
Pseudorandomness When the Odds are Against
You
Sergei Artemenko∗1, Russell Impagliazzo†2, Valentine Kabanets‡3,
and Ronen Shaltiel§4

1 Department of Computer Science, University of Haifa, Haifa, Israel
sartemen@gmail.com

2 Department of Computer Science, University of California, San Diego, USA
russell@cs.ucsd.edu

3 School of Computing Science, Simon Fraser University, Burnaby, Canada
kabanets@cs.sfu.ca

4 Department of Computer Science, University of Haifa, Haifa, Israel
ronen@cs.haifa.ac.il

Abstract
Impagliazzo and Wigderson [25] showed that if E = DTIME(2O(n)) requires size 2Ω(n) circuits,
then every time T constant-error randomized algorithm can be simulated deterministically in time
poly(T). However, such polynomial slowdown is a deal breaker when T = 2α·n, for a constant
α > 0, as is the case for some randomized algorithms for NP-complete problems. Paturi and
Pudlak [30] observed that many such algorithms are obtained from randomized time T algorithms,
for T ≤ 2o(n), with large one-sided error 1− ε, for ε = 2−α·n, that are repeated 1/ε times to yield
a constant-error randomized algorithm running in time T/ε = 2(α+o(1))·n.

We show that if E requires size 2Ω(n) nondeterministic circuits, then there is a poly(n)-
time ε-HSG (Hitting-Set Generator) H : {0, 1}O(logn)+log(1/ε) → {0, 1}n, implying that time T
randomized algorithms with one-sided error 1−ε can be simulated in deterministic time poly(T)/ε.
In particular, under this hardness assumption, the fastest known constant-error randomized
algorithm for k-SAT (for k ≥ 4) by Paturi et al. [31] can be made deterministic with essentially
the same time bound. This is the first hardness versus randomness tradeoff for algorithms for
NP-complete problems. We address the necessity of our assumption by showing that HSGs with
very low error imply hardness for nondeterministic circuits with “few” nondeterministic bits.

Applebaum et al. [2] showed that “black-box techniques” cannot achieve poly(n)-time com-
putable ε-PRGs (Pseudo-Random Generators) for ε = n−ω(1), even if we assume hardness against
circuits with oracle access to an arbitrary language in the polynomial time hierarchy. We in-
troduce weaker variants of PRGs with relative error, that do follow under the latter hardness
assumption. Specifically, we say that a function G : {0, 1}r → {0, 1}n is an (ε, δ)-re-PRG for a
circuit C if (1 − ε) · Pr[C(Un) = 1] − δ ≤ Pr[C(G(Ur) = 1] ≤ (1 + ε) · Pr[C(Un) = 1] + δ. We
construct poly(n)-time computable (ε, δ)-re-PRGs with arbitrary polynomial stretch, ε = n−O(1)

and δ = 2−nΩ(1) . We also construct PRGs with relative error that fool non-boolean distinguishers
(in the sense introduced by Dubrov and Ishai [11]).

Our techniques use ideas from [30, 43, 2]. Common themes in our proofs are “composing”
a PRG/HSG with a combinatorial object such as dispersers and extractors, and the use of
nondeterministic reductions in the spirit of Feige and Lund [12].

1998 ACM Subject Classification F.1.2 Modes of Computation

∗ Research supported by ERC starting grant 279559.
† Research supported by the Simons Foundation and NSF grants #CNS-1523467 and CCF-121351.
‡ Research supported by an NSERC Discovery grant.
§ Research supported by BSF grant 2010120, ISF grant 864/11, and ERC starting grant 279559.

© Sergei Artemenko, Russell Impagliazzo, Valentine Kabanets,
and Ronen Shaltiel;
licensed under Creative Commons License CC-BY

31st Conference on Computational Complexity (CCC 2016).
Editor: Ran Raz; Article No. 9; pp. 9:1–9:35

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

9:2 Pseudorandomness When the Odds are Against You

Keywords and phrases Derandomization, pseudorandom generator, hitting-set generator, rela-
tive error

Digital Object Identifier 10.4230/LIPIcs.CCC.2016.9

1 Introduction

Derandomization, the construction of deterministic algorithms from randomized algorithms, is
an area where there are tight connections between lower bounds and algorithm design. Indeed,
strong enough circuit lower bounds can be used to construct pseudo-random generators that
can then be used to simulate randomized algorithms with only polynomial overhead. This is
often summarized as saying, “Randomness is never essential for efficient algorithm design”, if
such lower bounds exists.

However, there are many algorithmic applications where a simulation with polynomial
overhead is next to useless. For example, consider the best algorithms for different NP-
complete problems such as different variations of SAT. Many of the best algorithms for these
problems are in fact randomized or careful derandomizations of probabilistic algorithms
[32, 31, 34, 22, 33, 1]. If the Exponential Time Hypothesis is true, these problems all
require exponential time, so a polynomial slowdown might take an algorithm from best
possible to worse than exhaustive search. On the other hand, as observed in [30], most of
these randomized algorithms are in fact fast algorithms, but with only a very small success
probability ε. [30] call such algorithms OPP algorithms, for One-sided error Probabilistic
Polynomial Time. (These algorithms can then be repeated O(1/ε) times to yield a final
randomized algorithm with constant success probability).

It is not to hard to see that OPP algorithms can be derandomized in time comparable to
the running time of the final randomized algorithm, if we can construct efficient pseudorandom
generators (or hitting set generators) which work for a very low error parameter ε using short
seeds.

In this paper, we address the question of constructing such generators. We give construc-
tions of pseudorandom generators and hitting-set generators that get essentially optimal
simulations of OPP, and go beyond to also consider algorithms that have two-sided error that
only slightly favors the correct answer. In order to get these generators, we need stronger lower
bounds, lower bounds against nondeterministic circuits rather than deterministic circuits.
However, we also show that such lower bounds are necessary for strong derandomization of
OPP algorithms.

As we explain later, in some settings there are black-box impossibility results on construct-
ing generators for very low error parameter. In this paper, we also introduce new notions
of pseudorandom generator with “relative error” which can be used to replace low-error
generators in certain settings. We give constructions of such generators, and discuss potential
applications.

1.1 Pseudorandom generators and hitting-set generators
We start by reviewing the definitions of pseudorandom generators and hitting set generators.

I Definition 1.1 (PRGs and HSGs). Let C be a class of boolean functions C : {0, 1}n → {0, 1}.
A function G : {0, 1}r → {0, 1}n is:

an ε-PRG for C if for every C in C, |Pr[C(G(Ur)) = 1]− Pr[C(Un) = 1]| ≤ ε.
an ε-HSG for C if for every C in C s.t. Pr[C(Un) = 1] > ε, there exists x ∈ {0, 1}r s.t.
C(G(x)) = 1.

http://dx.doi.org/10.4230/LIPIcs.CCC.2016.9

S. Artemenko, R. Impagliazzo, V. Kabanets, and R. Shaltiel 9:3

We will be interested in generators that fool circuits of size nb for some fixed constant b,
and run in time poly(nb). In the case of logarithmic seed length (r = O(logn)) this is often
referred to as the Nisan-Wigderson setting. We will typically be interested in larger seed
length (which is required to handle low error ε).

Such PRGs imply circuit lower bounds, and so in the current state of knowledge, we cannot
construct them unconditionally. A long line of research [9, 45, 29, 5, 21, 25, 41, 24, 35, 44] is
devoted to constructing such PRGs under the weakest possible hardness assumptions. An
important milestone of this line of research is the hardness versus randomness tradeoff of
Impagliazzo and Wigderson [25].

I Definition 1.2 (E is hard for exponential size circuits). We say that E is hard for exponential
size circuits, if there exists a language L in E = DTIME(2O(n)) and a constant β > 0, such
that for every sufficiently large n, circuits of size 2βn fail to compute the characteristic
function of L on inputs of length n.

I Theorem 1.3 ([25]). If E is hard for exponential size circuits, then for every constant
b > 1 there exists a constant c > 1 such that for every sufficiently large n, there is a function
G : {0, 1}r → {0, 1}n that is an n−b-PRG for size nb circuits, with r = c logn. Furthermore,
G is computable in time poly(nb).

By a standard probabilistic argument, for every ε > 0, there exists a (nonexplicit) ε-PRG
with seed length r = c logn+O(log(1/ε)) for size nb circuits. In particular, if we shoot for
PRGs with “polynomial stretch” (that is, r = nΩ(1)), we can expect to get error ε = 2−nΩ(1)

that is exponentially small. The known proofs of Theorem 1.3 do not achieve these parameters.
In fact, they cannot achieve negligible error of ε = n−ω(1) if the constructed PRG runs in time
poly(n), even if we allow large seed length r = Ω(n).1 It is natural to ask if we can construct
poly(n)-time computable ε-PRGs or ε-HSGs with ε = n−ω(1)? Under what assumptions?
Can we get ε to be exponentially small?

