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Abstract
We study how to extract randomness from a C-interleaved source, that is, a source comprised of
C independent sources whose bits or symbols are interleaved. We describe a simple approach for
constructing such extractors that yields:

For some δ > 0, c > 0, explicit extractors for 2-interleaved sources on {0, 1}2n when one
source has min-entropy at least (1− δ)n and the other has min-entropy at least c logn. The
best previous construction, by Raz and Yehudayoff [36], worked only when both sources had
entropy rate 1− δ.
For some c > 0 and any large enough prime p, explicit extractors for 2-interleaved sources on
[p]2n when one source has min-entropy rate at least .51 and the other source has min-entropy
rate at least (c logn)/n.

We use these to obtain the following applications:
We introduce the class of any-order-small-space sources, generalizing the class of small-space
sources studied by Kamp et al. [22]. We construct extractors for such sources with min-
entropy rate close to 1/2. Using the Raz-Yehudayoff construction would require entropy rate
close to 1.
For any large enough prime p, we exhibit an explicit function f : [p]2n → {0, 1} such that the
randomized best-partition communication complexity of f with error 1/2− 2−Ω(n) is at least
.24n log p. Previously this was known only for a tiny constant instead of .24, for p = 2 [36].
We introduce non-malleable extractors in the interleaved model. For any large enough prime p,
we give an explicit construction of a weak-seeded non-malleable extractor for sources over [p]n
with min-entropy rate .51. Nothing was known previously, even for almost full min-entropy.
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1 Introduction

Extracting truly random bits from various naturally-arising weak random sources is a major
area of study in computer science, and has applications in various areas such as cryptography,
coding theory, communication complexity, and distributed computing. An extractor is defined
to be a procedure that takes input from a weak random source and outputs a distribution
that is close to uniform.

Von Neumann [41] initiated the study of weak random sources, showing how to extract
from a source with independent and biased bits. Various other models of weak random
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sources were considered [3, 37, 11], but it was realized that devising such extractors was
impossible for any general class of weak random sources lacking significant independence
between different parts.

To get around this difficulty, Nisan and Zuckerman [33] introduced the notion of a seeded
extractor, which uses a small number of uniformly random bits to extract randomness from a
weak source X. The min-entropy of a weak source X is a standard way of measuring of the
amount of randomness in X, and is defined as H∞(X) = mins∈support(X) {1/ log(Pr[X = s])}.
The min-entropy rate of X supported on {0, 1}n is given by H∞(X)/n. By a long line of
work ending with [31, 15, 21], we now have explicit seeded extractors with almost optimal
parameters.

In recent years, there has been renewed interest in the original problem of constructing
seedless extractors for weak random sources. In particular, a line of work has focused on
devising seedless extractors that takes input C independent weak sources X1, . . . , XC , and
outputs a distribution close to uniform. This problem was originally considered by Chor and
Goldreich [10], who showed how to extract from two independent sources (on {0, 1}n) each
with min-entropy at least ( 1

2 + δ)n. Such extractors are called two-source extractors.
However, there was no progress on this result for around 20 years until the work of

Bourgain [4], who achieved a small improvement over [10], and showed how to extract from
two independent sources each with min-entropy 0.49n, based on techniques from the area of
additive combinatorics. Subsequently, Raz [35] gave an explicit two source extrator, with one
source having min-entropy at least ( 1

2 + δ)n and the other source having poly-logarithmic
min-entropy at least O(logn). Finally, the authors recently constructed two-source extractors
for polylogarithmic min-entropy with one bit output [9]. Subsequently, Li [30] improved the
output length to Ω(k) bits.

1.1 Interleaved Sources

Raz and Yehudayoff [36] introduced a natural generalization of the class of independent
sources, which we call interleaved sources. We formally define this class of sources.

Notation. Let [n] denote the set {1, . . . , n}. For any string s ∈ [R]n and i ∈ [n], let si
denote the symbol in the ith coordinate of s. For any permutation t : [n]→ [n], define the
string w = (s)t ∈ [R]n such that wi = st(i) for i = 1, . . . , n. For distributions D1 and D2, we
use |D1 −D2| to denote the statistical (or variation) distance. We use D1 ≈ε D2 to denote
that |D1 − D2| ≤ ε. See Section 3 for more preliminaries. Let ◦ denote standard string
concatenation.

I Definition 1.1 (Interleaved Sources). Let X1, . . . , XC be arbitrary independent sources
on [R]n and let t : [Cn] → [Cn] be any permutation. Then Z = (X1 ◦ . . . ◦ XC)t is a
C-interleaved source.

Such sources can arise naturally is when the independent sources are communicated remotely
to an extractor and packets of bits from different sources arrive in a fixed but unknown
order. We show that extractors for interleaved sources can be used to construct extractors
for certain samplable sources, thus extending the line of work initiated by Trevisan and
Vadhan [40]. We discuss this in Section 1.2. Further, Raz and Yehudayoff [36] showed that
such extractors have applications in communication complexity (see Section 1.3) and proving
lower bounds for arithmetic circuits.
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Previous Results
The only known construction of an extractor for the class of interleaved sources is due to
Raz and Yehudayoff [36]. They constructed extractors for 2-interleaved sources on {0, 1}2n
when both sources have min-entropy rate at least 1 − β, with output length Ω(βn) and
exponentially small error.

The constant β in the result of [36] is tiny and arises from a multilinear exponential sum
estimate from [5] (which is based on sum-product estimates on finite fields [6, 26]). Thus, the
only known construction required both the sources to have almost full min-entropy. Moreover,
their analysis requires estimating a non-trivial exponential sum, and is quite involved.

Our Results
We develop a simple technique that yields explicit extractors that work for lower min-entropy
rates. In particular, our method yields explicit extractors for min-entropy rate 0.51 for
two interleaved sources, when the sources are over a finite field of large enough (constant)
characteristic.

We show how to convert any two-source extractor that is a function of the sum of its
inputs into an extractor for a 2-interleaved source. Our method of converting a two-source
extractor into an extractor for interleaved sources is based on explicit constructions of certain
combinatorial sets, which we call (r, s)-spanning sets. These spanning sets are essentially
subspace-evasive sets with different parameters than studied earlier (see Section 2.1 for more
details). It turns out that the columns of parity check matrices of linear codes with good
erasure list-decodability form spanning sets with good parameters. We discuss this in detail
later.

Next, we observe that an existing two-source extractor from [10] is a function of the sum
of the inputs. This leads to our construction of an extractor for 2-interleaved sources with
one source having min-entropy at least (1− α)n and the other source having min-entropy at
least λ logn (for some α, λ > 0). In particular, we have the following theorem.

I Theorem 1.2. For some δ > 0 and any λ > 0, there exists an explicit function ext :
{0, 1}2n → {0, 1}m, m = λ logn, such that if X, Y are independent sources on Fn2 with min-
entropy k1, k2 respectively satisfying k1 > (1− δ)n and k2 > 35 max{logn,m}, t : [2n]→ [2n]
is any permutation, then

|ext((X ◦ Y )t) ◦X − Um ◦X| = n−Ω(1).

Next, we show that for any large enough constant prime p, if the 2-interleaved source is
on [p]2n, we can extract when one source has min-entropy rate at least 0.51 and the other
source has min-entropy rate at least c logn/n.

I Theorem 1.3. There exists c > 0 such that for any δ, λ > 0 and any prime p > 2 cδ , there
exists an explicit function extp : F2n

p → {0, 1}m, m = λ logn, such that if X and Y are
independent sources on Fnp with min-entropy k1, k2 respectively, satisfying k1 > ( 1

2 + δ)n log p
and k2 >

5
δ max{logn log p,m}, t : [2n]→ [2n] is any injective map, then

|extp((X ◦ Y )t) ◦X − Um ◦X| = n−Ω(1).

We give various related constructions achieving different tradeoffs between min-entropy,
error, and output length. This is summarized in Table 1.

We show that random sets are (r, s)-spanners with high probability (see Lemma 5.10).
By our proof technique, any improved construction of an (r, s)-spanning set matching the
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7:4 New Extractors for Interleaved Sources

Table 1 Results on Extractors for 2-Interleaved Sources. The setting is as follows: Z = (X ◦Y )t is
an arbitrary 2-interleaved source on [p]2n, where X and Y are independent sources on [p]n (for some
prime p) with min-entropy k1 and k2 respectively, and t : [2n]→ [2n] is an arbitrary permutation.
Let α be a small enough constant and c a large enough constant. Also let λ > 1 be any constant.
We also list the result of [36] in Table 1.

p k1 k2 Output
Length

Error Reference Remarks

2 ≥ (1− β)n ≥ (1− β)n γn,

γ < β

2−Ω(n) [36] Not strong

2 ≥ (1− α)n ≥ 35λ logn λ logn n−α Theorem 1.2 Strong in X
2 ≥ (1− α)n ≥ 35λ logn Output in

ZM , M =
nλ

2−Ω(k2) Theorem 1.3 Strong in X

any p > 2 cδ ≥
( 1

2 + δ)n log p
≥ c1(δ, λ, p) logn λ logn n−α Theorem 6.5 Strong in X

any p > 2 cδ ≥
( 1

2 + δ)n log p
≥ ( 1

2 + δ)n log p Ω(n) n−α Theorem 6.6 Not strong

any p > 2 cδ ≥
( 1

2 + δ)n log p
≥ c2(δ, λ, p) logn 1 bit 2−Ω(k2) Theorem 6.7 Strong in X

any p > 2 cδ ≥
( 1

2 + δ)n log p
≥ c1(δ, λ, p)λ logn Ω(k2) 2−Ω(k2) Theorem 6.9 Semi-explicit

construction
2 ≥ γn, any con-

stant γ
≥ γn λ logn n−α Theorem 6.11 Assuming

Generalized
Paley Graph
Conjecture

probabilistic method will yield extractors for 2-interleaved sources on {0, 1}2n that have
essentially the same min-entropy requirement as the standard (non-interleaved) setting.

Subsequent Work
In subsequent work, Chattopadhyay and Li [8] constructed extractors for C-interleaved
sources with polylogarithmic min-entropy, for some large enough constant C. However, their
results don’t apply for C = 2, and their construction is more complicated.

1.2 Any-Order-Small-Space-Sources
Trevisan and Vadhan [40] introduced the problem of constructing seedless extractors for the
class of samplable sources (the weak random source is generated by an efficient algorithm)
and constructed explicit extractors based on some complexity-theoretic assumptions. Subse-
quently, Kamp et al. [22] introduced a class of samplable sources called small-space sources,
where the algorithm generating the source has bounded space. They constructed seedless
extractors for such sources with linear min-entropy. Most sources considered previously (for
seedless extraction) can be computed in small-space (see [22] for more details). In particular,
extractors for small-space sources also extract from bit-fixing sources and symbol-fixing
sources, and thus have applications in cryptography [23].

