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—— Abstract

A non-malleable extractor is a seeded extractor with a very strong guarantee — the output of a
non-malleable extractor obtained using a typical seed is close to uniform even conditioned on the
output obtained using any other seed. The first contribution of this paper consists of two new
and improved constructions of non-malleable extractors:
We construct a non-malleable extractor with seed-length O(logn - loglogn) that works for
entropy {2(logn). This improves upon a recent exciting construction by Chattopadhyay,
Goyal, and Li (STOC’16) that has seed length O(log® n) and requires entropy Q(log?n).
Secondly, we construct a non-malleable extractor with optimal seed length O(logn) for en-
tropy n/polylogn. Prior to this construction, non-malleable extractors with a logarithmic
seed length, due to Li (FOCS’12), required entropy 0.49n. Even non-malleable condensers
with seed length O(logn), by Li (STOC’12), could only support linear entropy.

We further devise several tools for enhancing a given non-malleable extractor in a black-box
manner. One such tool is an algorithm that reduces the entropy requirement of a non-malleable
extractor at the expense of a slightly longer seed. A second algorithm increases the output length
of a non-malleable extractor from constant to linear in the entropy of the source. We also devise
an algorithm that transforms a non-malleable extractor to the so-called t-non-malleable extractor
for any desired ¢t. Besides being useful building blocks for our constructions, we consider these
modular tools to be of independent interest.
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1 Introduction

A non-malleable extractor is a seeded extractor with a very strong property — the output of a
non-malleable extractor obtained using a typical seed is close to uniform even given the output
obtained using any other seed. Constructing non-malleable extractors gained a significant
attention in the literature, with original motivation coming from privacy amplification
protocols due to Dodis and Wichs [12]. Recently, non-malleable extractors were used as a key
component in the breakthrough construction of two-source extractors by Chattopadhyay and
Zuckerman [5]. Before giving the formal definition of a non-malleable extractor, we recall
the more basic notion of seeded extractors (see [30, 32] for a more elaborated discussion).
Seeded extractors, introduced by Nisan and Zuckerman [26], are central objects in
pseudorandomness with many applications in theoretical computer science. Informally
speaking, a seeded extractor is a randomized algorithm that uses only few bits of internal
randomness, called the seed, to extract pure randomness from a weak random source.
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For a formal treatment, we recall the notion of min-entropy, introduced by Chor and
Goldreich [6]. A random variable X has min-entropy k& if no point is sampled by X with
probability larger than 27 %. When X is supported on n bit strings, we say that X is an
(n, k)-source. With this notion of entropy, we recall the definition of a seeded extractor.

» Definition 1.1 (Seeded extractors). A function Ext: {0,1}" x {0,1}¢ — {0,1}™ is called a
seeded extractor for entropy k if for any (n, k)-source X and an independent random variable
Y that is uniformly distributed over {0,1}4, it holds that Ext(X,Y) ~ U,,.

In the definition above, and throughout the paper, U, stands for the uniform distribution
over m bit strings. Further, by writing A ~ B we mean that A and B are two distributions
that are close in statistical distance. Throughout the introduction we will be vague about
how close distributions are exactly, and the reader is advised to think of A, B as being, say,
1/10-close. In some cases, constants that appear in the results described in this section hide
polylog(1/e) factors, where ¢ is the error guarantee.

The second input to Ext is called the seed. The general goal is to design efficiently
computable seeded extractors with short seeds for low entropy sources, having many output
bits. By a straightforward application of the probabilistic method one can prove the existence
of a seeded extractor that works for any entropy & = (1) with seed length d = log(n)+ O(1),
and m = k — O(1) output bits. By now, following a long line of research initiated by [26] and
that has accumulated to [15, 13, 31], it is known how to construct seeded extractors with
seed length O(logn) for any entropy k = (1), with m = 0.99k output bits.

For many applications, it is desired that the output of a seeded extractor will be close to
uniform even given the seed that was used for the extraction. A seeded extractor that has
this property is called strong.

» Definition 1.2 (Strong seeded extractors). A function Ext: {0,1}" x {0,1}¢ — {0,1}™ is
called a strong seeded extractor for entropy k if for any (n, k)-source X and an independent
random variable Y that is uniform over {0,1}4, it holds that (Ext(X,Y),Y) ~ (U,,,Y).