1.2 Limitations on deterministic reductions for PRGs and HSGs
There is a formal sense in which “black-box” proofs of Theorem 1.3 cannot achieve negligible
ε [38, 18, 3]. It is instructive to explain this argument. Loosely speaking, “black-box” proofs
are made of two components: The first is a construction, this is an oracle procedure Con(·)

which implements the PRG G(x) = Conf (x) given oracle access to the hard function f

that is guaranteed in the hardness assumption. Note that as G runs in time poly(n), the
construction cannot afford to query f ∈ E on inputs of length larger than ` = c logn (for
some constant c > 1). On inputs of this length, the maximal possible circuit complexity of f
is at most 2` = nc.

1 In this paper we are mostly interested in PRGs that run in time poly(n), that is polynomial in the
output length. Another natural notion is allowing PRGs to run in time exponential in the seed length
(that is time 2O(r)). These notions differ in the case of “polynomial stretch” (r = nΩ(1)) which will be
the setting that we will consider. PRGs which run in time exponential in the seed length make sense in
most applications which run the PRGs over all 2r seeds. An exception is the case of “SAT algorithms”
where r may be α · n for a constant α < 1 that is close to 1, and there may be a substantial difference
between running 2r instantiations of a time poly(n) PRG, (which gives time less than 2n) compared to
2r instantiations of a PRG running in time larger than 2r, which takes time at least 2r · 2r > 2n. Other
applications in which there is a big difference between 2O(r) time PRGs and poly(n) time PRGs are
applications that run the PRG only once. In such cases, it is typically important that the PRG run
in time polynomial in the output length (so that the application runs in polynomial time). We will
elaborate on several such applications in this paper.

CCC 2016

9:4 Pseudorandomness When the Odds are Against You

The second component in the proof is a reduction Red(·), which is given black-box access to
a circuit D that is not fooled by the PRG, and implements a small circuit C : {0, 1}` → {0, 1}
for f (contradicting the hardness assumption). By the discussion above, in order to contradict
the hardness assumption, the reduction must produce a circuit C of size less than nc. However,
note that in some sense, the reduction needs to distinguish between a useless function D that
always answers zero, and a useful function D that is not fooled by the PRG, and answers
one with probability ε. It intuitively follows that Red (which only has black-box access to
D) must query D at least 1/ε times. (This part of the argument can be made formal, see
[38, 18, 3], and also applies for constructions of HSGs). In particular, the circuit C that is
implemented by Red has size ≥ 1/ε. This gives 1/ε ≤ nc which implies ε ≥ n−c.

The same kind of limitations apply in the closely related problem of hardness amplification
(there the goal is to start with a worst-case hard lower bound (such as the assumption E is hard
for exponential size circuits) and produce an average-case hard function. An influential work
of Feige and Lund [12] shows that nondeterministic reductions can be used to bypass these
limitations. Specifically, we may relax the requirement that Red implements a (deterministic)
circuit, and allow Red to implement a nondeterministic circuit. Indeed, nondeterminism allows
Red to make exponentially many queries to D (on different “nondeterministic computations
paths”) circumventing the limitation above. The price we pay is that we need to assume
a hardness assumption against nondeterministic circuits. This approach indeed leads to
hardness amplification with negligible ε under hardness assumptions for nondeterministic
circuits [43, 10, 2].

1.3 Hardness assumptions for nondeterministic circuits
We start by defining various notions of nondeterministic circuit.

I Definition 1.4 (nondeterministic circuits with few nondeterministic bits). We say that a
function f : {0, 1}n → {0, 1} is computed by a size s circuit D with k nondeterministic bits
if there exists a size s deterministic circuit C : {0, 1}n × {0, 1}k → {0, 1} such that for every
x ∈ {0, 1}n

f(x) = 1 ⇔ ∃y ∈ {0, 1}k s.t. D(x, y) = 1.

I Definition 1.5 (oracle circuits and Σi-circuits). Given a boolean function A(x), an A-circuit
is a circuit that is allowed to use A gates (in addition to the standard gates). An NP-circuit
is a SAT-circuit (where SAT is the satisfiability function) a Σi-circuit is an A-circuit where
A is the canonical ΣPi -complete language. The size of all circuits is the total number of wires
and gates.2

Note for example that an NP-circuit is different than a nondeterministic circuit. The
former is a nonuniform analogue of PNP (which contains coNP) while the latter is an
analogue of NP. Hardness assumptions against nondeterministic/NP/Σi circuits appear in
the literature in various contexts of derandomization [27, 28, 43, 15, 35, 19, 36, 6, 37, 10, 4, 2].
Typically, the assumption is of the following form: E is hard for exponential size circuits
(where the type of circuits is one of the types discussed above). More specifically:

2 An alternative approach is to define using the Karp-Lipton notation for Turing machines with
advice. For s ≥ n, a size sΘ(1) deterministic circuit is equivalent to DTIME(sΘ(1))/sΘ(1), a
size sΘ(1) nondeterministic circuit is equivalent to NTIME(sΘ(1))/sΘ(1), a size sΘ(1) NP-circuit
is equivalent to DTIMENP(sΘ(1))/sΘ(1), a size sΘ(1) nondeterministic NP-circuit is equivalent to
NTIMENP(sΘ(1))/sΘ(1), and a size sΘ(1) Σi-circuit is equivalent to DTIMEΣPi (sΘ(1))/sΘ(1).

S. Artemenko, R. Impagliazzo, V. Kabanets, and R. Shaltiel 9:5

I Definition 1.6. We say that E is hard for exponential size circuits of type X if there exists
a problem L in E = DTIME(2O(n)) and a constant β > 0, such that for every sufficiently
large n, circuits of type X with size 2βn fail to compute the characteristic function of L on
inputs of length n.

Such assumptions can be seen as the nonuniform and scaled-up versions of assumptions of
the form EXP 6= NP or EXP 6= ΣP

2 (which are widely believed in complexity theory). As such,
these assumptions are very strong, and yet plausible - the failure of one of these assumptions
will force us to change our current view of the interplay between time, nonuniformity and
nondeterminism.3

It is known that Theorem 1.3 extends to every type of circuits considered in Definitions 1.4,
Definition 1.5 and their combinations.

I Theorem 1.7 ([25, 27, 35, 36]). For every i ≥ 0, the statement of Theorem 1.3 also holds
if we replace every occurrence of the word “circuits” by “Σi-circuits” or alternatively by
“nondeterministic Σi-circuits”.

1.4 A construction of HSGs with low error
Our first result is a construction of a poly(n)-time computable ε-HSG that works for small
ε. We rely on the assumption that E is hard for exponential size nondeterministic circuits.
(Note that by the earlier discussion we cannot expect to get this with hardness against
deterministic circuits).

I Theorem 1.8 (HSG with seed length r = log(1/ε) +O(logn)). If E is hard for exponential
size nondeterministic circuits then for every constant b > 1 there exists a constant c > 1
such that for every sufficiently large n, there is a function G : {0, 1}r → {0, 1}n that is an
ε-HSG for size nb circuits, with r = log(1/ε) + c logn. Furthermore, G is computable in time
poly(nb).

We stress that the seed length achieved in Theorem 1.8 matches that of nonexplicit HSGs
that exist by a probabilistic argument: the dependence of r on ε is an additive factor of
1 · log(1/ε). In some settings, achieving this correct dependence (with the right constant) for
a polynomial time computable HSG is crucial (as seen in the example of the next section).4

1.5 Derandomizing randomized algorithms with large one sided error
By going over all seeds of the HSG, we can deterministically simulate randomized polynomial
time algorithms with large one-sided error of 1− ε(n) in time 2r · poly(n) = poly(n)/ε(n).
This is stated precisely in the theorem below.

I Theorem 1.9. Let A be a time T (n) ≥ n randomized algorithm that accepts some language
L with one sided error of 1− ε(n). That is, for every sufficiently large n and x ∈ {0, 1}n:

x ∈ L ⇒ Pr[A(x) = 1] ≥ ε(n).

3 Another advantage of constructions based on this type of assumptions is that any E-complete problem
(and such problems are known) can be used to implement the constructions, and the correctness of the
constructions (with that specific choice) follows from the assumption. We do not have to consider and
evaluate various different candidate functions for the hardness assumption.

4 We remark that when applying the probabilistic argument for PRGs we get an additive factor of
2 · log(1/ε) whereas for HSGs it is possible to get 1 · log(1/ε). This difference is crucial for the application
of derandomizing OPP algorithms as we explain below.

CCC 2016

9:6 Pseudorandomness When the Odds are Against You

x 6∈ L ⇒ Pr[A(x) = 1] = 0.
If E is hard for exponential size nondeterministic circuits then there is a deterministic
algorithm running in time poly(T (n))/ε(n) that accepts L.

Note that if T (n)� 1/ε(n) then the slowdown is polynomial in T (n) but linear in 1/ε(n).
As we explain below, in many algorithms in the literature, T (n) = poly(n) and ε(n) = 2−α·n
for some constant 0 < α < 1. Note that even the more modest goal of amplifying the success
probability of A to obtain a randomized algorithm with constant one-sided error, requires
running time of poly(T (n))/ε(n) which is poly(n) · 2α·n for the choices above. We achieve
the same time with a deterministic algorithm.5

Moreover, if we were to amplify A, and then derandomize it using known hardness versus
randomness tradeoffs, we would end up with a deterministic algorithm running in time at
least poly(n)/ε(n)c for a large constant c. Such a slowdown is a “deal breaker” if ε is very
small (say ε = 2−α·n) for a constant α that is only slightly smaller than one. In the next
section we observe that this is the case in many randomized k-SAT algorithms.