We introduce a natural generalization of small-space sources. For this, we recall the
definition of small-space sources from [22].

I Definition 1.4 (Small-Space Sources [22]). A space s source X on [r]n is generated by a
r-way branching program of length n and width 2s in the following way: The r-way branching
program is a layered graph with n + 1 layers, with each layer containing 2s vertices and
a single start vertex. Each edge is labeled with a variable Xj , a probability value and a
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symbol in [r]. Further all edges between the ith and (i + 1)th layer are labelled with the
same variable Xi. The output of the source is a random walk beginning at the start vertex,
assigning the symbol on the edge to the corresponding variable and finally outputting the
generated string.

Note that in the above definition, the variable assigned to an edge is known (for example,
all edges between the ith and (i + 1)th layers have the variable Xi assigned to it). We
introduce the natural generalization where the branching program is oblivious but the variable
assigned to an edge is unknown. In particular, for an unknown permutation t : [n]→ [n], all
edges between the ith and (i+ 1)th layers have the variable Xt(i) assigned to it.

We formally define this class of sources.

I Definition 1.5 (Any-Order-Small-Space-Sources). An any-order-space s source X on [r]n
is generated by an r-way branching program of length n and width 2s and a permutation
t : [n] → [n] in the following way: The r-way branching program is a layered graph with
n+ 1 layers and a single start vertex. Each edge is labeled with a variable Xj , a probability
value and a symbol in [r]. Further all edges between the ith and (i+ 1)th layer are labelled
with same variable Xt(i). The output of the source is a random walk starting from the start
vertex, assigning the symbol on the edge to the corresponding variable and finally outputting
the generated string.

Our Results
To construct extractors for the class of any-order-oblivious-small-space sources, we reduce it
to the task of extracting from 2-interleaved sources by adapting the technique of [22] to our
situation.

Consider an arbitrary any-order-space s = δn/2 source X on [p]n (for some constant p)
with min-entropy k = (1

2 + δ)n log p. By conditioning on the state of the p-way branching
program at the n

2 th layer, it follows by Lemma 4.7 that X is 2−Ω(n)-close to a source Z = (Y1◦
Y2)t, where Y1 and Y2 are independent sources on [p]n2 with min{H∞(Y1), H∞(Y2)} ≥ δn log p

8
and max{H∞(Y1), H∞(Y2)} ≥ ( 1

2 + δ
8 )n log p

2 , and t : [n]→ [n] is a permutation.
It thus follows that all our extractor constructions for 2-interleaved sources also extract

from any-order-small-space sources (by splitting the input string into two equal parts and
applying the extractor).

Using this reduction, we obtain the first explicit construction of an extractor for any-
order-oblivious-small-space sources with min-entropy rate close to 1

2 (by using the extractor
from Theorem 6.5).

I Theorem 1.6. There exists c > 0 such that for any δ ≥ 2δ1 > 0 and any prime p > 2 cδ ,
there exists an explicit function ext : [p]n → {0, 1}m, m = O(logn), such that if X is an
any-order-oblivious space s = δ1n source on [p]n with min-entropy ( 1

2 + δ)n log p, then

|ext(X)− Um| = n−Ω(1).

We note that using our reduction, the extractor from [36] can be used to extract from
any-order-small-space sources with min-entropy rate very close to 1.

1.3 Applications to Communication Complexity
Since Yao introduced communication complexity in 1978 Yao [42], there has been an extensive
amount of research done on various models of communication (see [27] for formal definitions

CCC 2016
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and background). We recall the definition of the randomized best-partition communication
complexity of an arbitrary function f : [R]2n → {0, 1}, which generalizes the usual setting
where the partition of inputs is known.

Let Alice and Bob be two players who want to collectively compute f following a protocol
Π and having access to a common random string r. Fix an arbitrary partition of the set [2n]
into 2 subsets of equal size, say S and T . For arbitrary x, y ∈ [R]n, Alice is given x and Bob
receives y and the goal is to compute f(z) with probability at least 1− ε, where z ∈ [R]2n
such that zS = x and zT = y.

For any protocol Π, the randomized communication cost of f with respect to an equi-
partition S, T ⊂ [2n] denoted by RεΠ,S,T (f), is defined to be the maximum communication
between Alice and Bob over all inputs x, y in the scenario described above. The best-partition
communication complexity of f , denoted by Rbest,ε(f) is defined as:

Rbest,ε(f) = min
Π

 min
S,T :|S|=|T |=n,
S∪T=[2n]

RεΠ,S,T (f)

 .

Lower bounds on the best-partition communication complexity of f implies lower bounds on
branching programs computing f [1] and also imply time/space tradeoffs for VLSI circuits [28].

Raz and Yehudayoff [36] proved the following lower bound.

I Theorem 1.7 ([36]). For some β > 0, there exists an explicit function f : {0, 1}2n → {0, 1}
such that the randomized best-partition communication complexity of f with error ε = 1

2−2−βn
is at least βn.

The constant β in the above theorem is, however, extremely small and arises from arguments
in additive combinatorics. A similar bound also follows from their work for inputs on [R]2n
(for any constant R) and it appears nontrivial to use their techniques to obtain bounds for
larger β.

Our Results
We obtain the following result.

I Theorem 1.8. There exists c > 0 such that for any δ, γ > 0 and any prime p > 2 cδ ,
there exists an explicit function f : [p]2n → {0, 1} such that the randomized best-partition
communication complexity of f with error ε = 1

2 − p
−γn is at least ( 1

4 − δ − γ)n log p.

We prove this using a well known technique of lower bounding randomized communication
complexity by discrepancy. Our explicit function is the 1-bit extractor constructed in
Theorem 6.7. However, we need to analyze the error of the extractor more carefully to obtain
the above bound. We prove Theorem 1.8 in Section 8.

1.4 Interleaved-Non-Malleable Extractors
Dodis and Wichs [14] introduced non-malleable extractors, where they showed that explicit
constructions of good non-malleable extractors imply almost optimal protocols for privacy
amplification, which is a very well studied problem in cryptography. Recently, non-malleable
extractors were also used in constructing explicit two-source extractors [9]. We introduce the
natural generalization of non-malleable extractors in the interleaved model.

We first recall the definition of a non-malleable extractor.
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I Definition 1.9 (Non-Malleable Extractor). A function nmExt : [R]2n → {0, 1}m is a non-
malleable extractor for min-entropy k and error ε if the following holds: If X is a source (on
[R]n) with min-entropy k, and f : [R]n → [R]n is any function with no fixed points, then

|nmExt(X ◦U[R]n) ◦nmExt(X ◦ f(U[R]n)) ◦U[R]n −Um ◦nmExt(X ◦ f(U[R]n) ◦U[R]n | ≤ ε .

The first explicit construction of a non-malleable extractors was given in [13], with subsequent
improvements of parameters achieved in [12, 29]. However these constructions require min-
entropy > 0.49n. In a recent work [7], the min-entropy required was improved to O(log2 n).

We initiate the study of non-malleable extractors in the interleaved model, where the
extractor is guaranteed to work even when symbols from the source X and tampered seed
U[R]n arrive to the non-malleable extractor in a fixed but unknown interleaved order.

We formally define interleaved-non-malleable extractors.

I Definition 1.10 (Interleaved-Non-Malleable Extractor). A function nmExt : [R]2n → {0, 1}m
is a non-malleable extractor in the any-order model for min-entropy k and error ε if the
following holds: If X is a source (on [R]n) with min-entropy k, f : [R]n → [R]n is any
function with no fixed points and t : [2n]→ [2n] is any permutation, then

|nmExt((X◦U[R]n)t)◦nmExt((X◦f(U[R]n))t)◦U[R]n−Um◦nmExt((X◦f(U[R]n))t)◦U[R]n | ≤ ε ,

where Um is independent of U[R]n .

In the above definition, when the seed has some min-entropy instead of being uniform,
we say that the interleaved-non-malleable extractor is weak-seeded.

Our Results

We give the first explicit construction of an interleaved-non-malleable extractor. Further our
non-malleable extractor is weak-seeded.

I Theorem 1.11. There exists λ > 0 such that for any δ > 0, c > c(δ) and any prime p > 2λδ ,
there exists an explicit function nmExt : F2n

p → {0, 1}m, m = O(logn), such that if X, Y are
independent sources on Fnp with min-entropy k1, k2 respectively, satisfying k1 > ( 1

2 + δ)n log p
and k2 > cm, t : [2n] → [2n] is any permutation and f : Fnp → Fnp is any function with no
fixed points, then

|nmExt((X ◦ Y )t) ◦ nmExt((X ◦ f(Y ))t) ◦ Y − Um ◦ nmExt((X ◦ f(Y ))t) ◦ Y | = n−Ω(1).

As before, if we are allowed to run the non-malleable extractor in sub-exponential time,
we can extract Ω(n) bits with error 2−Ω(n). See Theorem 7.4 for more details.

Organization

We outline our constructions in Section 2. We introduce preliminaries in Section 3 and recall
some known explicit constructions and other tools in Section 4. In Section 6, we present our
extractor constructions for 2-interleaved sources. In Section 7, we present our constructions
of interleaved-non-malleable extractors. We present the proof of Theorem 1.8 in Section 8.

CCC 2016
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2 Outline of Constructions

2.1 Extractors for 2-Interleaved Sources
Our extractor for interleaved sources exploits the existence of good 2-source extractors which
are functions of X + Y . To do this, we encode our source in a new way. Our encoding is
based on explicit constructions of certain combinatorial sets, which we call spanning vectors.

I Definition 2.1. A set of vectors S ⊆ F¯̀
p is (r, s)-spanning if the span of any r vectors of S

has dimension at least s.

Note that this is the same as a subspace-evasive set: Any (s − 1)-dimensional subspace
contains at most (r − 1) vectors in the set. However our parameters are quite different than
studied previously [19, 16].

Our explicit constructions of spanning vectors are based on using the columns of a
parity check matrix of a linear codes with good erasure list-decodability. Informally, an
(e, L)-erasure list-decodable code C satisfies the property that at most L codewords agree on
any particular subset of coordinates of size n− e. This property can then be used to lower
bound the rank of any subset of e columns of the parity check matrix of C. We refer the
reader to Section 5 for more details.

We define the following encoding based on spanning vectors.

I Definition 2.2. For any (r, s)-spanning set S = {v1, . . . , v`} ⊆ F¯̀
p of size `, the function

enc : F`p → F¯̀
p defined as

enc(z) =
∑̀
i=1

zivi

is called an (r, s)-encoding from F`p to F¯̀
p.

Consider the following setting: Let Z = (X ◦ Y )t be any 2-interleaved source on {0, 1}2n,
where X and Y are arbitrary independent sources on {0, 1}n with min-entropy k1 and k2
respectively, and t : [2n]→ [2n] is any permutation.

