our promise P will simply consist of all inputs of the form f(x, y, a) such that y ∈ S and

L(x) ≡ H(y) + a (mod 2) .
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Here a ∈ {0, 1} is a single bit, which we think of as concatenated onto the end of y.
Clearly, L|P is in PromiseBQP: just invert f to extract the “comment”(y, a), then compute

H(y) + a (mod 2).
We need to show that L|P is not in PromiseBPP. Suppose by contradiction that it was,

and let A be the algorithm such that A(x) = L(x) for all x ∈ P . Then we’ll show how to
either
1. decide L in BPP (with no promise), or
2. decide H in P/poly, with high probability over Dn.

Given an arbitrary input x ∈ {0, 1}n, imagine we do the following: first sample y ∼ Dn,
then run A on the inputs f(x, y, 0) and f(x, y, 1). There are two cases: first suppose

A (f(x, y, 0)) = A (f(x, y, 1)) .

Now, one of the two inputs f(x, y, 0) and f(x, y, 1) must belong to P . If f(x, y, 0) ∈ P , then
A (f(x, y, 0)) = L(x), while if f(x, y, 1) ∈ P , then A (f(x, y, 1)) = L(x). Either way, then,
we have learned whether x ∈ L, and we know we have learned this.

Second, suppose

A (f(x, y, 0)) 6= A (f(x, y, 1)) .

Then assuming y ∈ S:

x ∈ L, y ∈ H =⇒ A (f(x, y, 0)) = 1 =⇒ A (f(x, y, 1)) = 0,
x ∈ L, y /∈ H =⇒ A (f(x, y, 1)) = 1 =⇒ A (f(x, y, 0)) = 0,
x /∈ L, y ∈ H =⇒ A (f(x, y, 1)) = 0 =⇒ A (f(x, y, 0)) = 1,
x /∈ L, y /∈ H =⇒ A (f(x, y, 0)) = 0 =⇒ A (f(x, y, 1)) = 1.

Thus, regardless of whether x ∈ L, we have learned whether y ∈ H, and again we know we
have learned this.

Now suppose there were an input x ∈ {0, 1}n, such that running A as above told us
whether y ∈ H with probability more than (say) 1/2 over the choice of y ∼ Dn. Then let Cn
be a polynomial-size circuit that hardwires x, and that given an input y ∈ S:

Simulates both A (f(x, y, 0)) and A (f(x, y, 1)).
Outputs H(y) whenever it successfully learns the value of H(y).
Guesses a hardwired value for H(y) (whichever of {0, 1} is more probable) whenever it
does not.

Then

Pr
y∼Dn

[Cn(y) = H(y)] ≥ 3
4 ,

violating the assumption that no such circuit exists.
So we conclude that for every x ∈ {0, 1}n, we must instead learn whether x ∈ L with

probability at least 1/2 over the choice of y ∼ Dn. This, in turn, means that by simply
generating y’s randomly until we succeed, we can decide L in PromiseBPP. J

Next, given a language H ⊆ {0, 1}∗, we say H is BPP-bi-immune if neither H nor its
complement H has any infinite subset in BPP. The notion of immunity was introduced by [9].
Here is a useful alternative characterization:

I Lemma 8.2. A language H is BPP-bi-immune if and only if there is no infinite set
S ∈ BPP, such that the promise problem H|S is solvable in PromiseBPP.

CCC 2016



26:24 Sculpting Quantum Speedups

Proof. First, suppose H is not BPP-bi-immune, so that either H or H has an infinite subset
S ∈ BPP. Then clearly, S itself is an infinite set in BPP such that the promise problem H|S
is trivial (the answer is either always 0 or always 1).

Conversely, suppose there exists an infinite set S ∈ BPP such that H|S is solvable in
polynomial time. Then clearly S ∩H and S ∩H are both in BPP, and at least one of the
two must be infinite. So H is not BPP-bi-immune. J

We now suggest what, as far as we know, is a new conjecture in quantum complexity
theory.