1.6 Deterministic k-SAT algorithms
Paturi and Pudlak [30] observed that many of the randomized algorithms in the literature
for solving k-SAT and other NP-complete problems (in particular the algorithm of Paturi,
Pudlak and Zane [32], Paturi et al. [31], Schöning [34]) are based on designing probabilistic
polynomial-time (or subexponential-time) algorithms with one-sided error, whose success
probability may be exponentially small. To improve the success probability to a constant, one
repeats the original randomized algorithm the inverse of the success probability times. The
running time of this new randomized algorithm is dominated by the inverse of the success
probability of the original algorithm.

For example, suppose A is a SAT-algorithm running in time T (n) = 2o(n) that, given a
satisfiable formula, produces a satisfying assignment with probability at least ε = 2−α·n (for
some constant 0 < α < 1). The algorithm with constant success probability is produced by
repeating A O(1/ε) times, and so has the running time 2(α+o(1))·n.

By Theorem 1.9, all such algorithms can be made deterministic (with essentially the
same time bounds) under the assumption that E is hard for nondeterministic circuits. This
is the first application of the hardness versus randomness paradigm that yields a nontrivial
derandomization of these algorithms.

Some of these randomized algorithms (and in particular the PPZ algorithm [32] and
Schöning’s algorithm [34]) have deterministic versions. However the fastest known algorithms
for k-SAT for k ≥ 4 due to Paturi et al. [31] does not have a matching deterministic algorithm.
We get the first derandomization result for these k-SAT algorithms from [31], based on circuit
complexity assumptions.

For each k ≥ 4, let us denote by TPPSZ
k (n) ≤ 2o(n) the running time of the randomized

PPSZ algorithm [31], and let 2−αPPSZ
k ·n (where 0 < αPPSZk < 1 is a constant specified in

[31]) be its success probability. The fastest known constant-error randomized algorithm for
k-SAT, for k ≥ 4, is obtained by repeating the above algorithm the inverse success probability
number of times, resulting in the running time

2α
PPSZ
k ·n · TPPSZ

k (n) ≤ 2(αPPSZ
k +o(1))·n.

5 The assumption in Theorem 1.9 can be relaxed to “E is hard for size nω(1) nondeterministic circuits”
and then, the final running time will be 2T (n)o(1)

/ε(n).

S. Artemenko, R. Impagliazzo, V. Kabanets, and R. Shaltiel 9:7

Our approach gives the following result:

I Theorem 1.10. If E is hard for nondeterministic circuits, then there are deterministic
algorithms for k-SAT, for each k ≥ 4, running in time

Tk(n) = 2α
PPSZ
k ·n · poly(TPPSZ

k (n)) ≤ 2(αPPSZ
k +o(1))·n.

We remark that the assumption could be relaxed to E is hard for size nω(1) nondeterministic
circuits, and then the deterministic time Tk(n) for k-SAT would become

2α
PPSZ
k ·n · 2(TPPSZ

k (n))o(1)
,

which is still at most 2(αPPSZ
k +o(1))·n, as TPPSZ

k (n) ≤ nβ(n) for every β(n) ∈ ω(1).

1.7 Hardness assumptions implied by HSGs with low error
In Theorem 1.8 we show that hardness for nondeterministic circuits implies HSGs with
low error. Is this assumption necessary? Is the converse statement true? We do not know
the answer to these questions. However, we can show ε-HSGs for deterministic poly-size
circuits are essentially equivalent to 1

2 -HSGs for a subclass of nondeterministic circuits: The
class of poly-size nondeterministic circuits with approximately log(1/ε) nondeterministic bits.
The precise definitions and statements appear in Section 6. Note that as n > r ≥ log(1/ε),
the circuits we are interested in are nondeterministic circuits with a sublinear number of
nondeterministic bits. Using this connection, we can show that ε-HSGs with seed length
r = no(1) +O(log(1/ε)) imply that E is hard for poly-size nondeterministic circuits with o(n)
nondeterministic bits.

I Theorem 1.11. Let δ > 0 be a constant. Assume that for every sufficiently large n, there
is a 2−nδ -HSG H : {0, 1}O(nδ) → {0, 1}n for size s ≥ n circuits, and furthermore that the
family of functions H = {Hn} is computable in time exponential in the seed length, that is
time 2O(nδ). Then there exists a constant γ > 0 and a problem L ∈ E such that, for every
sufficiently large n′, nondeterministic circuits of size (γn′)1/δ with γ · n′ nondeterministic
bits fail to compute the characteristic function of L on inputs of length n′.

1.8 Limitations on nondeterministic reductions for PRGs
Theorem 1.8 demonstrates that hardness assumption for nondeterministic circuits can yield
polynomial time computable HSGs with low error. A recent result of Applebaum et al.
[2] shows that these techniques cannot be extended to yield PRGs. We state this result
informally below (the reader is referred to [2] for the formal model and precise statement).

I Informal Theorem 1.12. For every i ≥ 0, it is impossible to use “black-box reductions”
to prove that the assumption that E is hard for exponential size Σi-circuits implies that for
ε = n−ω(1), there is a poly(n)-time computable ε-PRG G : {0, 1}n−1 → {0, 1}n for size n2.

While hardness against circuits with oracle to PH problems does not suffice, hardness
for circuits with oracle to PSPACE problems does suffice. This follows by inspecting the
correctness proofs of Theorem 1.3 (the one that seems easiest to handle is by Sudan, Trevisan
and Vadhan [41]).

I Theorem 1.13 (PRG with seed length r = O(logn)+log(1/ε))). If E is hard for exponential
size PSPACE-circuits then for every constant b > 1 there exists a constant c > 1 such that
for every sufficiently large n, there is a function G : {0, 1}r → {0, 1}n that is an ε-PRG for
size nb circuits, with c · (logn+ log(1/ε)). Furthermore, G is computable in time poly(nb).

CCC 2016

9:8 Pseudorandomness When the Odds are Against You

In fact, something more precise can be said. The circuit model that comes up is the
nonuniform class which corresponds to the fourth level of the counting hierarchy (which is
contained in PSPACE).

1.9 Derandomizing randomized algorithms with large two sided error
By Theorem 1.12 we do not expect to construct ε-PRGs for small ε under the assumption
that E is hard for Σ1-circuits. Nevertheless, it turns out that we can use this assumption to
extend Theorem 1.9 to the case of two-sided error.

I Theorem 1.14. Let A be a time T (n) ≥ n randomized algorithm such that for every
sufficiently large n and x ∈ {0, 1}n:

x ∈ L ⇒ Pr[A(x) = 1] ≥ 2 · ε(n).
x 6∈ L ⇒ Pr[A(x) = 1] ≤ ε(n).

If E is hard for exponential size Σ1-circuits then there is a deterministic algorithm running
in time poly(T (n))

ε(n)2 that accepts L.6

Note that even the more modest goal of amplifying the success probability of A to obtain
a randomized algorithm with constant two-sided error, requires running time of T (n)/ε(n)2.
We achieve roughly the same time with a deterministic algorithm. In fact, the conclusion of
Theorem 1.14 is stronger than the one that follows if we were to run the PRG of Theorem 1.13
on all seeds. The latter approach would have given time poly(n)

ε(n)c for a large constant c.
Loosely speaking, we avoid the limitations on PRGs by showing a derandomization

procedure which runs the algorithm on 2r “pseudorandom strings” (just like in PRGs). The
key difference is that the “estimation of the success probability of A(x)” is not done by
“averaging over all pseudorandom strings”. This allows the procedure not to be fooled by a
small fraction of “pseudorandom strings” that yield incorrect results.

1.10 Implications to derandomization of BPPpath

The class BPPpath defined by Han, Hemaspaandra and Thierauf [20] consists of polynomial
time randomized algorithms A(x) which are allowed to output “don’t know”. It is required
that for every input x, conditioned on giving an answer, the probability that A(x) answers
correctly is at least 2/3, and that the probability that A(x) answers is larger than ε(n) for
some ε(n) > 0.

Han, Hemaspaandra and Thierauf [20] showed that this class is quite powerful and
contains PNP

|| which contains NP. (The subscript “||” in PNP
|| means that the queries to the

NP oracle are nonadaptive). Shaltiel and Umans [36] showed that BPPpath is equal to PNP
||

if ENP
|| is hard for exponential size nondeterministic circuits.
Theorem 1.14 allows us to give a deterministic simulation of BPPpath algorithms with

running time depending on the parameter ε(n). More specifically, it follows that under the
hardness assumption, every BPPpath algorithm that gives an answer with probability ε(n),
can be simulated in deterministic time poly(n)/ε(n)2.

6 The assumption in Theorem 1.14 can be improved to E is hard for exponential size nondeterministic
circuit. This is because Shaltiel and Umans [36] showed that this assumption implies that E is hard for
exponential size Σ1-circuits which make nonadaptive queries to their oracle. This latter assumption is
sufficient for our proof. We defer the details to the final version.