In the definition above, U,, stands for a random variable that is uniformly distributed
over m bit strings and is independent of Y, namely, (U,,,Y") is a product distribution. The
explicit constructions mentioned above [15, 13, 31] are in fact strong. In particular, it is
known how to construct a strong seeded extractor for any entropy k = Q(1) with seed length
d = O(logn) and m = 0.99% output bits. Moreover, there is a black-box transformation that
produces a strong seeded extractor given a seeded extractor (which not necessarily strong)
with essentially the same parameters [29].

1.1 Non-malleable extractors

It is straightforward to show that if Ext: {0,1}" x {0,1}¢ — {0,1}™ is a strong seeded
extractor for entropy k then for any (n, k)-source X, there exists a small subset of seeds
B C {0,1}% such that for any y ¢ B, it holds that Ext(X,y) is close to uniform. That is, one
can associate with any source X a small set of “bad” seeds such that for any seed y that is
not bad, Ext(X,y) is close to uniform.

This dichotomic point of view on strong seeded extractors is frequently used in the
literature. Taking this view, we note that nothing in the definition of a strong seeded
extractor prevents Ext(X,y) from being arbitrarily correlated with Ext(X,y’) for some good
seeds y,y’. Namely, there is no guarantee on the correlation (or the lack of) between the
outputs of a strong seeded extractor when applied with two distinct good seeds. One can
then contemplate an even stronger notion of seeded extractors in which the output Ext(X,y)
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Table 1 Summary of explicit non-malleable extractors from the literature as well as our contri-
bution.

Construction Seed length Supported min-entropy

[12] (non-constructive) log(n) + O(1) Q(loglogn)

[25] n (0.5+9) - n for any constant § > 0

[9, 10, 17] O(logn) (0.5 +9) - n for any constant 6 > 0
0.5 — a) - n for some small constant

19 Otogn 0easbs

[4] O(log®n) Q(log? n)

Theorem 2.1 O(logn - loglogn) Q(logn)

Theorem 2.2 O(logn) Q(n/log®n) for any constant ¢ > 0

is uniform even conditioned Ext(X,y’) for any good seed y and for any y’ # y. This point
of view leads to the definition of non-malleable extractors. We choose to present next an
equivalent definition, which is the one originally suggested by Dodis and Wichs [12]. In
Lemma 4.14 we show that the original definition and the dichotomic one described above are
equivalent. On top being natural, we make frequent use of the dichotomic definition in our
proofs.

» Definition 1.3 (Non-malleable extractors). A function Ext: {0,1}" x {0,1}¢ — {0,1}™
is called a non-malleable extractor for entropy k if for any (n, k)-source X and a function
A: {0,1}¢ — {0, 1}¢ with no fixed points, it holds that

(Ext(X,Y), Ext(X, A(Y)),Y) ~ (Un, Ext(X, A(Y)),Y),
where Y is uniformly distributed over {0,1}% and is independent of X.

As suggested in [9], one can consider the generalization to ¢t-non-malleable extractors
in which Ext(X,y) is close to uniform even conditioned on Ext(X,y'),...,Ext(X,y’) for
any good seed y and arbitrary seeds y',...,y* € {0,1}¢\ {y}, or equivalently, where
Ext(X,Y") looks uniform even given Ext(X, 4;(Y)), ..., Ext(X, A;(Y)) for arbitrary functions
{A;: {0,1}¢ — {0,1}}:_, with no fixed points. Note that a strong seeded extractor
can be viewed as a 0-non-malleable extractor. Although this generalization is useful for
some applications (e.g., [5] uses t = polylogn), in this section we consider only the standard
definition of non-malleable extractors, namely, the case t = 1. In fact, one of our contributions
is an algorithm that transforms a “standard” non-malleable extractor (namely, a 1-non-
malleable extractor) to a t-non-malleable extractor, for any desired ¢ > 1, in a black-box
manner (see Lemma 2.5). Thus, it is not only for simplicity that the reader can focus on
standard non-malleable extractors.