I Conjecture 8.3. There exists a BPP-bi-immune language in BQP.

Conjecture 8.3 is extremely strong. Note, in particular, that none of the “standard”BQP
languages, such as languages based on factoring or discrete log, will be BPP-bi-immune,
because they all have infinite special cases that are classically recognizable and easy (for
example, the powers of 2, in the case of factoring). Nevertheless, we believe Conjecture 8.3 is
plausible. As a concrete candidate for a BPP-bi-immune language in BQP, let g : {0, 1}∗ →
{0, 1}∗ be some strong pseudorandom generator. Then consider the language

L = {x : g(x), interpreted as an integer, has an odd number of distinct prime factors} .

We now prove Theorem 1.7, restated here for convenience.

I Theorem 1.7. Assume Conjecture 8.3. Then every language outside of BPP is sculptable.

Proof. Assume by way of contradiction that L /∈ BPP is non-sculptable. Also, let H be a
BPP-bi-immune language in BQP. Then consider the set

S := {x : L(x) = H(x)} .

By our assumption, S is a promise on which no superpolynomial quantum speedup is possible
for L, and S is another such promise. Hence, there must be a BPP algorithm, call it AS ,
that solves the promise problem H|S , which (by the definition of S) is equivalent to solving
L|S . And there must be another polynomial-time classical algorithm, call it AS , that solves
H|S , which (again by the definition of S) is equivalent to solving L|S .

Now, given an input x, suppose we run both AS and AS . Then as in the proof of
Theorem 1.6, there are two possibilities. If AS(x) = AS(x), then x ∈ S implies H(x) = AS(x)
while x /∈ S implies H(x) = AS(x), so either way we have learned H(x) (and we know that
we have learned it). On the other hand, if AS(x) 6= AS(x), then x ∈ S implies L(x) = AS(x)
while x /∈ S implies L(x) = 1 − AS(x). So, merely by seeing that AS(x) and AS(x) are
different, we have learned L(x) (and we know that we have learned it).

In summary, there is a BPP algorithm B that, for every input x ∈ {0, 1}∗, correctly
outputs either H(x) or L(x), and that moreover tells us which one it output.

Now let Q be the set of all x such that B(x) outputs H(x). Then there are two possibilities:
if Q is finite, then B decides L on all but finitely many inputs. Hence L ∈ BPP, contrary to
assumption. If, on the other hand, Q is infinite, then H|Q is an infinite promise problem in
PromiseBPP. So H was not BPP-bi-immune, again contrary to assumption. J

In Theorem 1.6 and Theorem 1.7, there is almost nothing specific to the complexity
classes BQP and BPP, apart from some simple closure properties. Thus, one can prove
analogous sculpting theorems for many other pairs of complexity classes. In some cases, we
do not even need an unproved conjecture. For example, we have:
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I Theorem 8.4. For every language L /∈ P, there exists a promise S such that L|S is solvable
in exponential time, but is not solvable in polynomial time.

Proof. The proof of Theorem 1.7 follows through for P and EXP instead of BPP and BQP.
In addition, it is known that there is a P-bi-immune language in EXP [5]. The desired result
follows. J

9 Concluding Remarks and Open Problems

In this work, we gave a full characterization of the class of Boolean functions f that can be
sculpted into a promise problem with an exponential quantum speedup in query complexity.
We similarly characterized sculptability for R0 vs. R and D vs. R0. Along the way, we
showed that Q is polynomially related (indeed, quadratically related) to D and R for a much
wider set of promise problems than was previously known. Finally, we studied sculpting in
computational complexity, giving a strong conjecture under which every language outside
BPP is sculptable into a superpolynomial quantum speedup, and a weaker conjecture under
which every paddable language outside BPP is sculptable.