S. Artemenko, R. Impagliazzo, V. Kabanets, and R. Shaltiel 9:9

1.11 PRGs with relative error
Theorem 1.14 demonstrates that it is sometimes possible to achieve consequences of PRGs
with low error, under hardness assumptions that do not seem to suffice for such PRGs. We
now give another such example.

A useful property of a δ-PRG G : {0, 1}r → {0, 1}n with very small error δ = n−ω(1) is
that it “preserves the probability of small events”. By that we mean that for every circuit
C : {0, 1}n → {0, 1} such that Pr[C(Un) = 1] ≤ δ,

Pr[C(G(Ur)) = 1] ≤ Pr[C(Un) = 1] + δ ≤ 2δ

which is still negligible. The notion of PRGs with “relative error” defined below captures
this property. In the definition below, the reader should think of δ � ε, and recall eε ≈ 1 + ε

for sufficiently small ε.

I Definition 1.15 (re-PRGs). Let p1, p2 be two numbers, we define a relation on p1, p2 by:

p1
re∼(ε,δ) p2 ⇔ max(p1, p2) ≤ eε ·min(p1, p2) + δ.

A function G : {0, 1}r → {0, 1}n is an (ε, δ)-re-PRG for a class C of functions C : {0, 1}n →
{0, 1} if for every C in the class C,

Pr[C(G(Ur)) = 1] re∼(ε,δ) Pr[C(Un) = 1].

The use of the formalism above is inspired by the notion of (ε, δ)-differential privacy. An
(1, δ)-re-PRG indeed “preserves the probability of small events” and gives that Pr[C(Un) =
1] ≤ δ implies Pr[C(G(Ur)) = 1] ≤ e · δ. It also immediately follows that:

I Fact 1.16. If G is an (ε, δ)-re-PRG for C and δ ≤ ε then G is a 4ε-PRG for C.

Thus, an (ε, δ)-re-PRG with δ � ε can be thought of as an ε-PRG which has the additional
property that it preserves the probability of small events.

Our next result is a construction of poly(n)-time computable (ε, δ)-re-PRGs with arbitrary
polynomial stretch, ε = n−O(1) and exponentially small δ = 2−

√
r = 2−nΩ(1) .

I Theorem 1.17. If E is hard for exponential size Σ3-circuits, then for every constants
b, e > 1 and µ > 0 there exists a constant γ > 0 such that and every sufficiently large n, there
is a function G : {0, 1}r=nµ → {0, 1}n that is an (n−b, 2−γ·

√
r)-re-PRG for size nb circuits.

Furthermore, G is computable in time poly(nb).

We remark that we would have liked to achieve δ = 2−Ω(r) (rather than δ = 2−Ω(
√
r)) but

we don’t know how to achieve this.

1.12 Randomness reduction in Monte-Carlo constructions
In many famous explicit construction problems (such as constructing rigid matrices or
generator matrices for linear codes matching the Gilbert-Varshamov bound) a random n bit
string has the required property with overwhelming probability of 1− δ for exponentially
small δ. It is often the case that we do not have poly(n)-time deterministic algorithm that
produce an n bit string with the required property. An intermediate goal is to reduce the
number of random bits used (while preserving exponentially small failure probability). Using
re-PRGs, achieves this task for problems where checking whether a given an n bit string x
satisfies the property can be decided in the polynomial time hierarchy (and note that the
two aforementioned construction problems satisfy this requirement). This is stated formally
below:

CCC 2016

9:10 Pseudorandomness When the Odds are Against You

I Theorem 1.18. Let i ≥ 0 be a constant and let L be a language such that:
There is a constant α > 0 s.t. for every sufficiently large n, PrX←Un [X ∈ L] ≥ 1− δ for
δ = 2−nα .
L is accepted by a family of poly-size Σi-circuits.

If E is hard for exponential size Σi+3-circuits then there is a poly(n)-time algorithm B such
that Pr[B(Ur) ∈ L] ≥ 1− 4 · δ with r = O(log(1/δ)2) = n2α.

Note that standard PRGs (which under this assumption achieve error ≥ 1/poly(n)) give
a version of Theorem 1.18 with δ = 1/poly(n). Our result gives this tradeoff also for smaller
values of δ. We remark that we would have liked the dependence of r on δ in Theorem 1.18
to be r = O(log(1/δ)), and this would follow if we can improve the parameter δ = 2−Ω(

√
r)

in Theorem 1.17 to δ = 2−Ω(r).
The aforementioned examples of matrix rigidity and linear codes matching the Gilbert-

Varshamov bound do not seem related to computational hardness assumptions. Assuming
circuit lower bounds in order to handle them, may seem like an overkill. We remark
that one can also apply Theorem 1.18 to solve explicit construction problem that are
computational in nature. For example, the language L consisting of truth tables of functions
f : {0, 1}logn → {0, 1} with almost maximal circuit complexity also satisfies the requirements
in Theorem 1.18, and so, if E is hard for exponential size Σ4-circuits, then there is a
randomized polynomial time algorithm that uses r = n2α random bits and generates an n-bit
truth table of a function with almost maximal circuit complexity with probability at least
1− 2−nα .

This approach can be useful to construct other “computational” pseudorandom objects,
and is used to explicitly construct nonboolean PRGs (formally defined in the next section)
with relative error, under hardness assumptions. This result is described in the next section.

1.13 PRGs with relative error for nonboolean distinguishers
Dubrov and Ishai [11] considered a generalization of PRGs which fools circuits that output
many bits (and not just boolean circuits).

I Definition 1.19 (nb-PRG). Let ` be a parameter, and let C be a class of functions
C : {0, 1}n → {0, 1}`. A function G : {0, 1}r → {0, 1}n is an (`, ε)-nb-PRG for C if for every
C in C, the probability distributions C(G(Ur)) and C(Un) are ε-close, meaning that for every
function D : {0, 1}` → {0, 1}, |Pr[D(C(G(Ur))) = 1]− Pr[D(C(Un)) = 1]| ≤ ε.

For every ` ≥ 1, an (`, ε)-nb-PRG is in particular a (1, ε)-nb-PRG which is easily seen to
be equivalent to an ε-PRG. Thus, (`, ε)-nb-PRGs are a generalization of ε-PRGs, and so the
limitations of Theorem 1.12 apply to them.

The motivation for nb-PRGs is reducing the randomness complexity of sampling pro-
cedures. We now explain this application. Let P be a distribution over `-bit strings, and
let A be a sampling algorithm for it. That is, A is a poly(n)-time algorithm such that
A(Un) = P . An (`, ε)-nb-PRG G : {0, 1}r → {0, 1}n for size nb-circuits can be used to sample
a distribution P ′ that is ε-close to P , using only r < n random bits. This is because the
sampling algorithm B(Ur) = A(G(Ur)) produces a distribution that is ε-close to A(Un).7
Note that if we want B to run in time poly(n), we must require that G runs in time poly(n).
Thus, this is another setting where we would like to have PRGs computable in time poly(n).

7 It is important to note that if G is a standard PRG, we can only guarantee that B(Ur) is computationally
indistinguishable from A(Un), rather than statistically indistinguishable.

S. Artemenko, R. Impagliazzo, V. Kabanets, and R. Shaltiel 9:11

In this paper we consider a generalization of nb-PRGs with (ε, δ)-relative error.

I Definition 1.20 (re-nb-PRG). Let C be a class of functions C : {0, 1}n → {0, 1}`. A
function G : {0, 1}r → {0, 1}n is an (`, ε, δ)-re-nb-PRG for C if for every C in C, the
probability distributions C(G(Ur)) and C(Un) are (ε, δ)-close in relative distance, meaning
that for every function D : {0, 1}` → {0, 1}, Pr[D(C(G(Ur))) = 1] re∼(ε,δ) Pr[D(C(Un)) = 1].

If we use re-nb-PRGs (rather than nb-PRGs) in the construction of the sampling algorithm
B, then we “preserve probability of small events”. That is for every D : {0, 1}` → {0, 1}, if
Pr[D(P) = 1] ≤ δ then Pr[D(P ′) = 1] ≤ O(δ). This property is helpful in some applications.

Previous work by Applebaum et al. [2] (improving upon [11, 4]) gives (`, n−O(1))-nb-PRGs
with seed length r = O(` + logn) and ε = n−O(1). This is under the assumption that E
is hard for exponential size nondeterministic circuits. Note that r ≥ ` is a trivial lower
bound on the seed length. In this paper we construct (ε, δ)-re-nb-PRGs with ε = n−O(1) and
r = 1 · `+O(log(1/δ))2 for δ ≥ 2−nΩ(1) . This is done under the stronger assumption that E
is hard for exponential size Σ6-circuits.

I Theorem 1.21 (re-nb-PRG with seed length 1 ·`+O(log(1/δ))2). If E is hard for exponential
size Σ6-circuits then for every constants b > 1, α > 0 there exists a constant c > 1 such that
for every functions ` = `(n) ≤ n, δ = δ(n) ≤ 2−nα , and every sufficiently large n, there is
a function G : {0, 1}r → {0, 1}n that is an (`, ε, δ)-re-nb-PRG for circuits of size nb with
ε = n−b, and r = `+ c · (log(1/δ))2.