Our first step is to use an (n, s)-encoding enc from F2n
2 to Fn̄2 to encode Z. Thus,

enc(Z) = X ′ + Y ′ ,

where

X ′ =
n∑
i=1

Xivt(i) , Y ′ =
n∑
i=j

Yjvt(n+j) ,

where S = {v1, . . . , v2n} is an (n, s)-spanning set of vectors.
The idea is to argue that the independent sources X ′ and Y ′ (on {0, 1}n̄) have enough

min-entropy. Since (by construction) the span of the set of vectors {vt(1), . . . , vt(n)} has
dimension at least s, Lemma 4.9 implies that H∞(X ′) = k′1 ≥ k1 − (n − s). Similarly
H∞(Y ′) = k′2 ≥ k2 − (n− s).

We now associate Fn̄2 with F2n̄ . A character sum estimate of Karatsuba1 [24, 25] implies
that for any nonprincipal multiplicative character χ of F∗2n̄ ,

EX′ |EY ′ [χ(X ′ + Y ′)]| ≤ 2−δk
′
2

1 This character sum was also used in [10] for constructing explicit two-source extractors.
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whenever: k1 ≥ ( 1
2 + 3δ)n̄+ (n− s) and k2 ≥ 4

δ log n̄ log p+ (n− s).
Suppose k1 and k2 satisfy these conditions.
We then follow a standard approach and define the function:

ext(Z) = logg(X ′ + Y ′) (mod M) ,

where M = 2δk′2/2 and g is a primitive element of F2n̄ . Using a version of the Abelian XOR
lemma (see Lemma 4.5), it follows that ext is an extractor with output length δk′2/2 and
error 2−Ω(k′2). Further the extractor is strong in the source X. However, the running time of
this extractor is subexponential since it involves computing discrete logs over finite fields.
This gives us a semi-explicit extractor construction.

To get a polynomial time extractor, we compute discrete log over a smaller multiplicative
subgroup of F∗2n̄ . Let M |2n̄ − 1 and M = nλ for any constant λ (we show in Theorem 6.2
that we can ensure that there is always such an M). Define the function:

ext1(Z) = enc(Z)
2n̄−1
M .

Thus ext1(Z) is a distribution on the multiplicative subgroup G = {x 2n̄−1
M : x ∈ F∗2n̄} (of

F∗2n̄) of size M (in fact ext1(Z) is a distribution on G ∪ {0}, but Pr[ext1(Z) = 0] = 2−Ω(n)

and hence we ignore this and add this to the error). Let g be a generator of G. It now follows
by using the character sum estimate of Karatsuba [24] that the function:

ext(Z) = logg(ext1(Z))

is an extractor.
We need to find a generator g of G efficiently. For this, we use an efficient algorithm of

Shoup [39] for finding a small set of elements such that one of them is a primitive element
of F2n̄ . We use a straightforward method to find g from this set in polynomial time. We
achieve output length of λ logn and error n−Ω(1). The extractor is strong in the source X.

Reducing the Min-Entropy Rate. For some c and any δ > 0, let p > 2 cδ be any prime.
When the source Z = (X ◦ Y )t is on [p]2n, we can reduce the min-entropy rate requirement
of the source X to ( 1

2 + δ). The construction follows the same outline as above (using
(n, s)-encodings from F2n

p to Fn̄p ), and the improvement is achieved by using the fact that over
alphabet [p], we can construct (n, n)-spanning sets in Fn̄p with n̄ = n(1 + δ

5 ) (using explicit
codes from [20]). The output length of the extractor obtained is λ logn (for any constant λ)
and achieves error n−Ω(1). Further the extractor is strong in the source X.

Improving the Output Length. We improve the output length of the above extractor
to Ω(n) when both sources X and Y (on [p]n) have min-entropy at least ( 1

2 + δ)n log p.
Our construction is as follows. Let SExt be an explicit strong seeded extractor for linear
min-entropy with linear output length and polynomially small error with seed seed length
O(logn), for example from the work of [21]. Let Z[n] denote the projection of Z to the first
n coordinates and let extp denote the extractor constructed in the previous paragraph (for
2-interleaved sources on [p]2n). Our extractor is the following function:

extp,long(Z) = SExt(Z[n], extp(Z)) .

We sketch the proof of correctness. Without loss of generality, suppose that X has more
symbols in Z[n] than the source Y . Let S ⊆ [n] be the coordinates of X which are in Z[n]
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7:10 New Extractors for Interleaved Sources

and let XS denote the projection of X to the coordinates indexed by S. Let T ⊂ [n] be the
coordinates of Y which are in Z[n] and let YT denote the projection of Y to the coordinates
indexed by T . Further, we use XS ◦YT to denote Z[n]. Note that, by assumption |S| ≥ n

2 and
|T | ≤ n

2 . It follows by Lemma 4.7 that Y |YT is close to a source with min-entropy > δn log p
2

with probability 1− 2−Ω(n). Also note that XS has min-entropy ≥ δn log p.
Consider such a good fixing YT = yT . Since X and Y |YT = yT have enough min-entropy,

it follows that even under this fixing, W = extp(Z) is close to uniform. We now use the
property that extp is strong with respect to the source XS , i.e.,

|(XS ,W )− (XS , Ud)| ≤ n−Ω(1) .

Using a probability lemma from [38], it follows that for any W = w,

|XS − (XS |(W = w))| ≤ n−Ω(1) ,

(using that w is of length O(logn)).
Hence, SExt(XS ◦ YT ,W )|YT = yT is n−Ω(1)-close to the convex combination:

∑
w Pr

[(W |YT = yT ) = w]SExt(XS◦YT , w)|YT = yT . Since as observed above,W |YT = yT is n−Ω(1)-
close to Ud, it follows that SExt(XS ◦ YT ,W )|YT = yT is n−Ω(1)-close to SExt(XS ◦ yT , Ud).
The correctness now follows using the fact that SExt is a seeded extractor for linear min-
entropy.

Probabilistic Method. We show in Lemma 5.10, that a random set S ⊂ Fn2 of size 2n is an
(n, n− 2

√
n)-spanning set with high probability. Thus, using the proof technique described

above, any explicit construction of such a set will yield explicit extractors for 2-interleaved
sources on {01}2n when one source has min-entropy at least 0.51n and the other source has
min-entropy at least cn 1

2 . We leave it as an interesting open problem to explicitly construct
such a set S.2

We give formal proofs of the above extractor constructions and other related constructions
in Section 6.

2.2 Interleaved-Non-Malleable Extractors
For some c > 0 and any δ > 0, let p > 2 cδ be any prime. Let X be a source on [p]n with
min-entropy k1 and Y be a weak- eed on [p]n with min-entropy k2. Let f : [p]n → [p]n be any
function with no fixed points. Thus the non-malleable extractor has access to Z = (X ◦ Y )t
for an artitrary permutation t : [2n]→ [2n]. Let Zf denote the tampered source (X ◦ f(Y ))t.

We show that the extractor extp constructed for 2-interleaved sources (described in
the previous section) is also non-malleable. We prove it in the following way. Recall the
construction of extp:

enc(Z) =
2n∑
i=1

Zivi , ext1(Z) = enc(Z)
pn̄−1
M , extp(Z) = logg(ext1(Z)) ,

where S = {v1, . . . , v2n} is an (n, n)-spanning set in Fn̄p , M = poly(n), n̄ = n(1 + δ
5 ) and g is

a generator of the multiplicative subgroup G = {x 2n̄−1
M : x ∈ F∗2n̄}.

2 This is related to finding explicit constructions of binary erasure list-decodable codes with almost
optimal parameters. See Section 5 for more details.
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Since extp is a distribution on ZM , it follows by a version of the Abelian XOR lemma
proved in [13] that to prove non-malleability, it is enough to prove the bound:

|E[ψa(extp(Z))ψb(extp(Zf ))]| ≤ n−Ω(1) ,

for all additive characters ψa and ψb (of ZM ) such that ψa is nontrivial. When ψb is the
trivial character, the above quantity can be bounded by the fact that extp is an extractor for
2-interleaved sources. Thus, suppose both ψa and ψb are nontrivial.

It follows that

|E[ψa(extp(Z))ψb(extp(Zf ))]| = |E[χa(enc(Z))χb(enc(Zf ))]|

where χa and χb are nonprincipal multiplicative characters of F∗2n̄ .
Further, Z =

∑n
i=1Xivt(i) +

∑n
j=1 Yjvt(j) and Zf =

∑n
i=1Xivt(i) +

∑n
j=1 f(Y )jvt(j).

Thus,

Z = X ′ + Y ′ , Zf = X ′ + f ′(Y ′),

where X ′ =
∑n
i=1Xivt(i), Y ′ =

∑n
i=j Yjvt(n+j) and f ′ = L ◦ f ◦ L−1, L being the one-one

linear map L(z) =
∑n
i=1 zivt(n+i). Thus,

|E[ψa(extp(Z))ψb(extp(Zf ))]| = |E[χa(X ′ + Y ′)χb(X ′ + f ′(Y ′))]| .

Using the work of Dodis et al. [13], we can prove the required upper bound on the quantity
on the right hand side if f ′ does not have any fixed points. We indeed show that f ′ has no
fixed points (by using the fact that L is one-one and f has no fixed points). This completes
the proof sketch. The non-malleable extractor outputs λ logn bits (for any constant λ) and
achieves error n−Ω(1).

See Section 7 for more details.

3 Preliminaries

3.1 Notation
We use capital letters to denote distributions and their support. We use corresponding small
letters to denote a sample from the source.

We use [l] to denote the set {1, 2, . . . , l} and [a, b] to denote the set {a, a+ 1 . . . , b}.
We use Um to denote the uniform distribution over {0, 1}m.
For any set S, let US denote the uniform distribution on S. Also let s ∼ S denote a

uniform draw from S.
For any string s ∈ [R]n and i ∈ [n], let si denote the symbol at the ith coordinate of s.

For any one-one map t : [n]→ [n], define the string w = (s)t ∈ [R]n such that wi = st(i) for
i = 1, . . . , n. Further for any t ⊂ [n], let sT denote the |T | length string that is the projection
of s onto the coordinates indexed by T .

For any x ∈ [p]n1 , y ∈ [p]n2 and disjoint subsets S, T ⊂ [n1 + n2] with |S| = n1, |T | = n2,
we define z = xS ◦ yT such that zS = x and zT = y.

For any integer M > 0, let eM (x) = e
2πix
M .

3.2 Min-Entropy and Flat Distributions
I Definition 3.1. The min-entropy of a source X is defined as:

H∞(X) = min
s∈support(X)

{
1

log(Pr[X = s])

}
.
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7:12 New Extractors for Interleaved Sources

I Definition 3.2. A distribution (source) D is flat if it is uniform over a set S.