Dodis and Wichs [12], who introduced the notion of non-malleable extractors, left the
problem of constructing such extractors to future research, yet showed that such extractors,
with great parameters, do exist. More precisely [12] proved the existence of a non-malleable
extractor with seed length d = log(n) + O(1) that supports any entropy k& = Q(loglogn),
having m = k/2 — O(1) output bits.

Since then, several explicit constructions of non-malleable extractors appeared in the
literature, as summarized in Table 1. Moreover, different objects related to non-malleable
extractors were considered in the literature as well [17, 18, 7, 1]. Up until the recent work
of Chattopadhyay, Goyal, and Li [4], all constructions of non-malleable extractors worked
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for entropy roughly n/2. The non-malleable extractor of [4] substantially improved upon
previous results by supporting min-entropy O(log2 n).

Unfortunately, unlike most previous constructions, the seed length required by the non-
malleable extractor of [4] is O(log? n) as apposed to the desired O(logn). Thus, the exciting
result of [4] sets the next natural goal at obtaining non-malleable extractors with logarithmic
seed length for poly-logarithmic or even lower entropy. Besides being a natural goal, reducing
the seed length to logarithmic in n is desired as in many constructions of pseudorandom
objects that appear in the literature (e.g., [3, 27, 16, 21, 20, 7, 8, 5, 23, 22]) one cycles over
all possible seeds of a strong seeded extractor to obtain and further process all 2¢ possible
outputs. Such techniques are inefficient whenever the seed length d is super-logarithmic.

2  Our Contribution

In this paper we give two constructions of non-malleable extractors that improve upon
existing knowledge (see Theorem 2.1 and Theorem 2.2). Moreover, we devise several tools
that we consider to be of independent interest. The first tool is an algorithm that reduces the
entropy requirement of a given non-malleable extractor at the expense of slightly increasing
its seed length (see Lemma 2.3). Our second algorithm increases the output length of a given
non-malleable extractor from constant to optimal up to constant factors, where the constants
depend only on the error guarantee (see Lemma 2.4). A third algorithm, already mentioned
above, transforms a non-malleable extractor to a t-non-malleable extractor, for any desired
t > 1 in a black-box manner (see Lemma 2.5). We now elaborate.

2.1 Two new constructions of non-malleable extractors

The first contribution of this work is a construction of a non-malleable extractor with quasi-
logarithmic seed length. Our extractor also has the advantage of supporting logarithmic
entropy, which is lower than that supported by the extractor of [4]. More precisely, we prove
the following.

» Theorem 2.1. There exists an explicit non-malleable extractor NMExt: {0,1}" x {0,1}% —
{0,1}™ with seed length d = O(logn - loglogn) for entropy k = Q(logn), having m = Q(k)
output bits.

We note that Theorem 2.1 improves upon [4] both in seed length and in the required
entropy. In particular, the seed length is optimal up to a multiplicative factor of O(loglogn).
Our second contribution is a construction of non-malleable extractors with optimal seed
length, up to a constant factor, that work for sources with entropy n/polylogn. Prior to this
construction, the lowest entropy supported by a non-malleable extractor with a logarithmic
seed length was 0.49n [19]. Furthermore, even non-malleable condensers with logarithmic
seed length [17] did not support sub-linear entropy.

» Theorem 2.2. For any constant ¢ > 0 there exists an explicit non-malleable extrac-
tor NMExt: {0,1}" x {0,1}¢ — {0,1}™ with seed length d = O(logn) for entropy k =
Q(n/log®n), having Q(k) output bits.

In fact, the parameter ¢ in Theorem 2.2 can be taken to be slightly super-constant so that
the resulted non-malleable extractor can support entropy k = n/(logn)*("). This, however,
will increase the seed length as it has exponential dependence in c.
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2.2 Reducing the entropy requirement of a non-malleable extractor

A tool that we develop for proving Theorem 2.1 and Theorem 2.2, which we find to be of
independent interest, is an algorithm that reduces the entropy requirement of a non-malleable
extractor at the expense of slightly increasing its seed length. We state here a special case
that is used in order to prove Theorem 2.2.