Note that the dependence of r on ` is an additive term of 1 · `. This is best possible,
with the correct leading constant. We would have liked the dependence of r on δ to be
an additive term of O(log(1/δ)). Once again, we would get this if we could improve the
parameter δ = 2−Ω(

√
r) in Theorem 1.17 to δ = 2−Ω(r). We also remark that the requirement

that δ ≤ 2−nα may be omitted, and then r = `+ c · ((log(1/δ))2 + logn).

1.14 Cryptographic applications of re-nb-PRGs
Dubrov and Ishai [11] observe that nb-PRGs can be used to reduce the randomness complexity
of parties in multi-party cryptographic protocols. They consider the setup where honest
parties run in polynomial time, and security is information theoretic (that is security is
guaranteed even against unbounded adversaries). The precise details can be found in [11].
When using nb-PRGs, this application requires nb-PRGs with small error, as the probability
of a security breach in the final protocol is additive in the error of the nb-PRG. However,
assuming the probability of a security breach in the original protocol is at most δ (for some
negligible δ), we can use (`, 1, δ)-re-nb-PRGs to “preserve the probability of small events”
and obtain a protocol with reduced randomness complexity, and where the probability of a
security breach is at most 4 · δ.

The key idea in the application above is that the nb-PRG is used to fool “honest
parties” rather than “adversaries”. This observation is crucial if we want to use NW-style
PRGs in cryptography. More precisely, unlike “cryptographic PRGs” which fool circuits of
superpolynomial size, NW-style PRGs (such as our re-nb-PRGs) only fool circuits of fixed
polynomial size nb and run in time poly(nb). Thus, they are unsuitable to fool cryptographic
adversaries (which are more powerful than honest parties).

It is our hope that re-nb-PRGs may find other applications in cryptography. Toward this
goal, we present the following toy example of a potential application of re-nb-PRGs: Suppose
we are given a one-way function f : {0, 1}n3 → {0, 1}n that is computable in time nb and
circuits of very large size (say s = 2n1/3) cannot invert with probability larger than δ. Can

CCC 2016

9:12 Pseudorandomness When the Odds are Against You

we reduce the input length of f to say O(n) bits while preserving its security? Note that
this only makes sense if we use tools that don’t imply a stronger one-way function. We are
not aware of such a conversion.

Nevertheless, using a poly(n)-time computable (n, 1, δ)-re-nb-PRG G : {0, 1}O(n) →
{0, 1}n3 for size nb circuits (which we can achieve for δ = 2−

√
n under Theorem 1.21) we can

argue that f ′(x) = f(G(x)) is a one-way function where the input length is reduced from n3

to O(n), and the security of f is preserved: circuits of size s can invert f ′ with probability
at most 4 · δ.

2 Overview of the technique

In this section we give a high level overview of the technique used to prove our results.

2.1 HSGs with low error
We assume that E is hard for exponential size nondeterministic circuits, and construct a
poly(n)-time computable ε-HSG G : {0, 1}O(logn)+log(1/ε) → {0, 1}n for circuits of fixed
polynomial size. By Theorem 1.7 our assumption implies a poly(n)-time computable 1

2 -HSG
G′ : {0, 1}O(logn) → {0, 1}2n for nondeterministic circuits of fixed polynomial size. It is
standard that using z ← U2n, we can produce t = O(1/ε) ≤ 2n pairwise independent random
variables Y1(z), . . . , Yt(z) of length n. Furthermore, even though t may be super-polynomial,
there is a polynomial time algorithm that given z, i, outputs the i’th variable Yi(z).

Our generator G will receive two seeds: a seed x for G′, and an i ∈ [t]. It uses x to
prepare a 2n bit long output string z = G′(x), and then uses z as a seed to generate the i’th
random variable Yi(z).

Let D : {0, 1}n → {0, 1} be some fixed polynomial size deterministic circuit with
Pr[D(Un) = 1] ≥ ε, and let B = {x : D(x) = 1}. By Chebyshev’s inequality, pairwise
independent variables have a “hitting property” for sets B of size at least ε · 2n, meaning that
with probability at least 2/3 over choosing z ← U2n, there exists an i ∈ [t] such that Yi(z) ∈ B
which means that D(Yi(z)) = 1. Consider the nondeterministic circuit C : {0, 1}2n → {0, 1},
which given z ∈ {0, 1}2n accepts iff ∃i : D(Yi(z)) = 1. This is a fixed polynomial size
nondeterministic circuit (and jumping ahead we mention that it uses log t = log(1/ε) +O(1)
nondeterministic bits). We have that Prz←U2n [C(z) = 1] ≥ 2/3. Thus by the guarantee on
G′, there exists a seed x for G′ such that C(G′(x)) = 1. This in turn means that there exists
a seed (x, i) for G, such that D(G(x, i)) = 1 as required. The precise argument is given in
Section 5.

The proof above uses the standard pairwise independent based randomness efficient
amplification of success probability of randomized algorithms with a twist: The circuit C uses
its nondeterminism to “speed up” the amplification as it does not have to explicitly go over
all t options for i. A technically related (though somewhat different) idea was used by Paturi
and Pudlak [30] in the context of “boosting” the success probability of hypothetical efficient
randomized circuit-sat algorithms. There, given a circuit D, one considers a deterministic
circuit D′ which is hardwired with a “good string” z, and on input i, applies C on Yi(z). The
key idea is that the input length of D′ is log(1/ε) < n, and this is used to argue that feeding
D′ (rather than D) to the hypothetical circuit-sat algorithm, allows one to make progress.

2.2 Derandomization of randomized algorithms with large error
By going over all seeds of our ε-HSG we can derandomize one-sided error polynomial time
algorithms with success probability ε and prove Theorem 1.9. We now explain that this

S. Artemenko, R. Impagliazzo, V. Kabanets, and R. Shaltiel 9:13

argument extends also to two-sided error algorithms of the form of Theorem 1.14. We
make slight modifications in the construction above. This time we require that G′ is a
1
10 -PRG for Σ1-circuits, and by Theorem 1.7 such PRGs follow from the assumption that E
is hard for exponential size Σ1-circuits (and a more careful analysis allows an even weaker
assumption). We also increase the number of pairwise independent variables from O(1/ε) to
t = O(1/ε2). We do this, as with this “query complexity”, pairwise independent variables
give an “averaging sampler”, which means that for any set B ⊆ {0, 1}n, the fraction of Yi’s
that land in B is with probability 9/10 close to the volume |B|2n of B. Let G be the function
obtained by these modifications.

We do not expect to prove that G is an ε-PRG, as by Theorem 1.12 such a proof will not
be black-box. More concretely, the generator G′ has an error of 1/10, and so a 1/10-fraction
of its seeds may be useless, and we cannot hope that G has error < 1/10.

Let D : {0, 1}n → {0, 1} be a fixed polynomial size circuit. In the two sided error case, we
want to distinguish the case that Pr[D(Un) = 1] ≥ 2ε from the case that Pr[D(Un) = 1] ≤ ε.
We show how to use G in order to distinguish these two cases, in deterministic time poly(n)/ε2.

In analogy to the previous argument, we can show that with probability 9/10 over z ← U2n,
the estimate p(z) = 1

t · | {i : D(Yi(z)) = 1} | is very close to the acceptance probability of
D. For simplicity, let us cheat and assume equality. The key observation is that by the
classical results of [40, 39, 26] on approximate counting of NP witnesses (see Section 4.1
for a precise statement), p(z) can be estimated by a fixed polynomial size Σ1-circuit C(z).
Furthermore, this estimation is sufficiently accurate to distinguish the case that p(z) ≥ 2ε
from the case that p(z) ≤ ε. Similarly to the earlier argument, the fact that G′ fools C,
means that replacing z ← U2n with G′(x) : x← UO(logn) makes little difference. This means
that by going over all x ∈ {0, 1}c logn, and checking if for at least half of them p(G′(x)) ≥ 2ε,
we can indeed distinguish the two cases. This takes time poly(n)/ε2 as required. The precise
argument is given in Section 5.

2.3 HSGs with low error imply hardness for weak nondeterministic
circuits

Let G : {0, 1}r → {0, 1}n be an ε-HSG for fixed polynomial size circuits. Note that in
Section 2.1 we explained that such HSGs follow from 1

2 -HSGs for fixed polynomial size
nondeterministic circuits with roughly log(1/ε) nondeterministic bits. We now show that G
implies such HSGs. Indeed consider, the function G′ that outputs the first n− k bits of the
output ofG, for k = log(1/ε)−1. We show thatG′ is a 1

2 -HSG for fixed polynomial size circuits
with k nondeterministic bits. Indeed, let C : {0, 1}n−k → {0, 1} be such a circuit that accepts
at least half of its inputs. This means that there exists a fixed polynomial size deterministic
circuit D : {0, 1}n → {0, 1}, such that C(x) = 1 ⇔ ∃y ∈ {0, 1}k s.t. D(x, y) = 1. The fact
that C accepts half of its input implies that D accepts at least 1

2 · 2
−k = ε fraction of the

pairs (x, y) ∈ {0, 1}n, which implies that there exists a seed s for G such that D(G(s)) = 1.
This in turn implies that C(G′(s)) = 1 as required.