I Definition 3.3. A (n, k)-source is a distribution on {0, 1}n with min-entropy k.

Any (n, k)-source is a convex combination of flat sources supported on sets of size 2k [43].

3.3 Statistical distance and Convex Combination of Distributions

I Definition 3.4. Let D1 and D2 be two distributions on a set S. The statistical distance
between D1 and D2 is defined to be: |D1 −D2| = 1

2
∑
s∈S |Pr[D1 = s]− Pr[D2 = s]|.

A distribution D1 is ε-close to another distribution D2 if |D1−D2| ≤ ε, denoted D1 ≈ε D2.

I Definition 3.5. For random variables X and Y , we use X|Y to denote a random variable
with distribution: Pr[(X|Y ) = x] =

∑
y∈support(Y ) Pr[Y = y] · Pr[X = x|Y = y].

4 Some Known Explicit Constructions and Other Tools

To construct our extractors, we use a variety of tools. We first set up these tools in this
section and present our extractor constructions in the next section.

4.1 A 2-Source Extractor

The following double character sum estimate was obtained by Karatsuba [24, 25].

I Theorem 4.1 ([24, 25]). Let p be any prime. Let χ be a nonprincipal multiplicative
character of F∗pn . For any subsets A,B ⊆ Fpn , the following holds: For any integer λ > 0,

∑
a∈A

∣∣∣∣∣∑
b∈B

χ(a+ b)

∣∣∣∣∣ ≤ 2λ|A|
2λ−1

2λ (|B|p n
4λ + |B| 12 p n

2λ ) .

The above theorem can be equivalently restated as a result on 2-source extractors.

I Theorem 4.2. Let p be any prime. Let χ be a nonprincipal multiplicative character of F∗pn .
For any δ > 0 and independent sources X,Y on Fpn with min-entropy k1, k2 respectively,
satisfying k1 ≥

( 1
2 + 3δ

)
n log p and k2 ≥ (4 logn log p)/δ, we have

Ex∼X |Ey∼Y [χ(x+ y)]| ≤ 2−δk2 .

Proof. Let X,Y be flat sources on sets A and B respectively. Thus |A| = 2k1 and |B| = 2k2 .
Setting λ = n log p

δk2
in Theorem 4.1 (so that |B| = 2k2 = p

n
λ ), we have

Ex∼X |Ey∼Y [χ(x+ y)]| ≤ 2λ|A|− 1
2λ (p n

4λ + |B|− 1
2 p

n
2λ )

≤ 2λ|A|− 1
2λ (p n

4λ + 1)

< 3np− 3δn
2λ

= 2log(3n)− 3k2δn log p
2n log p < 2−δk2 .

J
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4.2 A Seeded Extractor
We recall an explicit construction of a strong seeded extractor with optimal parameters.

I Theorem 4.3 ([21]). There exists a constant α > 0 such that for all n, k ∈ N, there exists
an explicit strong seeded extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m, where d = O(log(n/
epsilon)) and m = (1− α)k.

4.3 Abelian XOR Lemmas
The following lemma is known as Vazirani’s XOR Lemma.

I Lemma 4.4. Let D be a distribution over ZM such that for every nontrivial additive
character ψ of ZM , we have |E[ψ(D)]| ≤ ε. Then, we have

|D − UM | ≤ ε
√
M .

Let σM : ZN → ZM be defined as σM (x) = x (mod M). The following general version of the
above XOR lemma was proved in [34].

I Lemma 4.5 ([34]). Let D be a distribution over ZN such that for every non-trivial additive
character ψ of ZN , we have |E[ψ(D)]| ≤ ε. Then, for any M < N , we have

|σM (D)− UM | ≤ O(ε logN
√
M) +O(M/N) .

We also record a more generalized form of the XOR Lemma [13].

I Lemma 4.6 ([13]). Let D1, D2 be distributions over ZN such that for arbitrary characters
ψ, φ of ZN , we have |E[ψ(D1)φ(D2)]| ≤ ε, whenever ψ is nontrivial. Then, for any M < N ,
we have

|(σM (D1), σM (D2))− (UM , σM (D2))| = O(ε(logN)2M) +O(M/N) .

4.4 Probability Lemmas
The following result follows from a lemma proved in [32].

I Lemma 4.7 ([32]). Let X,Y be random variables with supports S, T ⊆ V such that (X,Y )
is ε-close to a distribution with min-entropy k. Further suppose that the random variable Y
can take at most l values. Then

Pr
y∼Y

[
(X|Y = y) is 2ε1/2-close to a source with min-entropy k − log l − log

(
1
ε

)]
≥ 1− 2ε1/2.

We also need the following lemma.

I Lemma 4.8 ([38]). Let Y be a random variable taking values in {0, 1}d. Suppose |(X,Y )−
(X,Ud)| ≤ ε. Then for any y ∈ support(Y ), |X − (X|Y = y)| ≤ 2d+1ε.

I Lemma 4.9. Let X be a source on Fnp with min-entropy k. Let V = {v1, . . . , vn} be a
collection of vectors such that dim(span{V }) ≥ n − A. Then XV =

∑
i xivi : x ∼ X is a

source with min-entropy ≥ k −A log p.
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7:14 New Extractors for Interleaved Sources

4.5 Finding Primitive Elements in Finite fields
There is no known deterministic polynomial time algorithm to find any primitive element of
a finite field Fpn . However, there are efficient algorithms known for a weaker task, where the
algorithm is only required to output a small set of elements with the guarantee that one of
the elements is primitive. The following result is due to Shoup [39].

I Theorem 4.10 ([39]). Let p > 0 be any prime. For all n > 0, there exists a deterministic
procedure which takes as input n, runs in time poly(n), and outputs a set S = {a1, . . . , al},
l = poly(n), such that S contains a primitive element of Fpn .

5 Constructing Spanning Vectors

A key ingredient in our extractor construction are explicit constructions of spanning vectors.
Recall that a set of vectors S ⊆ F¯̀

p is (r, s)-spanning if the span of any r vectors of S has
dimension at least s (see Definition 2.1). Our constructions of spanning vectors are simple
and are based on explicit linear codes. Recall that a linear code of block length n, dimension
k and distance d over any field F is a k dimensional subspace over F with the number of zero
coordinates of any vector in this subspace being at most n− d. The relative rate of the code
is k/n and the relative distance is d/n.

We show that the columns of the parity check matrix of any linear code with good erasure
list-decoding radius (defined below) can be used as a spanning set.

I Definition 5.1 (Erasure List-Decoding Radius [17]). We say that a linear code [n, k, d] code
C over a finite field F is (e, L)-erasure list-decodable if for every for every r ∈ Fn−e and
T ⊆ [n] of size n− e, |{c ∈ C : cT = r}| ≤ L.

We now establish a simple connection between erasure list-decodable codes and spanning
sets.

I Lemma 5.2. Let C be a linear [n, k, d] code over a finite field F, which is (e, L)-earasure
list-decodable. Let H be parity check matrix of C, and let S be the set of columns of H. Then
S ⊂ Fn−k is a (r, s)-spanning set of size n, with r = e and s = e− log|F|(L).

Proof. Since C is (e, L)-erasure list-decodable, it follows that the size of the null space of any
e columns of the parity check matrix H is at most L. By the rank-nullity theorem, it follows
that the rank of the sub-matrix of H restricted to these e columns is at least e− log|F|(L).
Thus by definition, the set of columns of H form a (e, e− log|F|(L))-spanning set. J

The following lemma relates the minimum distance of a code to its erasure list-decoding
radius, and can be seen as an analogue of the Johnson bound for erasure list-decoding.

I Lemma 5.3 ([18]). Let C be a code with block length n and relative distance δ over an
alphabet of size q. Then for any ε > 0, C is a (e, L)-erasure list-decodable code, where
e =

(
q
q−1 − ε

)
δn and L = q

(q−1)ε .

Combining the above results, the following lemma is immediate.

I Lemma 5.4. For any δ > 0, let C be a binary linear code with relative distance 1
4 + δ, and

block length 2n. Then the columns of the parity check matrix of H form a (r, s)-spanning set,
with r = n and s = n− log

( 1
δ

)
.

Proof. Using Lemma 5.3, it follows that C is (n, 1
δ )-erasure list-decodable. Now applying

Lemma 5.2, the lemma follows directly. J
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A similar result follows for the case of q-ary linear codes.

I Lemma 5.5. For any δ > 0, let C be a linear code with relative distance q−1
2q + δ and block

length 2n over a finite field of size q. Then the columns of the parity check matrix of H form
a (r, s)-spanning set, with r = n and s = n− log

(
q

(q−1)δ

)
.

To instantiate the above results, we recall some explicit code constructions. Using
standard code concatenation, there are known constructions of binary linear codes achieving
the Zyablov bound.

I Theorem 5.6. For any ε, γ > 0, there exists an explicit construction of a binary linear code
with relative distance δ = 1

4 + ε and relative rate R ≥ max0<r<1−H(δ+ε) r
(

1− δ
H−1(1−r)−ε

)
.

Over larger alphabets, the following explicit codes were constructed in the work of
Guruswami and Indyk [20].

I Theorem 5.7 ([20]). There exists c > 0 such that for every γ > 0 and any prime p > 2
c
γ

there is an efficient construction of a linear code C ⊂ Fnp with relative distance δ = 1
2 −

1
4p

and rate R = 1
2 − γ.

Using the above codes, we now have explicit constructions of spanning sets.

I Lemma 5.8. There exist constants γ > 0 and c such that for any n, there exists an explicit
(n, n− c)-spanning set S ⊂ F2n̄ of size 2n, where n̄ = 2n(1− γ).

Proof. LetH be the parity check matrix of the explicit linear code C ⊂ F2n
2 from Theorem 5.6

for relative distance 1
4 + δ, for some small constant δ. Let S = {v1, . . . , v2n} be the set of

columns of H. Thus S ⊂ Fn̄2 , n̄ = 2n(1− γ), γ being the relative rate of the code. Applying
Lemma 5.4, the result is now immediate. J

I Lemma 5.9. There exists c > 0 such that for any γ > 0 and any prime p > 2
c
γ , there is

an efficient construction of an explicit set (n, n− C)-spanning set S ⊂ F2n̄ of size 2n, where
n̄ = n(1 + 2γ) and C = 2c

γ .

Proof. Let H be the parity check matrix of the explicit linear code C ⊂ F2n
p from Theorem 5.7

with relative distance 1
2 −

1
4p and rate 1

2 − γ . Let S = {v1, . . . , v2n} be the set of columns of
H. The result now follows by Lemma 5.5. J

We show that random sets are (r, s)-spanning sets with overwhelmingly high probability.
Guruswami’s existence proof of subspace evasive [19] targets different parameters and does
not apply here. This lemma is more related to the existence of good erasure list-decodable
codes.