» Lemma 2.3. There exist constants 0 < a < 1 < ¢ and an efficient algorithm that given
a non-malleable extractor with seed length d for entropy k = Q(d**%) having ¢ output bits,
produces a non-malleable extractor with seed length O(d) for a lower entropy k' = k/d*.

For a more general and formal statement, see Lemma 6.1. We are not aware of such an
“entropy-seed tradeoff” being considered in previous works on seeded extractors. What is
known is how to increase the output length at the expense of a longer seed. Next we consider
this transformation in the context of non-malleable extractors.

2.3 Increasing the output length of a non-malleable extractor

A second tool we develop is a general method for increasing the output length of non-malleable
extractors. In fact, the algorithm in the following lemma is able to increase the output length
from a constant (more precisely, from Q(log(1/¢)), where ¢ is the desired error guarantee) to
linear in the entropy.

» Lemma 2.4. There exists a constant ¢ and an efficient algorithm that given a mon-
malleable extractor with seed length d for entropy k = Q(logn) and ¢ output bits, produces a
non-malleable extractor with seed length O(d) for the same entropy k having Q(k) output bits.

A more formal statement and its proof are given in Section 7. Increasing the output length
of seeded extractors is a useful tool introduced already by Nisan and Zuckerman [26]. Using
the framework set in [26], Li [17] showed how to increase the output length of non-malleable
extractors. However, the latter only works for high entropy sources and requires the output
length one starts with to depend on the input length n. Our technique does not follow the
method of Nisan and Zuckerman and involves new ideas which allows us to obtain our result.

2.4 From non-malleable extractors to t-non-malleable extractors

As mentioned, for some applications one requires an even stronger notion of non-malleability,
where the output of the non-malleable extractor obtained using a typical seed is uniform
even conditioned on the outputs obtained using any other ¢ seeds for some desired parameter
t>1.

Several known constructions of non-malleable extractors are in fact t-non-malleable.
Usually proving that a non-malleable extractor is a t-non-malleable extractor for some ¢ > 1
is straightforward yet requires to make some changes in the proof. In other cases (e.g., [19])
one needs to make some changes in the construction itself rather than in the analysis alone.

Our next result is a black-box reduction from t-non-malleable extractors to standard
(namely, ¢ = 1) non-malleable extractors. Having such a reduction allows one to focus only
on constructing non-malleable extractors.

» Lemma 2.5. There exists a constant ¢ and an efficient algorithm that given an integer
t > 1 and a non-malleable extractor for entropy k with seed length d and c output bits, such
that k = Q(logn + t - log(td)), produces a t-non-malleable extractor for entropy k with seed
length O(t%d).

A more general and formal statement and its proof appear in Section 10.
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3 Proof Overview

In this section we give an informal proof overview for our results. Our techniques build on
novel ideas from [4] which in turn make use of the flip-flop primitive that was introduced
in [7]. To get a broad perspective, we believe it is instructive to start by describing this
primitive.

3.1 The flip-flop primitive

Informally speaking, the flip-flop primitive uses a weak-source of randomness to break
correlations between random variables. To this end, the flip-flop also requires an “advice bit”.
More precisely, a flip-flop is a function

FF: {0,1}" x {0,1}* x {0,1} — {0, 1}™

with the following property. Assume that Y, Y’ are two arbitrarily correlated random variables
on ¢ bit strings such that Y is uniform, and let X be an (n, k)-source that is independent of
the joint distribution (Y,Y”). Then, the guarantee of the flip-flop primitive is that FF(X,Y,0)
looks uniform even conditioned on FF(X, Y’ 1). Similarly, FF(X,Y, 1) looks uniform even
conditioned on FF(X,Y”,0). So, informally speaking, as long as the advice bit, that is passed
as the third argument to the flip-flop primitive, is different in the two applications, the
flip-flop can use the weak-source X to break the correlation Y’ has with Y. As mentioned,
we think of the third input bit as an advice.

The construction of FF, which is implicit in [7], is based on alternating extraction — a
technique that was introduced by Dziembowski and Pietrzak [14] and has found several
applications in the literature since then [12, 20, 24]. We will treat FF as an atomic operation
and will not get into the details of its construction here. We remark that the construction
and its analysis are not very complicated. Nevertheless, we believe that thinking of FF as an
atomic operation is the right level of abstraction for this discussion.