There is an easy general transformation by Impagliazzo, Shaltiel and Wigderson [23]
which transforms an HSG into a worst-case hard function in E. This transformation can
be used to transform G′ into a function that is hard for nondeterministic circuits with few
nondeterministic bits. The precise argument is given in Section 6.

CCC 2016

9:14 Pseudorandomness When the Odds are Against You

2.4 A construction of re-PRGs
Our starting point is a construction of Trevisan and Vadhan [43], which under the assumption
that E is hard for exponential size Σ1-circuits, gives a polynomial time computable function
f : {0, 1}n → {0, 1}n′=Ω(n) such that for every fixed polynomial size circuit A : {0, 1}n →
{0, 1}, PrV←Un [A(V) = f(V)] ≤ 2−n′/3.8

A natural approach toward constructing PRGs is to use the Goldreich-Levin theorem [14]
to transform f into a boolean function g. Indeed, the standard way to do this is to define
g(v, y) = EC(f(v))y where EC is a binary list-decodable code (and the GL theorem is for
the special case of the Hadamard code). For this to work, we require that EC has an efficient
list-decoding algorithm that can recover from distance 1

2 − ε. In our setting, ε = 2−Ω(n), and
we want a list-decoding algorithm implementable by a polynomial size circuit D. This is
obviously impossible, as D needs to read at least 1/ε positions in the “received word”.

We may hope to circumvent this problem by allowing D to be a poly-size Σi-circuit.
This will allow D to query the received word in exponentially many positions (on different
computation paths). On the one hand, if we assume that E is hard for exponential size
Σi+1-circuits, then the proof of Trevisan and Vadhan (which relativizes) gives security against
Σi-circuits. However, the lower bounds of Applebaum et al. [2] show that even Σi-circuits
cannot be used for this task of list decoding binary codes. Indeed, if we could get a boolean
function g that cannot be computed with advantage better than ε = 2−Ω(n) over random
guessing, we would obtain an O(ε)-PRG by plugging g into the NW generator.

Instead, we shoot for a weaker conclusion, and try to show that the function g has the
property that G(x) = (x, g(x)) is a (2−Ω(n), n−O(1))-re-PRG with one bit stretch. (Later,
we will be able to get arbitrary stretch by plugging g in the NW-generator). That is, that
for every fixed polynomial size circuit C, Pr[C(G(Un)) = 1] re∼(n−O(1),δ) Pr[C(Un+1) = 1] for
δ = 2−Ω(n). We give a “list-decoding algorithm”, that given C, constructs a Σ2-circuit A
that computes the function f too well. This allows us to choose i = 2 and start from the
assumption that E is hard for exponential-size Σ3-circuits.

Our “list-decoding algorithm” builds on ideas by Trevisan and Vadhan [43] and Applebaum
et al. [2]. For our purposes it is more intuitive to restate the construction of g in an equivalent
way: We set g(v, y) = E(f(v), y) where E is a strong extractor with error δO(1), which allows
seed length and entropy threshold of O(log(1/δ)).

After a suitable averaging argument, we get that for a non-negligible fraction of good
v, a circuit C that distinguishes G(Un) from Un+1, can be used to distinguish (Y,E(z∗, Y))
from uniform for z∗ = f(v). The guarantee of strong extractors says that there cannot be
more than poly(1/δ) strings z ∈ {0, 1}n′ for which this distinguishing is possible. (As the
uniform distribution over these z’s would be a source on which the extractor fails).

The key observation is that we can design a Σ1-circuit Bv(z) which uses approximate
counting of NP witnesses and accept iff C distinguishes (Y,E(z, Y)) from uniform with
relative distance. This is because we can use approximate counting to estimate the acceptance
probability of C on these two distributions.9 We have that z∗ = f(v) is one of the few z’s
that Bv accepts. We can guess z∗ = f(v) by using random sampling of NP-witnesses [26, 7]
to uniformly sample an accepting input of Bv. This strategy can be seen as a Σ2-circuit A
that given v computes f(v) with probability δO(1) = 2−Ω(n), contradicting the hardness of f .

8 This is another example showing that nondeterministic reductions can achieve very low error.
9 It is important to note that here we critically use the fact that C distinguishes with relative distance,

and we cannot hope to do this for an additive distance of 2−Ω(n). This is the reason why constructing
re-PRGs with small δ is easier than constructing δ-PRGs.

S. Artemenko, R. Impagliazzo, V. Kabanets, and R. Shaltiel 9:15

We obtain re-PRGs with polynomial stretch by plugging g into the NW-generator. The
analysis of the NW-generator can be used (with suitable modifications) to argue that if
G(x) = (x, g(x)) is an re-PRG then we obtain an re-PRG with larger output with closely
related ε, δ. An inherent limitation of the NW-generator (that is discussed in detail in [24])
gives that the seed length is quadratic in the input length of g. This is the reason why we get
that the seed length has quadratic dependence on log(1/δ). The precise argument is given in
Section 7.

2.5 A construction of re-nb-PRGs
We first show that an (ε, δ · 2−`)-re-PRG for Σ1-circuits is an (`, O(ε), O(δ))-re-nb-PRG for
deterministic circuits. This implication appears in Section 8.

This means that our previous construction of re-PRGs can give re-nb-PRGs assuming E is
hard for exponential size Σ4-circuits. A disadvantage of this approach is that because of the
quadratic loss mentioned above, we obtain seed length approximately r = O(`+ log(1/δ))2.
Previous work on nb-PRGs [4, 2] already achieved seed length that is linear in ` which is
optimal up to constants. We can obtain seed length r = 1 · `+O(log(1/δ))2. That is, we can
remove the quadratic dependence on ` but not on log(1/δ).

For this, we imitate an approach developed by Applebaum et al. [2], which we can
now improve as we can use re-PRGs instead of standard PRGs. We first show that with
probability 1− δ, a random poly(nb)-wise independent hash function h : {0, 1}r → {0, 1}n
is an re-PRG for size nb Σ1-circuits, with excellent dependence of r on ε and δ. We then
show that checking whether a given circuit h is not an re-PRG for Σ1-circuits can be done
by Σ3-circuits. Loosely speaking, this is because a Σ3-circuit can guess a Σ1-circuit that is
not fooled by h, and use approximate counting of NP-witnesses (which costs an NP-oracle)
to check whether that circuit is not fooled by the given circuit. (Here again, it is crucial that
the notion of distance is relative, so that approximate counting can be used).

Finally, we construct the re-nb-PRG G as follows: We use two seeds x1 for h and x2 for
an (n−O(1), δ)-re-PRG G′ for Σ3-circuits (that we have under the assumption that E is hard
for exponential size Σ6-circuits). G computes G′(x2) and use this to choose a hash function
h from the family. The final output is h(x1).

We have that a random h from the family is an re-PRG for Σ1-circuits with probability
1− δ, and that Σ3-circuits can check whether h is an re-PRG for Σ1-circuits. As re-PRGs
preserve the probability of small events, we conclude that with probability 1− 4δ over the
choice of x2 we obtain a hash function h that is an re-PRG for Σ1-circuits (which we already
showed is an re-nb-PRG for deterministic circuits). Therefore, G is an re-nb-PRG. The
precise argument is given in Section 8.

3 Organization of the paper

In Section 4 we state the classical results on approximate counting and sampling of NP
witnesses. We also define several notions of relative approximation and prove some useful lem-
mas regarding them. In Section 5 we construct HSGs with low error, and prove Theorem 1.8.
We also show how to derandomize two sided error algorithms and prove Theorem 1.14.
In Section 6 we show that HSGs with low error are essentially equivalent to 1

2 -HSGs for
nondeterministic circuits with few nondeterministic bits. We also prove Theorem 1.11 and
show that HSGs with low error imply lower bounds for nondeterministic circuits with few
nondeterministic bits. In Section 7 we give our construction of re-PRGs. In Section 8 we
show how to use re-PRGs in order to construct re-nb-PRGs.

CCC 2016

9:16 Pseudorandomness When the Odds are Against You

4 Preliminaries

4.1 Approximate counting and uniform sampling of NP witnesses
We use the classical result on approximate counting and uniform sampling of NP-witnesses
[40, 39, 26, 7], which we now state in a way that is convenient for our application.

I Definition 4.1 (relative approximation). We say that a number p is an ε-relative approxi-
mation to q if e−ε · q ≤ p ≤ eε · q.

I Theorem 4.2 (approximate counting [40, 39, 26]). For every i ≥ 0, every sufficiently large
s and every 0 < ε ≤ 1, there is a Σi+1-circuit of size poly(s/ε) that given a Σi-circuit C of
size s outputs an ε-relative approximation of | {x : C(x) = 1} |.

I Theorem 4.3 (uniform sampling [26, 7]). For every i ≥ 0, every sufficiently large s and
every δ > 0, there is a randomized size poly(s, log(1/δ)) Σi+1-circuit A that given a Σi-circuit
C : {0, 1}n → {0, 1} of size s ≥ n outputs a value in {0, 1}n ∪ {⊥} such that for every size
s Σi-circuit, Pr[A(C) = ⊥] ≤ δ and the distribution (A(C)|A(C) 6= ⊥) is uniform over
{x : C(x) = 1}.