I Lemma 5.10. Let S be a random subset of Fn2 of size 2n. Then,

Pr[S is not a (n, n− 2
√
n)-spanning set ] ≤ 2−n .

Proof. Let t > 0. Consider any subset R ⊂ S, |R| = n. By standard arguments, it follows
that

Pr[dim(span(R)) ≤ n− t] ≤
(
n

t

)
(2−t)t ≤

( n
2t
)t
.

Thus,

Pr[∃ R ⊂ S, |R| = n with dim(span(R)) ≤ n− t] ≤
(

2n
n

)( n
2t
)t
≤ 22n−t2+t logn

The lemma follows by setting t = 2
√
n+ 1. J
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6 Extractors for 2-Interleaved Sources

6.1 Extractors for 2-Interleaved Sources on {0, 1}2n

Our extractor constructions are based on encoding the interleaved-sources using spanning
vectors. Recall that any (r, s)-encoding from F`p → F¯̀

p is defined in the following way: For
any (r, s)-spanning set S = {v1, . . . , v`} ⊆ Fn̄p , the function enc : F`p → F¯̀

p defined as

enc(z) =
n∑
i=1

zivi

is an (r, s)-encoding from F`p → F¯̀
p.

The following is a key lemma in our extractor constructions.

I Lemma 6.1 (Main Lemma). Fix any δ > 0. Let p be any prime and let Z = (X ◦ Y )t
be any 2-interleaved source on F2n

p , where X and Y are independent sources on Fnp with
min-entropy k1 and k2 respectively, and t : [2n]→ [2n] is any permutation. Also suppose χ
is any nonprincipal multiplicative character of F∗pn̄ and enc is an arbitrary (n, s)-encoding
from F2n

p to Fn̄p . Then,

EX |EY [χ(enc(Z))]| ≤ 2−δ(k2−(n−s) log p) ,

whenever
k1 ≥ ( 1

2 + 3δ)n̄ log p+ (n− s) log p, and
k2 ≥ 4 log n̄ log p

δ + (n− s) log p.

Proof. For any z ∈ F2n
p , let

enc(z) =
2n∑
i=1

zivi

where S = {v1, . . . , v2n} ⊂ Fn̄p is (n, s)-spanning.
We have,

χ(enc(Z)) = χ

( 2n∑
i=1

Zivi

)
= χ

 n∑
i=1

Xivt(i) +
n∑
j=1

Yjvt(n+j)


Define the following independent sources:

X ′ =
n∑
i=1

xivt(i) : x ∼ X , Y ′ =
n∑
j=1

yjvt(n+j) : y ∼ Y .

Using Lemma 4.9, it follows that: k′1 = H∞(X ′) ≥ k1 − (n− s) log p and k′2 = H∞(Y ′) ≥
k2 − (n− s) log p.

Thus, we have

EX |EY [χ(enc(Z))]| = Ex∼X

∣∣∣∣∣∣Ey∼Y
χ
 n∑
i=1

xivt(i) +
n∑
j=1

yjvt(n+j)

∣∣∣∣∣∣
= EX′ |EY ′ [χ (X ′ + Y ′)]|

= 2−δk
′
2

where the last inequality follows using Theorem 4.2. J
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Using the above main lemma, we construct extractors for 2-interleaved sources on F2n
2 .

I Theorem 6.2. For some δ > 0 and any λ > 0, there exists an explicit function ext :
{0, 1}2n → [M ], M = nλ, such that if X and Y are independent sources on Fn2 with
min-entropy k1, k2 respectively satisfying k1 > (1 − δ)n and k2 > 35 max{logn, logM},
t : [2n]→ [2n] is any permutation, then

|ext((X ◦ Y )t) ◦X − UM ◦X| = 2−Ω(k2).

Proof. Let H be the parity check matrix of a code C ⊂ F2n
2 with relative distance = 1

4 + δ1
(for some small constant δ1) and constant rate R, where we fix R as follows. Let RZ be the
rate of the code from Theorem 5.6. Let ε1 << RZ be a small constant. We choose R in the
interval [RZ − ε1, RZ ] such that n̄ = 2n(1−R) is divisible by integer m, m = λ logn. Since
2RZε1n >> m, we can indeed find such an R. Fix M = 2m − 1. We note that M |2n̄ − 1.
Set δ = R

6 .
Let S = {v1, . . . , v2n} be the set columns of H. By Lemma 5.8, S is (n, n−C)-spanning,

for some constant C. We interpret each vi as being an element in the field F2n̄ . Consider the
multiplicative subgroup:

G = {x
2n̄−1
M : x ∈ F∗2n̄} .

A generator g of G can be found efficiently in the following way: Using Theorem 4.10, we
can efficiently construct a set S = {a1, . . . , al}, l = poly(n), such that one of the ai’s, say aj ,

is a primitive element of F2n̄ . Let S′ = {a
2n̄−1
M

1 , . . . , a
2n̄−1
M

l }. We note that a
2n̄−1
M

j ∈ S′ is an
element of order M . Thus, it is enough to enumerate over the elements in S′ and compute
the order of each element. Since the order of any element in S′ is bounded by M = poly(n),
the search procedure can be implemented efficiently.

Let Z = (X ◦ Y )t. For any z ∈ F2n
2 , define the functions:

enc(z) =
2n∑
i=1

zivi , ext1(z) = (enc(z))
2n̄−1
M , ext(z) = logg(ext1(z)) .

We note that ext1 and ext are efficiently computable functions. Further note that enc is
an (n, n− C)-encoding from F2n

2 to Fn̄2 .
Using the above lemma, we prove the following claim.

I Claim 6.3. Let ψ(x) = eM (βx), β 6= 0 (mod M), be any nontrivial character of the
additive group ZM .

Then,

EX |EY [ψ(ext2((X ◦ Y )t))]| ≤ 2−δk2 .

We note that Theorem 6.2 follows directly from Claim 6.3 by using Lemma 4.4. Thus it is
enough to prove Claim 6.3.

Proof of Claim 6.3. We have,

ψ(ext(z)) = eM (β logg(ext1(z)))
= χ (enc(z)) ,

where χ(x) = eM (β logg(x)) is a nonprincipal multiplicative character of F∗2n̄ of order
M

gcd(M,β) .
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Thus, we have

EX |EY [ψ(ext2((X ◦ Y )t))]| = Ex∼X |Ey∼Y [χ (enc(Z))]|
≤ 2−δk2 ,

where the inequality follows from Lemma 6.1. J

J

It is direct from the above theorem, that if we insist that the output of the above extractor
is a bit string, we have the following result.

I Theorem 6.4 (Theorem 1.2 restated). For some δ > 0 and any λ > 0, there exists an explicit
function ext : {0, 1}2n → {0, 1}m, m = λ logn, such that if X, Y are independent sources on
Fn2 with min-entropy k1, k2 respectively satisfying k1 > (1− δ)n and k2 > 35 max{logn,m},
t : [2n]→ [2n] is any permutation, then

|ext((X ◦ Y )t) ◦X − Um ◦X| = n−Ω(1).

6.2 Extracting from 2-Interleaved Sources on F2n
p

If the sources X and Y are on Fnp (for some large enough prime p), we can reduce the
min-entropy rate requirement of the source X to about 1

2 .

I Theorem 6.5 (Theorem 1.3 restated). There exists c > 0 such that for any δ, λ > 0 and
any prime p > 2 cδ , there exists an explicit function extp : F2n

p → {0, 1}m, m = λ logn, such
that if X and Y are independent sources on Fnp with min-entropy k1, k2 respectively, satisfying
k1 > ( 1

2 + δ)n log p and k2 >
5
δ max{logn log p,m}, t : [2n]→ [2n] is any injective map, then

|extp((X ◦ Y )t) ◦X − Um ◦X| = n−Ω(1).

Proof. Let S = {v1, . . . , v2n} be an explicit (n,n-C)-spanning set in Fn̄p from Lemma 5.9.
Further, as in the proof of Theorem 6.2, we choose the rate of the code in Lemma 5.9 such
that m|n̄ and m = λ logp n. Thus we can ensure that n̄ ≤ n(1 + δ

5 ).
Let M = nλ. For any z ∈ F2n

p , define the functions:

enc(z) =
2n∑
i=1

zivi , ext1(z) = (enc(z))
pn̄−1
M , ext(z) = logg(ext1(z))

where g is a generator of G = {x
pn̄−1
M : x ∈ F∗pn̄}. The proof now follows using Lemma 6.1

and Lemma 4.4. J

6.3 Improving the Output Length
The output length of the extractor in Theorem 6.5 is Ω(logn). We improve the output length
to Ω(n) bits when the min-entropy rate of both the sources (on Fnp ) are slightly more than 1

2 .
A general technique to improve the output length extractors was introduced by Shaltiel

[38]. In particular, Shaltiel showed that the function:

SExt(X, 2ext(X,Y )) ◦ SExt(Y, 2ext(X,Y ))

is 2-source extractor with longer output length, where 2ext is a 2-source extractor with short
output length and SExt is a seeded extractor set to appropriate parameters.
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However this does not work in our case since it requires access to the individual sources
X and Y . Surprisingly, we show that the construction: SExt(((X ◦ Y )t)[n], 2extp((X ◦ Y )t))
can be proved to be an extractor.

I Theorem 6.6. There exists c > 0 such that for any δ > 0 and any prime p > 2 cδ , there
exists an explicit function extp,long : F2n

p → {0, 1}m, m = Ω(n), such that if X and Y are
independent sources on Fnp with min-entropy k1, k2 respectively satisfying k1 > ( 1

2 + δ)n log p
and k2 > ( 1

2 + δ)n log p, t : [2n]→ [2n] is any injective map, then

|extp,long((X ◦ Y )t)− Um| = n−Ω(1).

Proof. Let SExt be the seeded-extractor from Theorem 4.3 with parameters β = δ, α = δ/2
and ε = n−Ω(1). Let the seed length of SExt with this setting of the parameters be d = λ logn.
Let Z = (X ◦ Y )t. Define

extp,long(Z) = SExt(Z[n], extp(Z)) ,

where extp is the extractor from Theorem 6.5 designed to extract from 2-interleaved sources
with one source at min-entropy k1 ≥ ( 1

2 + δ)n log p and the other source with min-entropy
k2 ≥ δn log p

2 with error εp = n−2λ and output length mp = λ logn.
Let S = {i ∈ [n] : Zi = Xi} and T = {j ∈ [n] : Zj = Yj}. Also let S̄ = [n] \ S and

T̄ = [n] \ T . Without loss of generality, we can assume that |S| ≥ n
2 . It follows from

Lemma 4.7 that there exists a set Goody such that for any yT ∈ Goody, YT̄ |YT = yT is
2−Ω(n)-close to a source with entropy more than δn log p

2 , and Pr[Yt ∈ Goody] > 1− 2−Ω(n).
Let yT ∈ Goody. It follows by the setting of extp that

|(extp(Z|YT = yT ) ◦XS − Um ◦XS | ≤ n−2λ .