Quantitatively speaking, in [7], an explicit construction of FF was given for any n as long
as £ = Q(logn) and k = Q(log¢), with m = Q(¢) output bits. In particular, if one is willing
to output O(logn) bits (which usually suffices for the purpose of compositions with other
pseudo-random objects), the required entropy from X is surprisingly low, namely, one only
needs k = Q(loglogn).

3.2 Correlation breakers with advice

Informally speaking, the flip-flop primitive breaks the correlation between random variables
as above, using a weak-source of randomness and an advice bit. At this point, it is not at all
clear where do we expect this advice to come from when designing a non-malleable extractor.
In fact, following [4], in the construction of our non-malleable extractors we will not be able
to generate an advice bit but rather an advice string. More formally, we say that a function

AdvCB: {0,1}" x {0,1}* x {0,1}* = {0,1}™

is called a correlation breaker with advice if for any two £-bit random variables Y, Y’ such that
Y is uniform and for any independent (n, k)-source X, it holds that FF(X,Y, ) looks uniform
even conditioned on FF(X,Y”, o) for any distinct o, o’ € {0,1}* (for a formal definition the
reader is referred to Definition 4.11).

Note that a correlation breaker with advice of length @ = 1 is exactly the flip-flop
primitive. Clearly, it is easier to generate long advices than shorter ones. Nevertheless, one
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can implement an AdvCB using the flip-flop primitive. We will not delve into the details
of the reduction here, and will be satisfied by stating that this reduction, as was done
implicity in [7, 4], works for every n,a with £ = Q(a - log(an)), k = Q(a - log(alogn)), and
has m = Q(logn) output bits (see Theorem 4.12 for a formal statement).

In fact, as in [4], we will need a somewhat stronger guarantee. Namely, not only
AdvCB(X,Y, «) should be uniform even conditioned on AdvCB(X,Y”, o’) with the notation set
as above, but rather AdvCB(X,Y, a) should look uniform even after given AdvCB(X’, Y, o),
where X’ may correlate arbitrarily with the (n, k)-source X, as long as the joint distribution
(X, X") is independent of the joint distribution (Y,Y”).

3.3 The [4] reduction from non-malleable extractors to advice
generators

In this section we introduce the notion of an advice generator that is implicit in [4], and
present the novel reduction by [4] from non-malleable extractors to advice generators. In the
following section we introduce our improved reduction. We start by defining the notion of an
advice generator (for a formal treatment, see Definition 5.1). A function

AdvGen: {0,1}" x {0,1}% — {0,1}°

is called an advice generator if for any X, Y as above and for any function A: {0,1}¢ — {0,1}¢
with no fixed points, it holds that AdvGen(z,y) # AdvGen(z, A(y)) with high probability
over ¢ ~ X, y ~ Y. The general idea in [4] is to compute an advice using z,y and feed that
advice to a correlation breaker with advice. Namely, given an advice generator AdvGen and
a correlation breaker with advice AdvCB, the non-malleable extractor is defined as

NMExt(z, y) = AdvCB(z, y, AdvGen(z,y)). (1)

Indeed, with high probability, the advices AdvGen(X,Y") and AdvGen(X, A(Y)) are distinct,
and so one may carelessly conclude that AdvCB guarantees that NMExt(X,Y") is uniform
even conditioned on NMExt(X, A(Y)). Of course, the problem with this argument is that
there are correlations between the advices and between X, Y.

To salvage the argument above, one needs to make sure that even conditioned on the
fixings of the advices AdvGen(X,Y), AdvGen(X, A(Y)), it holds that X and Y remain
independent. So there is a strong limitation on the type of computation that can be carried
by AdvGen. Even having such a guarantee there are a couple of problems with such a
general method for constructing a non-malleable extractor. First, we must make sure that
conditioned on the fixings of AdvGen(X,Y"), AdvGen(X, A(Y)), it holds that X has enough
entropy as required by AdvCB. Typically, this is a non-issue. Second, we need Y to remain
uniform even after these fixings. Nevertheless, by constructing an advice generator that has
a suitable interplay with AdvCB, a construction having the general form above was used
by [4] for their construction of non-malleable extractors.