One might object that many of our sculpted promise problems are somewhat artificial.
This is particularly clear in the case of paddable languages, where (in essence) one uses
the paddability to append to each instance x, as a “comment,” an instance of a hard BQP
problem (such as factoring) that is promised to have the same answer as x. Even in the
query complexity setting, however, one can observe by direct analogy that the property of
being sculptable is not closed under the removal of dummy variables. So for example, we saw
before that the N -bit OR function is not sculptable. By contrast, observe that the function

f(x1, . . . , x2N ) := OR(x1, . . . , xN )

is sculptable. This follows as an immediate consequence of Theorem 1.1: just by adding
dummy variables to the OR function, we have vastly increased the number of inputs x that
have large certificate complexity, from 1 to 2N . However, an even simpler way to see why f
is sculptable, is that we can embed (say) Simon’s problem into the variables xN+1, . . . , x2N ,
and then impose the promise that

OR(x1, . . . , xN ) = Simon(xN+1, . . . , x2N )

(in addition to the Simon promise itself).
Of course, most Boolean functions do not contain such dummy variables, so the problems

of sculpting them, and deciding whether they are sculptable at all, are much more complicated,
as we saw in this paper.

Now, it might feel like “cheating” to sculpt a promise problem with a large quantum/clas-
sical gap by using dummy variables to encode a different, unrelated problem. If so, however,
that points to an interesting direction for future research: namely, can we somehow formalize
what we mean by a “natural” special case of a problem, and can we then understand which
problems are “naturally” sculptable?

Here are some more specific open problems.

Some of our inequalities could be off by polynomial factors; it would be nice to tighten
them (or prove separations). For example, it may be possible to improve Theorem 1.3 to
Q(f) = Ω(

√
D(f)/ log |Dom(f)|), quadratically improving the log |Dom(f)| factor.
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Can our results – and specifically, Theorem 1.5 – be used to improve the relation
D(f) = O(Q(f)6) due to Beals et al. [4]?
Can we give a characterization of the sculptable Boolean functions in communication
complexity – analogous to this paper’s characterization of sculptability in query complex-
ity?
Is there any natural pair of complexity classes C ⊆ D, for which C is known or believed to
be strictly contained in D, and yet it is plausible that no languages in D are C-bi-immune,
and (related to that) there exist languages L /∈ C that cannot be sculpted into a promise
problem in D \ C?
One can, of course, consider sculpting for many other pairs of computational models,
besides R vs. Q or R0 vs. R or D vs. R0. One interesting case is sculpting versus certificate
complexity – for example, D vs. C. What is the correct characterization there?

We make some observations on the last problem. It’s easy to see that D(OR|P ) = C(OR|P )
for any promise P , so sculpting D vs. C is not always possible. On the other hand, sculpting
D vs. C is sometimes possible even when H(Cf ) is small. To see this, consider the function f
with f(x) = 1 if and only if the Hamming weight of x is 1, and the single ‘1’ bit occurs on the
left half of the input string. This function can be sculpted to D(f |P ) = N/2 and C(f |P ) = 1
by setting P to the set of inputs with Hamming weight 1. However, H(Cf ) = O(logN) for
this function, since all inputs with Hamming weight at least 2 have small certificates (just
display two ‘1’ bits).

This means something qualitatively different happens with D vs. C than what was found
in this paper.

Acknowledgements. We thank Robin Kothari for many helpful discussions.
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A Properties of H Indices

I Lemma A.1. Let g : {0, 1}n → [0,∞). Define

H(g) := inf
{
h ∈ [0,∞) : |{x ∈ {0, 1}n : g(x) > h}| ≤ 2h

}
.

Then
1. H(g) ∈ [0, n]
2. H(g) ≤ maxx g(x)
3. The number of x ∈ {0, 1}n for which g(x) > H(g) is at most 2H(g) (equivalently, the

infimum in the definition of H(g) is actually a minimum)
4. If g′ : {0, 1}n → [0,∞) is such that g(x) ≤ g′(x) for all x ∈ {0, 1}n, then H(g) ≤ H(g′)
5. If α : [0,∞)→ [0,∞) is an increasing function, then H(α ◦ g) ≤ max{H(g), α(H(g))}.
6. There are at least 2H(g) inputs x ∈ {0, 1}n with g(x) ≥ H(g).