Using Lemma 4.8, it follows that

|XS − (XS |(extp(Z|YT = yT ) = e))| ≤ n−λ+1. (1)

Let pyT = Pr[YT = yT ] and let pe|yT = Pr[extp(Z|YT = yT ) = e].
Using the above estimates, we have

|extp,long(Z)− Um| ≤
∑
yT

pyT |SExt(XS ◦ yT , extp(Z|YT = yT ))− Um|

≤

 ∑
yT∈Goody

pyT |SExt(XS ◦ yT , extp(Z|YT = yT ))− Um|

+ 2−Ω(n)

≤
∑

yT∈Goody

pyT

(∑
e

pe|yT |SExt(XS ◦ yT , e)− Um|+ n−λ+1

)
+ 2−Ω(n)

≤

 ∑
yT∈Goody

pyT |SExt(XS ◦ yT , Ud)− Um|

+ n−Ω(1)

= n−Ω(1).

where the last line follows from the fact that XS has min-entropy at least δn log p. J
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6.4 One Bit Extractors for 2-Interleaved Sources on F2n
p with

Exponentially Small Error
Note that all our extractor constructions so far have polynomially small error if we insist
that the output of the extractor is a bit string. Here we show how to achieve exponentially
small error for 2-interleaved sources on Fp, for any large enough prime. However we can
output only 1 bit.

I Theorem 6.7. There exists c > 0 such that for any δ > 0 and any prime p > 2 cδ , there exists
an explicit function ext1bit : F2n

p → {0, 1}, such that if X and Y are independent sources on Fnp
with min-entropy k1, k2 respectively, satisfying k1 > ( 1

2 + δ)n log p and k2 > (5 logn log p)/δ,
t : [2n]→ [2n] is any injective map, then

|ext1bit((X ◦ Y )t) ◦X − U1 ◦X| = 2−Ω(k2).

Proof. Let S = {v1, . . . , v2n} be an explicit (n,n-C)-spanning set in Fn̄p from Lemma 5.9.
Define the functions:

enc(z) =
2n∑
i=1

zivi , ext(z) = QR (enc(z)) ,

where QR is the quadratic character of F∗pn̄ . The proof now follows using Lemma 6.1. J

6.5 Semi-Explicit Extractors for 2-Interleaved Sources with Linear
Output Length and Exponentially Small Error

We note that the extractors constructed so far have either achieved linear output length
or exponentially small error, but not both simultaneously. We show that if we allow the
extractors to run in sub-exponential time, then we can indeed construct such extractors.
(Note that the trivial algorithm to find such an extractor runs in doubly exponential time.)
The non-polynomial running time comes from having to compute the discrete logarithm.
To reduce the running time, we can in fact use a heuristic algorithm for finding discrete
logarithm [2], which runs in time nO(logn) on fields of small characteristics under plausible
assumptions.

I Theorem 6.8. For some δ > 0, there exists a semi-explicit function ext : {0, 1}2n →
{0, 1}m, such that if X and Y are independent sources on Fn2 with min-entropy k1, k2
respectively satisfying k1 > (1 − δ)n and k2 > 10

δ max{logn,m}, t : [2n] → [2n] is any
permutation, then

|ext((X ◦ Y )t) ◦X − Um ◦X| = 2−Ω(k2).

Proof. Let S = {v1, . . . , v2n} be an explicit (n, n− C)-spanning set in Fn̄2 constructed using
Lemma 5.8. Let m = δk2

2 . For any z ∈ F2n
p , define the functions:

enc(z) =
2n∑
i=1

zivi , ext1(z) = logg(enc(z)) , ext(z) = ext1(z) (mod 2m)

where g is a generator of F∗2n̄ . The proof now follows using Lemma 6.1 and Lemma 4.5. J

Using the (n, n− C)-spanning sets from Lemma 5.9 to encode the sources, we obtain the
following theorem using Lemma 6.1.
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I Theorem 6.9. There exists c > 0 such that for any δ > 0 and any prime p > 2 cδ , there
exists a semi-explicit function ext : F2n

p → {0, 1}m, such that if X, Y are independent
sources on Fnp with min-entropy k1, k2 respectively satisfying k1 > ( 1

2 + δ)n log p and k2 >
5
δ max{logn log p,m}, t : [2n]→ [2n] is any permutation, then

|ext((X ◦ Y )t) ◦X − Um ◦X| = 2−Ω(k2).

6.6 Extractors for 2-Interleaved Sources with Linear Min-Entropy
Under the Generalized Paley Graph Conjecture

In this section, we show how to construct extractors for sources with linear min-entropy
under the widely believed Generalized Paley Graph Conjecture.

I Generalized Paley Graph Conjecture. Let χ be any non-principal multiplicative character
of F∗pn . For any constant δ > 0, and arbitrary subsets A,B ⊆ Fpn satisfying |A|, |B| > pδn,
we have∣∣∣∣∣∣

∑
a∈A,b∈B

χ(a+ b)

∣∣∣∣∣∣ ≤ p−γ(δ)n|A||B| .

Assuming the above conjecture, we obtain the following improved version of Lemma 6.1.

I Lemma 6.10. Assume the Generalized Paley graph Conjecture. Fix any δ > 0 and any
prime p. Let Z = (X◦Y )t be any 2-interleaved source on F2n

p , where X and Y are independent
sources on Fnp with min-entropy k1 and k2 respectively, and t : [2n]→ [2n] is any permutation.
Also suppose χ is any nonprincipal multiplicative character of F∗pn̄ and enc is an arbitrary
(n, s)-encoding from F2n

p to Fn̄p . Then, there exists γ = γ(δ) such that

EX |EY [χ(enc(Z))]| ≤ p−γn ,

whenever
k1 ≥ δn̄ log p+ (n− s) log p, and
k2 ≥ δn̄ log p+ (n− s) log p.

Proof. For any z ∈ F2n
p , let

enc(z) =
2n∑
i=1

zivi

where S = {v1, . . . , v2n} ⊂ Fn̄p is (n, s)-spanning.
We have,

χ(enc(Z)) = χ

( 2n∑
i=1

Zivi

)
= χ

 n∑
i=1

Xivt(i) +
n∑
j=1

Yjvt(n+j)


Define the following independent sources:

X ′ =
n∑
i=1

xivt(i) : x ∼ X , Y ′ =
n∑
j=1

yjvt(n+j) : y ∼ Y.

Using Lemma 4.9, it follows that: H∞(X ′) ≥ k1 − (n− s) log p and H∞(Y ′) ≥ k2 − (n−
s) log p.
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Thus, we have

EX |EY [χ(enc(Z))]| = Ex∼X

∣∣∣∣∣∣Ey∼Y
χ
 n∑
i=1

xivt(i) +
n∑
j=1

yjvt(n+j)

∣∣∣∣∣∣
= EX′ |EY ′ [χ (X ′ + Y ′)]|
≤ p−γn

where the last inequality follows using the Generalized Paley Graph Conjecture. J

Using the above lemma, we have the following theorem.

I Theorem 6.11. Assume the Generalized Paley Graph Conjecture. For any δ, λ > 0, there
exists an explicit function extconjecture : {0, 1}2n → {0, 1}m, m = λ logn, such that if X and
Y are independent sources with min-entropy δn each, and t : [2n]→ [2n] is any permutation,
then

|extconjecture((X ◦ Y )t)− Um| = n−Ω(1) .

Proof. Let S = {v1, . . . , v2n} be an explicit (n, n− C)-spanning set in Fn̄p constructed using
Lemma 5.8. Further, as in the proof of Theorem 6.2, we choose the rate of the code in
Lemma 5.9 such that m|n̄ and m = λ logn. Let M = nλ. For any z ∈ F2n

2 , define the
functions:

enc(z) =
2n∑
i=1

zivi , ext1(z) = (enc(z))
pn̄−1
M , ext(z) = logg(ext1(z))

where g is a generator of G = {x 2n̄−1
M : x ∈ F∗2n̄}. The proof now follows using Lemma 6.10

and Lemma 4.4. J

We note that assuming the above conjecture, the output length of the above extractor
can be improved to Ω(n) if both X and Y have min-entropy rate more than 1

4 by using the
proof method of Theorem 6.6.

7 Interleaved-Non-Malleable Extractors

In this section, we show that the proof technique developed in constructing extractors for
2-interleaved sources can be used to construct non-malleable extractors in the interleaved
model.

I Theorem 7.1. There exists λ1 > 0 such that for any δ, λ2 > 0, c > c(δ) and any prime
p > 2

λ1
δ , there exists an explicit function nmExt : F2n

p → {0, 1}m, m = λ2 logn, such
that if X, Y are independent sources on Fnp with min-entropy k1, k2 respectively, satisfying
k1 > ( 1

2 + δ)n log p and k2 > cmax{m, logn}, t : [2n] → [2n] is any injective map and
f : Fnp → Fnp is any function with no fixed points, then

|nmExt((X ◦ Y )t) ◦ nmExt((X ◦ f(Y ))t) ◦ Y − Um ◦ nmExt((X ◦ f(Y ))t) ◦ Y | = n−Ω(1).

To prove the above theorem, we recall a character sum estimate of Dodis et al. [13].
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I Theorem 7.2. For any δ > 0 and η < 1
2 , suppose S and T are non-empty subsets of

Fq satisfying |S| > q
1
2 +δ and |T | > max{( 1

η ) 7
δ , (log q)8}. Let f : Fq → Fq be any arbitrary

function with no fixed points. For arbitrary multiplicative characters χa and χb, such that
χa is nonprincipal, we have∑

y∈T

∣∣∣∣∣∑
x∈S

χa(x+ y)χb(x+ f(y))

∣∣∣∣∣ < η|S||T |.

Proof of Theorem 7.1. We use encoding based on spanning vectors. In particular, let
S = {v1, . . . , v2n} be an explicit (n, n− C)-spanning set in Fn̄p constructed using Lemma 5.9.
Further, as in the proof of Theorem 6.2, we choose the rate of the code in Lemma 5.9 such
that m|n̄ and m = λ2 logp n. Let M = nλ2 . For any z ∈ F2n

p , define the functions:

enc(z) =
2n∑
i=1

zivi , ext1(z) = (enc(z))
pn̄−1
M , ext(z) = logg(ext1(z))

where g is a generator of G = {x
pn̄−1
M : x ∈ F∗pn̄}.

We prove the following claim.

I Claim 7.3. Let ψa and ψb be arbitrary characters of the additive group ZM such that ψa
is nontrivial. Then,

Ey∼Y |Ex∼X [ψa(nmExt((X ◦ Y )t))ψb(nmExt((X ◦ f(Y ))t))]| = n−Ω(1) .