Quantitatively speaking, [4] constructed an advice generator with advice length a =
O(logn) (see Section 8.1) that, using the reduction above, can be shown to yield a non-
malleable extractor for min-entropy Q(log? n) with seed length O(log® n). In the next section
we describe our improved reduction from non-malleable extractors to advice generators.

3.4 An improved reduction

We now present a different way of constructing a non-malleable extractor given an advice
generator. Our reduction will enable us to obtain non-malleable extractors with shorter seeds
that work for lower min-entropies compared to [4].
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A building block that we use is the seeded extractor of Raz [28] that works with weak-
seeds. This is a strong seeded extractor Raz: {0,1}" x {0,1}% — {0,1}™ that has the same
guarantee as standard strong seeded extractors even if the seed is not uniform, but rather
has min-entropy 0.6d. Raz [28] gave an explicit construction of such an extractor with seed
length d = O(logn) that supports any entropy k = Q(d). See Theorem 4.3 for a formal
statement.

With this building block, we are ready to define our reduction. First, we divide the
seed y to 3 parts y = y1 o y3 o y3, where y; has length d;. We only assume that d; is very
small compared to d (taking d; < d/1000 will do) and set 9d; = d3. Our reduction make
use of an advice generator AdvGen: {0,1}" x {0,1}¢ — {0,1}* that has the following extra
guarantee. For any function A: {0,1}¢ — {0,1}? with no fixed points, it holds that with
high probability over the fixing of AdvGen(X,Y"), AdvGen(X, A(Y)):

The random variables X,Y remain independent;

X has not lost more than, say, half of its min-entropy;

The random variable Y5 o Y3 has min-entropy rate 0.99.

Given any such “nice” advice generator, we define our non-malleable extractor by

NMExt(z,y) = AdvCB (y3, Raz(z, y2), AdvGen(z,y)) . (2)

It is worthwhile to compare the above definition with the reduction given by Equation (1).
The most important difference being the “switch” that was done between the roles of the
source and the seed. Namely, the seed Y to the non-malleable extractor takes the role of a
source in AdvCB as (a suffix of) it is being passed as the first argument, whereas the seed to
AdvCB is this function Raz(X,Y3) of both X and Y. This switch is what makes the reduction
more efficient in the sense that the resulted non-malleable extractor has a shorter seed and
can support a lower entropy. Informally speaking, the reason for this is that Y3 makes a
much shorter source than X as the latter consists of n bits whereas we will end up setting ¥
to have length which is logarithmic in n.

3.4.1 Analyzing the reduction

We now give a sketch of the analysis for the reduction given by Equation (2). First,
according to the definition of AdvGen, by aggregating a small error, we may assume that
a = AdvGen(X,Y) and o/ = AdvGen(X, A(Y)) are distinct fixed strings. Further, the three
extra properties of AdvGen hold.

By the third property, Y2 o Y3 has min-entropy rate 0.99. Since do = (d2 + d3)/10, we
argue that with high probability over Y3, it holds that Y5 has min-entropy rate 0.9. To see
why a claim of this sort should be true, think of the special case where 0.99 fraction of the
bits of Y5 o Y3 are distributed uniformly and independently at random, and the remaining
0.01 fraction of the bits behave adversarially. Since Y5 is a block of density 0.1 in Y5 o Y3,
even in the worst case where Y5 contains all the “bad” bits, their fraction within Y5 is at
most 0.01/0.1 = 0.1, and so 0.9 fraction of the bits in Y3 are uniform and independent of
each other, leaving Y5 with min-entropy rate of 0.9. A somewhat more careful argument can
be carried out to handle the more general case where we only assume that the min-entropy
rate of Y5 o Y3 is 0.99.

Once we have established that Y5 has min-entropy rate 0.9, we have that Raz(X,Y3) is
close to uniform. For this we use the guarantees that the entropy of X remained high after
the fixings of the advices, and that these fixings have not introduced correlations between X
and Y. In fact, since Raz is strong, with high probability over the fixing of yo ~ Y5 we have
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that Raz(X, y2) is close to uniform. Since Raz(X,ys) is a deterministic function of X, we can
further fix A(Y)2 without affecting Raz(X, y2) and without introducing correlations between
X,Y. One can then show that these fixings of Y5 and .A(Y")s can only reduce the min-entropy
of Y3 by roughly 2ds, and so the min-entropy of Y3 is at least 0.99(d2 + d3) — 2d2 > 0.8ds.
Namely, Y3 is a (d3, 0.8d3)-source.