4.2 Notions of relative error
In Section 1 we defined a notion of relative distance between two numbers which we notate
by p1

re∼(ε,δ) p2. This notion was used in the definition of re-PRGs and re-nb-PRGs. In this
section we discuss properties of this distance, as well as related notions of distance.

I Definition 4.4. Let p1, p2 be two numbers, and let pmax = max(p1, p2) and pmin =
min(p1, p2). We say that p1, p2 are

ε-close if pmax − pmin ≤ ε, and use the notation p1
ad∼ε p2.

(ε, δ)-relative-close if pmax ≤ eε · pmin + δ, and use the notation p1
re∼(ε,δ) p2.

(ε, δ)-relative-threshold-close if pmax ≤ δ or pmax ≤ eε · pmin, and use the notation
p1

rt∼(ε,δ) p2.
The three notions above can be used to define distance between probability distributions.
Thus, for example, if X,Y are distributions over a finite set Ω, we write X re∼(ε,δ) Y if for
every function D : Ω→ {0, 1}, Pr[D(X) = 1] re∼(ε,δ) Pr[D(Y) = 1].

It is easy to verify the following relationships between the three notions, by using the
approximations 1 + x ≤ ex ≤ 1 + 3x and 1− x ≤ e−x ≤ 1− x/3 which hold for 0 ≤ x ≤ 1

I Lemma 4.5. For every numbers 0 ≤ p1, p2 ≤ 1, and 0 ≤ ε, δ ≤ 1
p1

re∼(ε,δ) p2 ⇒ p1
ad∼3ε+δ p2.

p1
rt∼(ε,δ) p2 ⇒ p1

re∼(ε,δ) p2.
For ε ≤ 1

2 , p1
re∼(ε,δ) p2 ⇒ p1

rt∼(4ε,4δ/ε) p2.
p1

rt∼(ε,δ) p2 ⇒ p1
ad∼3ε+δ p2.

p1
ad∼δ p2 ⇒ p1

rt∼(ε,3δ/ε) p2.

In our constructions of re-PRGs and re-nb-PRGs, we will shoot for ε = n−O(1) and
δ = 2−nΩ(1) . Note that by Lemma 4.5, for these choices, the notions of “relative-close”
and “relative-threshold-close” are equivalent. It turns out that for our purposes, the notion
of “relative-threshold-close” is easier to work with. For this reason we now redefine the
notions of re-PRGs and re-nb-PRGs using the notion of relative-threshold-close instead

S. Artemenko, R. Impagliazzo, V. Kabanets, and R. Shaltiel 9:17

of relative-close. The definitions are identical except that we use “relative-threshold-close”
instead of “relative-close”.

I Definition 4.6 (rt-PRGs). A function G : {0, 1}r → {0, 1}n is an (ε, ρ)-rt-PRG for a class
C of functions C : {0, 1}n → {0, 1} if for every C in the class C,

Pr[C(G(Ur)) = 1] rt∼(ε,ρ) Pr[C(Un) = 1].

I Definition 4.7 (rt-nb-PRG). Let C be a class of boolean functions C : {0, 1}n → {0, 1}`.
A function G : {0, 1}r → {0, 1}n is an (`, ε, ρ)-rt-nb-PRG for C if for every C in C, the
probability distributions C(G(Ur))

rt∼(ε,ρ) C(Un).

By the discussion above it immediately follows that:

I Fact 4.8 (rt-PRGs are re-PRGs). An (ε, ρ)-rt-PRG is also an (ε, ρ)-re-PRG, and an (ε, ρ)-
rt-nb-PRG is also an (ε, ρ)-re-nb-PRG.

In the remainder of the paper we will only discuss rt-PRGs.

4.3 Some useful technical lemmas on relative error
The next lemma shows that if we can approximate two quantities p1, p2 using an η-relative
approximation, for η < ε/10 then when we can essentially tell if p1

rt

6∼(ε,ρ) p2.

I Lemma 4.9. Let 0 ≤ p1, p2 ≤ 1 and let p′1, p′2 be η-relative approximations of p1, p2

respectively. Let T (p′1, p′2) be a test that accepts iff max(p′1, p′2) ≥ ρ·e−η and max(p′1,p
′
2)

min(p′1,p′2) ≥ e
ε−2η.

Then,

p1
rt

6∼(ε,ρ) p2 ⇒ T (p′1, p′2) accepts.

T (p′1, p′2) accepts ⇒ p1
rt

6∼(ε−4η,ρ·e−2η) p2.
We also need the following technical lemma that allows us to perform “Markov style arguments”
with relative distance.

I Lemma 4.10. Let R,W be independent random variables, and let ψ1, ψ2 be boolean
functions. Assume that

Pr[ψ1(R,W) = 1]
rt

6∼(ε,ρ) Pr[ψ2(R,W) = 1].

Let ε′ = ε/10 and ρ′ = ρ · ε/10, and let G =
{
r : Pr[ψ1(r,W) = 1]

rt

6∼(ε′,ρ′) Pr[ψ2(r,W) = 1]
}
.

Then Pr[R ∈ G] ≥ ρ · ε/10.

Proof. Let ar = Pr[ψ1(r,W) = 1], br = Pr[ψ2(r,W) = 1] and pr = Pr[R = r]. We
can write a = Pr[ψ1(R,W) = 1] =

∑
r p(r)ar and b = Pr[ψ2(R,W) = 1] =

∑
r p(r)br.

Assume w.l.o.g. that a > b and we know that a > eεb and a > ρ. We conclude that
a− b =

∑
r p(r)(ar − br) > max((eε − 1)b, ρ− b) and assume that (ar − br) is positive for all

r (otherwise we take only positive terms and increase the sum).
Let A = {r : ar > eε

′
br ∧ ar > ρ′}, B = {r : ar ≤ ρ′}, C = {r : ar ≤ eε

′
br ∧ ar > ρ′}.∑

r∈A
p(r) ≥

∑
r∈A

p(r)(ar− br) > max((eε−1)b, ρ− b)−
∑
r∈B

p(r)(ar− br)−
∑
r∈C

p(r)(ar− br).

CCC 2016

9:18 Pseudorandomness When the Odds are Against You

Goal: Construct a poly(n)-time computable ε-HSG, G : {0, 1}r → {0, 1}n for circuits of size nb
with r = 1 · log(1/ε) +O(b · log(·n)).

Assumption: E is hard for exponential size nondeterministic circuits.
Parameters:

b, n - We are shooting to fool circuits of size nb.
ε ≥ 2−(n−1) - the required error.

Ingredients:
We make use of a 1

2 -HSG for nondeterministic circuits. Specifically, let b′ = a · b for a
constant a > 1 to be chosen later. By Theorem 1.7, there exists a constant c > 1 such that
the assumption that E is hard for exponential size nondeterministic circuits, implies that for
every sufficiently large n, there is a poly(n)-time computable G′ : {0, 1}c logn → {0, 1}2n
that is a 1

2 -HSG for size nb
′
nondeterministic circuits.

A hitter, that is a function hitter : {0, 1}2n → ({0, 1}n)4/ε such that for every B ⊆ {0, 1}n,
PrZ←U2n [∃i : hitter(Z)i ∈ B] ≥ 2

3 . It is standard that this is achieved by the “pair-wise
independent hitter” that uses its 2n bit input to sample 4/ε pairwise independent n
bit variables, (see e.g., [13]). Moreover, given (z, i), hitter(z)i can be computed in time
poly(n).

The HSG: Define G : {0, 1}c logn+log(4/ε) → {0, 1}n by G(x, i) = hitter(G′(x))i.

Figure 1 An HSG for low error.

Since
∑
r∈B p(r)(ar − br) ≤ ρ′ and

∑
r∈C p(r)(ar − br) ≤ (eε′ − 1)b we conclude∑

r∈A
p(r) > max((eε − eε

′
)b− ρ′, ρ− eε

′
b− ρ′).

If b < 0.25ρ then ρ−eε′b−ρ′ > ρ(1−e/4−1/10) > 0.22ρ. If b ≥ 0.25ρ then (eε−eε′)b−ρ′ >
(0.9·0.25−0.1)ερ = 0.125ερ. So we can conclude that Pr[R ∈ G] =

∑
r∈G p(r) ≥

∑
r∈A p(r) >

0.125ερ since A ⊆ G. J

5 Derandomization of poly-time randomized algorithms with large
error

In this section we prove construct the low-error HSG of Theorem 1.8 and show how to extend
the argument to handle two-sided error algorithms, proving Theorem 1.14.

5.1 An HSG for low error
We first consider the case of one-sided error algorithms which can be derandomized using
hitting-set generators. The following theorem gives a construction of HSGs and implies
Theorem 1.8 and Theorem 1.9.

I Theorem 5.1 (HSG with seed length log(1/ε) +O(logn)). Let b > 1 be a constant, and let
ε = ε(n) ≥ 2−(n−1). Assume that E is hard for exponential size nondeterministic circuits. Let
G be the function constructed in Figure 1, with the parameters chosen there. Then there exists
a constant c > 1 such that for every sufficiently large n, G : {0, 1}log(1/ε)+c logn → {0, 1}n is
an ε-HSG for size nb circuits. Furthermore, G is computable in time poly(nb).