Before proving this claim, we note that Theorem 7.1 follows directly from Claim 7.3 by using
Lemma 4.6.

Proof of Claim 7.3. Let t([n]) = T1 and t([n + 1, 2n]) = T2. Since S is (n, n)-spanning,
it follows that the set {vi : i ∈ T1} consists of linearly independent vectors. Similarly
{vj : j ∈ T2} is a set of linearly independent vectors.

Let ψa(x) = eM (ax), where a 6= 0 (mod M). Also let ψb(x) = eM (bx). If b = 0 (mod M),
the claim follows from Lemma 6.1. Thus suppose b 6= 0 (mod M).

We have,

ψa(nmExt((X ◦ Y )t) = eM (a logg(ext1((X ◦ Y )t)))

= χa

 n∑
i=1

Xivt(i) +
n∑
j=1

Yjvt(n+j)


= χa (X ′ + Y ′)

where χa(x) = eM (a logg(x)) is a nonprincipal multiplicative character of F∗pn̄ of order
M

gcd(M,a) , X
′ =

∑n
i=1 xivt(i) : x ∼ X and Y ′ = L(Y ), L : Fnp → Fn̄p being the injective linear

map:

L(y) =
n∑
j=1

yjvt(n+j) .

Further,

ψb(nmExt((X ◦ f(Y ))t) = eM (b logg(ext1((X ◦ Y )t)))

= χb

 n∑
i=1

Xivt(i) +
n∑
j=1

f(Y )jYt(n+j)


= χb (X ′ + f ′(Y ′))
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where f ′ = L ◦ f ◦ L−1 and χb(x) = eM (b logg(x)) is a nonprincipal multiplicative character
of F∗pn̄ of order M

gcd(M,b) .
We claim that f ′ has no fixed points. This can be proved in the following way. Suppose

f ′(x) = x for some x. This implies that f(L−1(x)) = L−1(x) and hence f(w) = w for
w = L−1(x). This contradicts our assumption on f . Thus f ′ has no fixed points.

It now follows from Theorem 7.2 that

Ex′∼X′ |Ey′∼Y ′ [χa(x′ + y′)χb(x′ + f ′(y′))]| = n−Ω(1).

J
J

If we allow the non-malleable extractor to run in sub-exponential time, then using the
proof method of the above theorem, it can be shown that the extractor from Theorem 6.9 is
non-malleable. Thus, we have the following result.

I Theorem 7.4. There exists λ > 0 such that for any δ > 0, c > c(δ) and any prime p > 2λδ ,
there exists a semi-explicit function nmExt : F2n

p → {0, 1}m, m = Ω(n), such that if X, Y are
independent sources on Fnp with min-entropy k1, k2 respectively, satisfying k1 > ( 1

2 + δ)n log p
and k2 > cmax{m, logn}, t : [2n] → [2n] is any permutation and f : Fnp → Fnp is any
function with no fixed points, then

|nmExt((X ◦ Y )t) ◦ nmExt((X ◦ f(Y ))t) ◦ Y − Um ◦ nmExt((X ◦ f(Y ))t) ◦ Y | = 2−Ω(k2).

We note that under the Generalized Paley Graph Conjecture, we can reduce the min-entropy
requirement of the source X in Theorem 7.1 to βn, for any constant β > 0.

8 Proof of Theorem 1.8

We briefly recall some definitions from communication complexity. We refer the reader to
[27] for more background. For convenience, we define boolean functions with range {−1, 1}
(instead of {0, 1}).

I Definition 8.1. Let f : [p]2n → {−1, 1} be any function. Fix any equi-partition of [2n]
into subsets S, T . For any rectangle R and probability distribution µ on [p]2n, denote

Discµ,RS,T (f) = |Pr
µ

[f(xS , yT ) = 1 and (x, y) ∈ R]− Pr
µ

[f(xS , yT ) = −1 and (x, y) ∈ R]|.

I Definition 8.2. The discrepancy of f : [p]2n → {−1, 1} with respect to an equi-partition
of [2n] into S, T and distribution µ on [p]2n is defined as:

DiscµS,T (f) =
{

max
R

(
Discµ,RS,T (f)

)}
.

I Definition 8.3. The maximal-equipartition discrepancy of f : [p]2n → {0, 1} with respect
to a distribution µ on [p]2n is defined as:

Discµbest(f) = max
S,T :|S|=|T |=n,
S∪T=[2n]

{
DiscµS,T (f)

}
.

The following theorem provides a method to lower bound randomized best-paritition commu-
nication complexity of f using its maximal-equi-partition discrepancy. A proof can be found
in [27].



E. Chattopadhyay and D. Zuckerman 7:25

I Theorem 8.4. For every function f : [p]2n → {−1, 1}, every probability distribution µ on
[p]2n and every ε ≥ 0,

Rbest, 12−ε(f) ≥ log
(

2ε
Discµbest(f)

)
.

We now prove Theorem 1.8.

Proof of Theorem 1.8. We show that the explicit extractor from Theorem 6.7 is the required
function. Recall the construction of the extractor.

Let S = {v1, . . . , v2n} be an explicit (n,n-C)-spanning set in Fn̄p constructed using
Lemma 5.9, n̄ = n(1 + 2δ).

Define the functions:

enc(z) =
2n∑
i=1

zivi , ext(z) = QR (enc(z)) ,

where QR is the quadratic character of F∗pn̄ .
We claim that the randomized best partition discrepancy of ext with error 1

2 − p
−γn is at

least ( 1
4 − δ − γ)n log p.

Let µ be the uniform distribution on [p]2n.

I Claim 8.5. For any equi-partition of [2n] into disjoint subsets S and T ,

log
(

1
DiscµS,T (ext)

)
≥
(

1
4 − δ

)
n log p .

We note that the proof of Theorem 1.8 is direct from Claim 8.5 by using Theorem 8.4.

Proof of Claim 8.5. Fix any rectangle R = X × Y , for arbitrary subsets X,Y ⊆ [p]n. We
have,

Discµ,RS,T (ext) = |X||Y |
p2n |Ex∈X,y∈Y [QR (enc(xS ◦ yT ))]|

We note that if |X| ≤ p 3n
4 or |Y | ≤ p 3n

4 , the claim follows easily.
Thus suppose |X|, |Y | > p

3n
4 . We abuse notation and also use X,Y to denote the

flat distributions supported on the sets X and Y respectively. Define the distribution
Z = (X ◦ Y )π, where π : [2n] → [2n] is a permutation defined in the following way: Let
S = {s1, . . . , sn} and T = {t1, . . . , tn} such that s1 ≤ . . . ≤ sn and t1 ≤ . . . ≤ tn. For any
i ∈ [n], define π(i) = si and for any j ∈ [n+ 1, 2n], define π(j) = tj (thus, π([n]) = S and
π([n+ 1, 2n]) = T ).

We note that enc is an (n, n)-encoding from F2n
p → Fn̄p . Thus,

enc(Z) = X ′ + Y ′ ,

where X ′ and Y ′ are independent sources on Fn̄p with H∞(X ′) = log(|X|) and H∞(Y ′) =
log(|Y |).

Using Theorem 4.1, with λ = 1, we have

|E[QR (X ′ + Y ′))]| ≤ 2

( pn̄

|X||Y |

) 1
2

+
(
p
n̄
2

|X|

) 1
2


CCC 2016



7:26 New Extractors for Interleaved Sources

Thus,

Discµ,RS,T (ext) ≤ 2
(
|X||Y |
p2n

)( pn̄

|X||Y |

) 1
2

+
(
p
n̄
2

|X|

) 1
2


≤ 2
(
|X| 12 |Y | 12
p2n− n̄2

+ |X|
1
2

pn−
n̄
4

)
≤ 2(p−(n− n̄2 ) + p−

n
2 + n̄

4 )

Since the above estimate holds for any arbitrary rectangle R, we have

log
(

1
DiscµS,T (ext)

)
≥
(

1
4 − δ

)
n log p.

J
J

Acknowledgements. We thank anonymous referees for helpful comments, especially about
erasure list-decodable codes.

References
1 Noga Alon and Wolfgang Maass. Meanders, Ramsey Theory and Lower Bounds for Branch-

ing Programs. In IEEE Symposium on Foundations of Computer Science, pages 410–417,
1986. doi:10.1109/SFCS.1986.31.

2 Razvan Barbulescu, Pierrick Gaudry, Antoine Joux, and Emmanuel Thomé. A heuristic
quasi-polynomial algorithm for discrete logarithm in finite fields of small characteristic.
In Advances in Cryptology – EUROCRYPT 2014 – 33rd Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Copenhagen, Denmark, May
11-15, 2014. Proceedings, pages 1–16, 2014. doi:10.1007/978-3-642-55220-5_1.

3 Manuel Blum. Independent unbiased coin flips from a correlated biased source finite state
markov chain. Combinatorica, 6(2):97–108, 1986.

4 J. Bourgain. More on the sum-product phenomenon in prime fields and its appli-
cations. International Journal of Number Theory, 01(01):1–32, 2005. doi:10.1142/
S1793042105000108.

5 J. Bourgain, A. A. Glibichuk, and S. V. Konyagin. Estimates for the number of sums
and products and for exponential sums in fields of prime order. Journal of the London
Mathematical Society, 73:380–398, 4 2006. doi:10.1112/S0024610706022721.

6 Jean Bourgain, Nets Katz, and Terence Tao. A sum-product estimate in finite fields,
and applications. Geometric and Functional Analysis GAFA, 14(1):27–57, 2004. doi:
10.1007/s00039-004-0451-1.

7 Eshan Chattopadhyay, Vipul Goyal, and Xin Li. Non-malleable extractors and codes, with
their many tampered extensions. In STOC, 2016.

8 Eshan Chattopadhyay and David Zuckerman. Eshan chattopadhyay and xin li. In STOC,
2016.

9 Eshan Chattopadhyay and David Zuckerman. Explicit two-source extractors and resilient
functions. In STOC, 2016.

10 Benny Chor and Oded Goldreich. Unbiased Bits from Sources of Weak Randomness and
Probabilistic Communication Complexity. Siam Journal on Computing, 17:230–261, 1988.
doi:10.1137/0217015.

http://dx.doi.org/10.1109/SFCS.1986.31
http://dx.doi.org/10.1007/978-3-642-55220-5_1
http://dx.doi.org/10.1142/S1793042105000108
http://dx.doi.org/10.1142/S1793042105000108
http://dx.doi.org/10.1112/S0024610706022721
http://dx.doi.org/10.1007/s00039-004-0451-1
http://dx.doi.org/10.1007/s00039-004-0451-1
http://dx.doi.org/10.1137/0217015


E. Chattopadhyay and D. Zuckerman 7:27

11 Benny Chor, Oded Goldreich, Johan Hasted, Joel Freidmann, Steven Rudich, and Roman
Smolensky. The bit extraction problem or t-resilient functions. In IEEE Symposium on
Foundations of Computer Science, pages 396–407, 1985. doi:10.1109/SFCS.1985.55.