Note that by now, Raz(X, Ys) and Raz(X, A(Y)3) are deterministic functions of X whereas
Y3, A(Y)3 are independent of X. Further, Raz(X,ys) is close to uniform and Y3 is has min-
entropy rate 0.8. Thus, the hypothesis of AdvCB is met and we conclude that NMExt(X,Y)
looks uniform even conditioned on NMExt(X, A(Y)), as desired.

3.5 Reducing the entropy requirement of non-malleable extractors

In this section we describe another contribution of this paper stated as Lemma 2.3, which
is a black-box transformation that given a non-malleable extractor with seed length d for
entropy k = Q(d'*%), produces a non-malleable extractor for a lower entropy k' = k/d®
with seed length O(d). Here a > 0 is some small universal constant. Our reduction is
composed of two steps. In the first step we construct an advice generator for entropy &’
given a non-malleable extractor for entropy k. We then apply our reduction from Section 3.4
to obtain a non-malleable extractor for entropy &’ using the advice generator.

To describe this “reversed” reduction, namely, the reduction from advice generators to
non-malleable extractors with higher entropy, we make use of several building blocks, the
first of which is a somewhere condenser. Informally speaking, this is a sequence of functions
{Cond;: {0,1}" — {0,1}"}7_, with the following property. Let 6 > 0. Then, for any (n, dk)-
source X there exists g € [r] such that Condy(X) is an (n, k)-source. It is known [2, 33] how
to construct such a somewhere condenser with r = poly(1/4) (see Theorem 4.5). Building
on [4], we also make use of a strong seeded extractor Ext and a binary error correcting code
ECC with relative distance, say, 1/4 having a constant rate.

Given these building blocks, say we are given a non-malleable extractor NMExt: {0,1}"™ x
{0,1}% — {0,1}°8™ for entropy k, where m will be set later on. Our advice generator is
defined as follows. Split the seed y to two substrings y = y; o y2, where y; is of length d;
and dy = 100d;. We define

AdvGen(z,y) = NMExt(Cond;(z),y1) o - -- o NMExt(Cond, (), 1) © ECC(y2)ext(,y1)

where we interpret the output of Ext(x,y1) as a size logm subset of the index set [Ds] and
use ECC(y2)ext(x,y,) to denote the projection of the string ECC(y2) on to that set of indices.
Note that for this we need the output of Ext to consists of O(logm - log d;) bits.

The construction above is influenced by the advice generator construction of [4]. In
particular, with the notation set above, the advice generator of [4] can be written as
AdvGen(z,y) = y1 © ECC(y2)ext(s,y,) (see Section 8.1).

3.5.1 Analyzing the entropy reduction transformation

In this section we give an informal analysis showing that the function AdvGen is indeed an
advice generator for entropy 0k. To this end we consider an (n, §k)-source X and a function
A: {0,1}¢ — {0,1}? with no fixed points. We start by fixing y; ~ Y; and v} ~ A(Y); and
consider two cases according to whether or not y; = yj.

Case 1 — y; = y}. In this case, following [4], we show that with high probability
ECC(YZ)Ext(X,yl) 7é ECC(-A(Y)2)Ext(a:,y1)a
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which in particular will guarantee that with high probability AdvGen(X,Y") # AdvGen(X, A(Y))
in this case. To see why this is true, note that since y; = y} we have that Ya # A(Y)2 and so
the two codewords ECC(Y3), ECC(A(Y)2) agree on at most 3/4 of the indices. In particular,
by projecting each of these codewords to a random set of indices of size logm, we will get
the same string with a probability bound that decrease polynomially with 1/m. Of course,
we do not (and cannot) sample a truly uniform projection. Nevertheless, as Ext is a strong
seeded extractor, for most fixings of y; it holds that Ext(X,y;) is close to a random subset
of [Ds] which suffices for the argument above to go through.