Proof. Let Sg(h) = {x ∈ {0, 1}n : g(x) > h} and let Hg = {h ∈ [0,∞) : |Sg(h)| ≤ 2h}.
Then H(g) = inf Hg. Part 1 follows from noticing that for all h, Sg(h) ⊆ {0, 1}n, so
|Sg(h)| ≤ 2n, whence n ∈ Hg. Part 2 follows from noticing that Sg(maxx g(x)) is empty, so
maxx g(x) ∈ Hg.

To show 3, we show that Hg contains its infimum. Consider an infinite decreasing sequence
h1, h2, . . . ∈ Hg that converges to H(g). Then the sequence |Sg(h1)|, |Sg(h2)|, . . . is a non-
decreasing sequence of integers which is bounded above by 2n. In addition, Sg(hi) ⊆ Sg(hi+1)
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for all i. It follows that there is some ` such that Sg(hi) = Sg(h`) for all i ≥ `. For each
x ∈ Sg(h`), we have g(x) > h` > H(g), and for each x /∈ Sg(h`), we have g(x) ≤ hi for all i.
It follows that g(x) ≤ H(g) for each x /∈ Sg(h`), so Sg(H(g)) = {x ∈ {0, 1}n : g(x) > H(g)} =
Sg(hi) for all i ≥ `. Finally, since hi ∈ Hg for all i, we have |Sg(H(g))| = |Sg(hi)| ≤ 2hi for
all i ≥ `. From this it follows that |Sg(H(g))| ≤ limi→∞ 2hi = 2H(g), so H(g) ∈ Hg.

We now show 4. If g′ is point-wise greater or equal to g, then Sg(H(g′)) ⊆ Sg′(H(g′)).
Since H(g′) ⊆ Hg, we have |Sg′(H(g′))| ≤ 2H(g′), so |Sg(H(g′))| ≤ 2H(g′). Thus H(g′) ∈ Hg,
so H(g) = inf Hg ≤ H(g′).

We prove 5. Let α be an increasing function. We have

Sg(H(g)) = {x ∈ {0, 1}n : g(x) > H(g)} = {x : α ◦ g(x) > α(H(g))} = Sα◦g(α(H(g)).

Thus

|Sα◦g(max{H(g), α(H(g))})| ≤ |Sα◦g(α(H(g))| = |Sg(H(g))| ≤ 2H(g) ≤ 2max{H(g),α(H(g))}

so max{H(g), α(H(g))} ∈ Hα◦g. Hence H(α ◦ g) ≤ max{H(g), α(H(g))}.
Finally, we show 6. If it was false, there would be less than 2H(g) inputs with g(x) ≥ H(g).

Thus there is some ε > 0 such that there are less than 2H(g)−ε inputs with g(x) ≥ H(g) >
H(g)− ε. But this implies H(g)− ε ≥ H(g), a contradiction. J

B Proof of Lemma 2.1

I Lemma B.1. Let S ⊆ {0, 1}N be a collection of strings. Then there is a shattered set of
indices of size at least

log |S|
log(N + 1) .

Proof. Let d be the size of the largest set that is shattered by S. Then the Sauer-Shelah
lemma [16] states

|S| ≤
d∑
i=0

(
N

i

)
.

A well-known bound states
d∑
i=0

(
N

i

)
≤ 2H(d/N)N ,

where H(d/N) is the binary entropy of d/N . Then

log2 |S| ≤ H(d/N)N = d log2(N/d) + (N − d) log2(1 + d/(N − d))

≤ d log2(N/d) + d log2 e = d log2N − d log2(d/e) ≤ d log2N

(if d ≥ e). Thus

d ≥ log |S|
logN

unless d ≤ 2.
The Sauer-Shelah lemma implies |S| ≤ 1 when d = 0 and |S| ≤ N2 when d = 2 (assuming

N ≥ 2). The only problematic case is d = 1 and |S| = N + 1. Thus, in all cases, we have
d ≥ log |S|/ log(N + 1), as desired. J
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