12 Gil Cohen, Ran Raz, and Gil Segev. Non-malleable extractors with short seeds and appli-
cations to privacy amplification. In IEEE Conference on Computational Complexity, pages
298–308, 2012. doi:10.1109/CCC.2012.21.

13 Yevgeniy Dodis, Xin Li, Trevor DWooley, and David Zuckerman. Privacy amplification and
nonmalleable extractors via character sums. SIAM Journal on Computing, 43(2):800–830,
2014.

14 Yevgeniy Dodis and Daniel Wichs. Non-malleable extractors and symmetric key cryptogra-
phy from weak secrets. In STOC, pages 601–610, 2009. doi:10.1145/1536414.1536496.

15 Zeev Dvir, Swastik Kopparty, Shubhangi Saraf, and Madhu Sudan. Extensions to the
method of multiplicities, with applications to Kakeya sets and mergers. In FOCS, pages
181–190, 2009. doi:10.1109/FOCS.2009.40.

16 Zeev Dvir and Shachar Lovett. Subspace evasive sets. In Proceedings of the forty-fourth
annual ACM symposium on Theory of computing, pages 351–358. ACM, 2012.

17 Venkatesan Guruswami. List decoding from erasures: bounds and code constructions.
IEEE Transactions on Information Theory, 49(11):2826–2833, 2003. doi:10.1109/TIT.
2003.815776.

18 Venkatesan Guruswami. List Decoding of Error-Correcting Codes (Winning Thesis of the
2002 ACM Doctoral Dissertation Competition), volume 3282 of Lecture Notes in Computer
Science. Springer, 2004. doi:10.1007/b104335.

19 Venkatesan Guruswami. Linear-algebraic list decoding of folded Reed-Solomon codes. In
Computational Complexity (CCC), 2011 IEEE 26th Annual Conference on, pages 77–85.
IEEE, 2011.

20 Venkatesan Guruswami and Piotr Indyk. Near-optimal linear-time codes for unique decod-
ing and new list-decodable codes over smaller alphabets. In Proceedings of the Thiry-fourth
Annual ACM Symposium on Theory of Computing, STOC’02, pages 812–821, New York,
NY, USA, 2002. ACM. doi:10.1145/509907.510023.

21 Venkatesan Guruswami, Christopher Umans, and Salil P. Vadhan. Unbalanced expanders
and randomness extractors from Parvaresh–Vardy codes. J. ACM, 56(4), 2009. doi:10.
1145/1538902.1538904.

22 Jesse Kamp, Anup Rao, Salil P. Vadhan, and David Zuckerman. Deterministic extractors
for small-space sources. Journal of Computer and System Sciences, 77:191–220, 2011. doi:
10.1016/j.jcss.2010.06.014.

23 Jesse Kamp and David Zuckerman. Deterministic Extractors for Bit-Fixing Sources and
Exposure-Resilient Cryptography. Siam Journal on Computing, 36:1231–1247, 2007. doi:
10.1137/S0097539705446846.

24 A.A. Karatsuba. On a certain arithmetic sum. Soviet Math Dokl., 12, 1172-1174,
1971. URL: https://www.researchgate.net/publication/258358497_On_a_certain_
arithmetic_sum.

25 AA Karatsuba. The distribution of values of dirichlet characters on additive sequences. In
Doklady Acad. Sci. USSR, volume 319, pages 543–545, 1991.

26 Sergei Konyagin. A sum-product estimate in fields of prime order. CoRR,
arXiv:math/0304217, 2003. URL: http://arxiv.org/abs/math/0304217v1.

27 Eyal Kushilevitz and Noam Nisan. Communication complexity. Cambridge University
Press, 1997.

28 Thomas Lengauer. Handbook of Theoretical Computer Science (Vol. A). MIT Press, Cam-
bridge, MA, USA, 1990. URL: http://dl.acm.org/citation.cfm?id=114872.114888.

CCC 2016

http://dx.doi.org/10.1109/SFCS.1985.55
http://dx.doi.org/10.1109/CCC.2012.21
http://dx.doi.org/10.1145/1536414.1536496
http://dx.doi.org/10.1109/FOCS.2009.40
http://dx.doi.org/10.1109/TIT.2003.815776
http://dx.doi.org/10.1109/TIT.2003.815776
http://dx.doi.org/10.1007/b104335
http://dx.doi.org/10.1145/509907.510023
http://dx.doi.org/10.1145/1538902.1538904
http://dx.doi.org/10.1145/1538902.1538904
http://dx.doi.org/10.1016/j.jcss.2010.06.014
http://dx.doi.org/10.1016/j.jcss.2010.06.014
http://dx.doi.org/10.1137/S0097539705446846
http://dx.doi.org/10.1137/S0097539705446846
https://www.researchgate.net/publication/258358497_On_a_certain_arithmetic_sum
https://www.researchgate.net/publication/258358497_On_a_certain_arithmetic_sum
http://arxiv.org/abs/math/0304217v1
http://dl.acm.org/citation.cfm?id=114872.114888


7:28 New Extractors for Interleaved Sources

29 Xin Li. Non-malleable extractors, two-source extractors and privacy amplification. In
FOCS, pages 688–697, 2012. doi:10.1109/FOCS.2012.26.

30 Xin Li. Improved constructions of two-source extractors. Electronic Colloquium on Compu-
tational Complexity (ECCC), 2015. URL: http://eccc.hpi-web.de/report/2015/125.

31 Chi-Jen Lu, Omer Reingold, Salil P. Vadhan, and Avi Wigderson. Extractors: optimal up
to constant factors. In STOC, pages 602–611, 2003. doi:10.1145/780542.780630.

32 Ueli M. Maurer and Stefan Wolf. Privacy amplification secure against active adversaries.
In CRYPTO, pages 307–321, 1997. doi:10.1007/BFb0052244.

33 Noam Nisan and David Zuckerman. Randomness is linear in space. Journal of Computer
and System Sciences, 52(1):43–52, 1996.

34 Anup Rao. An exposition of Bourgain’s 2-source extractor. Electronic Colloquium on
Computational Complexity (ECCC), 14(034), 2007.

35 Ran Raz. Extractors with weak random seeds. In ACM Symposium on Theory of Comput-
ing, pages 11–20, 2005. doi:10.1145/1060590.1060593.

36 Ran Raz and Amir Yehudayoff. Multilinear formulas, maximal-partition discrepancy and
mixed-sources extractors. Journal of Computer and System Sciences, 77:167–190, 2011.
doi:10.1016/j.jcss.2010.06.013.

37 Miklos Santha and Umesh V. Vazirani. Generating quasi-random sequences from semi-
random sources. Journal of Computer and System Sciences, 33:75–87, 1986. doi:10.1016/
0022-0000(86)90044-9.

38 Ronen Shaltiel. How to get more mileage from randomness extractors. In 21st Annual
IEEE Conference on Computational Complexity (CCC 2006), 16-20 July 2006, Prague,
Czech Republic, pages 46–60, 2006. doi:10.1109/CCC.2006.24.

39 Victor Shoup. Searching for primitive roots in finite fields. In Proceedings of the 22nd
Annual ACM Symposium on Theory of Computing, May 13-17, 1990, Baltimore, Maryland,
USA, pages 546–554, 1990. doi:10.1145/100216.100293.

40 Luca Trevisan and Salil P. Vadhan. Extracting Randomness from Samplable Distributions.
In IEEE Symposium on Foundations of Computer Science, pages 32–42, 2000. doi:10.
1109/SFCS.2000.892063.

41 J. von Neumann. Various techniques used in connection with random digits. Applied Math
Series, 12:36–38, 1951. Notes by G.E. Forsythe, National Bureau of Standards. Reprinted
in Von Neumann’s Collected Works, 5:768-770, 1963.

42 Andrew Chi-Chih Yao. Some complexity questions related to distributive computing. In
ACM Symposium on Theory of Computing, pages 209–213, 1979. doi:10.1145/800135.
804414.

43 David Zuckerman. Randomness-optimal oblivious sampling. Random Struct. Algorithms,
11(4):345–367, 1997. doi:10.1002/(SICI)1098-2418(199712)11:4<345::AID-RSA4>3.0.
CO;2-Z.

http://dx.doi.org/10.1109/FOCS.2012.26
http://eccc.hpi-web.de/report/2015/125
http://dx.doi.org/10.1145/780542.780630
http://dx.doi.org/10.1007/BFb0052244
http://dx.doi.org/10.1145/1060590.1060593
http://dx.doi.org/10.1016/j.jcss.2010.06.013
http://dx.doi.org/10.1016/0022-0000(86)90044-9
http://dx.doi.org/10.1016/0022-0000(86)90044-9
http://dx.doi.org/10.1109/CCC.2006.24
http://dx.doi.org/10.1145/100216.100293
http://dx.doi.org/10.1109/SFCS.2000.892063
http://dx.doi.org/10.1109/SFCS.2000.892063
http://dx.doi.org/10.1145/800135.804414
http://dx.doi.org/10.1145/800135.804414
http://dx.doi.org/10.1002/(SICI)1098-2418(199712)11:4<345::AID-RSA4>3.0.CO;2-Z
http://dx.doi.org/10.1002/(SICI)1098-2418(199712)11:4<345::AID-RSA4>3.0.CO;2-Z

	Introduction
	Interleaved Sources
	Any-Order-Small-Space-Sources
	Applications to Communication Complexity
	Interleaved-Non-Malleable Extractors

	Outline of Constructions
	Extractors for 2-Interleaved Sources
	Interleaved-Non-Malleable Extractors

	Preliminaries
	Notation
	Min-Entropy and Flat Distributions
	Statistical distance and Convex Combination of Distributions

	 Some Known Explicit Constructions and Other Tools 
	A 2-Source Extractor 
	A Seeded Extractor
	Abelian XOR Lemmas
	Probability Lemmas
	Finding Primitive Elements in Finite fields

	Constructing Spanning Vectors
	Extractors for 2-Interleaved Sources 
	Extractors for 2-Interleaved Sources on {0,1}2n
	Extracting from 2-Interleaved Sources on Fp2n
	Improving the Output Length
	One Bit Extractors for 2-Interleaved Sources on Fp2n with Exponentially Small Error
	Semi-Explicit Extractors for 2-Interleaved Sources with Linear Output Length and Exponentially Small Error
	Extractors for 2-Interleaved Sources with Linear Min-Entropy Under the Generalized Paley Graph Conjecture

	Interleaved-Non-Malleable Extractors
	Proof of Theorem 1.8