Case 2 —y; # y;. Foranalyzing this case, we recall that NMExt is a non-malleable extractor
for entropy k and that there is some g € [r] for which Condy(X) has min-entropy k. Using
the dichotomic point of view on non-malleable extractors (see Lemma 4.14), one can show
that NMExt(Cond,(X),y1) is close to uniform even conditioned on NMExt(Condy(X), 1) for
most choices of ;. In particular, the probability that the two strings NMExt(Condy(X), y1),
NMExt(Cond,(X), y;) are equal is polynomially small in m.

By taking m = poly(1/e) we can bound the error of AdvGen by e. This choice of m yields
an advice length a = O(r - log(1/¢)) = poly(1/9) - log(1/e).

So far we gave an informal proof showing that AdvGen is an advice generator for entropy
0k. Recall that to use the advice generator in our reduction from Section 3.4, AdvGen
must have some extra guarantees. Perhaps the most subtle of which is that conditioned
on the fixings of AdvGen(X,Y"), AdvGen(X,A(Y)), the random variables X,Y must remain
independent. We assure the reader that this is the case with our construction due to the
“alternating” fashion of the computation involving AdvGen, though we will skip the details in
this proof overview and refer the reader to Section 6.

3.6 Increasing the output length of a non-malleable extractor

In this section we briefly describe our algorithm that increases the output length of a given
non-malleable extractor described in Lemma 2.4. Being a bit more formal, for a desired error
guarantee €, we show how to increase the output length of a non-malleable extractor NMExt
from O(log(1/¢)) to Q(k/log(1/e)). Here, k is the entropy supported by NMExt. As with
our entropy reduction transformation described in Section 3.5, here too the general idea is
to use the given non-malleable extractor NMExt so to obtain an advice generator AdvGen
which in turn will be used to construct the desired non-malleable extractor NMExt" using
our reduction from Section 3.4. More precisely, borrowing notation from previous sections,
we define

AdvGen(z,y) = NMExt(z, y1) 0 ECC(y2)Ext(a,y:)-

A similar argument to the one used in Section 3.5 shows that AdvGen is an advice
generator for entropy k (in fact, this is a special case of the argument from Section 3.5).
In particular, we show that if one aims for an error guarantee ¢, it suffices that the output
length of NMExt consists of O(log(1/¢)) bits. At this point we can apply the reduction from
Section 3.4 to AdvGen. This results in a non-malleable extractor NMExt’ that supports the
same entropy k, though it has the advantage of having output length Q(k/log(1/¢)).

3.7 Proof overview for Theorem 2.1 and Theorem 2.2

In this section we give an overview for the proofs of Theorem 2.1 and Theorem 2.2, starting
with the first theorem. As our starting point, we apply our improved reduction given in



G. Cohen

Section 3.4 with the advice generator of [4]. This already yields a non-malleable extractor
with seed length O(logn - loglogn) that supports entropy Q(logn - loglogn). Our second
step is to apply the entropy reduction transformation so to obtain a second non-malleable
extractor that supports a lower entropy. By choosing the parameters correctly, one can show
that the resulted non-malleable extractor can support entropy 2(logn) while maintaining a
seed of length O(logn-loglogn). As our final step we apply the transformation for increasing
the output length that was described in the previous section to yield Theorem 2.1.

For the proof of Theorem 2.2, our starting point is any of the constructions of non-
malleable extractors for entropy 0.6n with seed length O(logn) (e.g., the one given in
Theorem 4.6) and denote this non-malleable extractor by NMExtg. We now apply the entropy
reduction transformation described in Section 3.5 to NMExtq so to obtain a new non-malleable
extractor, which we denote by NMExt;. Working out the parameters, NMExt; can be shown
to support entropy n/(logn)* for some small universal constant « > 0. Further, NMExt; has
seed length di = O(d) = O(logn).

We continue by applying the entropy reduction transformation again, this time to NMExt;
and obtain a new non-malleable extractor NMExty that has seed length O(d;) = O(logn)
and supports entropy n/(log n)20‘. By repeating this process, we construct a sequence of
non-malleable extractors where each extractor supports lower entropy than its predecessor.
After r steps, we obtain a non-malleable extractor NM