Proof. Let D : {0, 1}n → {0, 1} be a size nb circuit, let B = {y : D(y) = 1}, and assume
that |B| ≥ ε · 2n. Let T =

{
z ∈ {0, 1}2n : ∃i : hitter(z)i ∈ B

}
. By the properties of hitter

S. Artemenko, R. Impagliazzo, V. Kabanets, and R. Shaltiel 9:19

|T | ≥ 2
3 · 2

2n. Note that by the definition of T , there exists a nondeterministic circuit
C : {0, 1}2n → {0, 1} of size poly(n) + nb such that C(z) = 1 iff z ∈ T . We can choose the
constant a to be sufficiently large so that nb′ = na·b is larger than the size of C. It follows
that G′ fools C and in particular, there exists x ∈ {0, 1}c logn such that C(G′(x)) = 1 which
implies D(G(x, i)) = D(hitter(G′(x)i) = 1 as required. J

5.2 Extending the argument to 2-sided error randomized algorithms
In this section we prove Theorem 1.14. Our first step is to modify the construction in Figure 1
to use a PRG instead of an HSG and an averaging sampler instead of a hitter. Specifically,
we replace hitter : {0, 1}2n → ({0, 1}n)4/ε with a function samp : {0, 1}2n → ({0, 1}n)t for
t = O(1/ε2). that has the property that for every B ⊆ {0, 1}n with |B| ≥ 2

3 · 2
n,

Pr
Z←U2n

[∣∣∣∣ | {i : samp(Z)i ∈ B} |
t

− |B|2n

∣∣∣∣ ≥ ε

10

]
≤ 1

10 .

It is standard that this is achieved by the “pair-wise independent sampler” that uses its
2n bit input to sample t = O(1/ε)2 pairwise independent n bit variables, (see e.g., [13]).
We also require that G′ is a 1/10-PRG for Σ1-circuits of size nb

′ (rather than a 1
2 -HSG for

nondeterministic circuits of size nb′). This follows just the same from Theorem 1.7, if we
strengthen the assumption, and assume that E is hard for exponential size Σ1-circuits. We
repeat the construction of Figure 1 with these choices, and let G denote the final function
G obtained in Figure 1 with the modifications above. We prove the following extension of
Theorem 5.1.

I Theorem 5.2. Let b > 1 be a constant, and let ε = ε(n) ≥ 2−n/2. Assume that E is hard
for exponential size Σ1-circuits. Let G be the function constructed in Figure 1, with the
parameters chosen there and the modifications explained above. Then there exists a constant
c > 1 such that for every sufficiently large n, G : {0, 1}c logn × {0, 1}log t → {0, 1}n satisfies
that for every size nb circuit D : {0, 1}n → {0, 1}:

If Pr[D(Un) = 1] ≥ 2 · ε then PrX←Uc logn

[
|{i:D(G(X,i))=1}|

t ≥ 3
2 · ε

]
≥ 4

5 .

If Pr[D(Un) = 1] ≤ ε then PrX←Uc logn

[
|{i:D(G(X,i))=1}|

t ≥ 3
2 · ε

]
≤ 1

5 .
Furthermore, G is computable in time poly(nb).

By the discussion in Section 1.8 we cannot use black-box techniques to construct poly-time
computable PRGs with low error under the assumption of Theorem 5.2. Theorem 5.2 does
not contradict the discussion as the constructed object G is not a PRG. It is not the case
that G(Ur) indistinguishable from uniform with very low error. Nevertheless, the guarantee
on G suffices for derandomization in time exponential in the seed length (as is the case in
PRGs).

Proof. (of Theorem 5.2) Let D : {0, 1}n → {0, 1} be a size nb circuit, let B = {y : D(y) = 1}.
Let

T =
{
z ∈ {0, 1}2n :

∣∣∣∣ | {i : samp(z)i ∈ B} |
t

− |B|2n

∣∣∣∣ ≤ ε

10

}
.

By the properties of samp, |T | ≥ 9
10 · 2

2n. It follows that:
If Pr[D(Un) = 1] ≥ 2 · ε then PrZ←U2n

[
|{i:D(samp(Z)i)=1}|

t ≥ 7
4 · ε

]
≥ 9

10 .

If Pr[D(Un) = 1] ≤ ε then PrZ←U2n

[
|{i:D(samp(Z)i)=1}|

t ≤ 5
4 · ε

]
≥ 9

10 .

CCC 2016

9:20 Pseudorandomness When the Odds are Against You

Consider the Σ1-circuit C : {0, 1}2n → {0, 1} that works as follows: given input
z ∈ {0, 1}2n, C uses Theorem 4.2 to compute an η-relative approximation p′ of p =
| {i ∈ [t] : D(samp(z)i) = 1} |, for η = 1/100. The circuit C accepts iff p′ ≥ t · 3

2 · ε. It
follows that C is a Σ1-circuit of size poly(nb). The quality of approximation is sufficient to
distinguish the case that p ≥ 7

4 · ε and p ≤
5
4 · ε.

We can choose the constant a to be sufficiently large so that nb′ = na·b is larger than the
size of C. It follows that G′ fools C, and the theorem follows.10 J

We are now ready to prove Theorem 1.14.

Proof of Theorem 1.14. Let T (n) ≥ n be a bound on the running time of A. Given an
input x ∈ {0, 1}n, we consider the circuit Dx : {0, 1}T (n) → {0, 1}, which given y simulates
A(x) using y as random coins. We apply Theorem 5.2 to obtain a constant c and a function

G : {0, 1}c logT (n) × {0, 1}log t(n) → {0, 1}T (n),

where t(n) = O(1/ε(n)2). By applying the guarantee of Theorem 5.2 on Dx we get that
x ∈ L ⇒ Pr[Dx(Un) = 1] ≥ 2 · ε] ⇒ PrS←Uc logT (n)

[
|{i:Dx(G(S,i))=1}|

t(n) ≥ 3
2 · ε(n)

]
≥ 4

5 .

x 6∈ L ⇒ If Pr[D(Un) = 1] ≤ ε] ⇒ PrS←Uc logT (n)

[
|{i:Dx(G(S,i))=1}|

t(n) ≥ 3
2 · ε(n)

]
≤ 1

5 .
The deterministic algorithm works as follows: We go over all s ∈ {0, 1}c logT (n). For each one
we count the number of i ∈ [t(n)] for which Dx accepts G(s, i). If the fraction of s, such that

| {i : Dx(G(s, i)) = 1} |
t(n) ≥ 3

2 · ε(n)

is larger than 4
5 , we accept. The correctness of this simulation follows. The running time is

t(n) · poly(T (n)) = poly(T (n))/ε(n)2. J

6 On minimal hardness assumptions for HSGs with low error

We are using hardness for nondeterministic circuits in Theorem 1.8 which constructs an
ε-HSG with very low error. Is this assumption necessary?

In this section we address this question. We will consider a natural intermediate model
of circuits that are stronger than deterministic circuits, and weaker than nondeterministic
circuits, namely nondeterministic circuits that use k ≤ n nondeterministic bits (as defined in
Definition 1.4).

6.1 1
2-HSGs for nondeterministic circuits with few nondeterministic bits

An inspection of our construction of HSG in Figure 1 reveals that the assumption that E
is hard for exponential size nondeterministic circuits was only used to obtain a 1

2 -HSG for
nondeterministic circuits with a number of nondeterministic bits that is roughly k = log(1/ε).
More precisely, our construction gives the following general conversion.

10Note that the circuit C uses its oracle only to perform approximate counting. It can be verified that
this can be done by a circuit C that makes nonadaptive queries to its oracle. This means that for this
argument it is sufficient that G′ fools circuits of this type, and by the “downward collapse theorem”
of Shaltiel and Umans [36], coupled with Theorem 1.7, such PRGs follow under the seemingly weaker
assumption that E is hard for exponential size nondeterministic circuits.

S. Artemenko, R. Impagliazzo, V. Kabanets, and R. Shaltiel 9:21

I Theorem 6.1. For every constant b > 1 there is a constant b′ > b such that for every
sufficiently large n, if G : {0, 1}r → {0, 1}2n is a 1

2 -HSG for size nb′ nondeterministic circuits
that use k = log(1/ε) +O(1) nondeterministic bits, then there is a function G′ : {0, 1}r+k →
{0, 1}n that is an ε-HSG for circuits of size nb. Furthermore, G can be computed in time
poly(n) with one oracle call to G.

We can show the following partial converse:

I Lemma 6.2. Let G : {0, 1}r → {0, 1}n be an ε-HSG for circuits of size s, and let
G′ : {0, 1}r → {0, 1}n−k be G′(x) = G(x)|1,...,n−k for k = log(1/ε)− 1. G′ is a 1

2 -HSG for
size s nondeterministic circuits with k nondeterministic bits.

Proof. Let C : {0, 1}n−k → {0, 1} be a size s nondeterministic circuit with k nondeterministic
bits, which accepts at least half of its inputs. That is, there exists a deterministic circuit
D : {0, 1}n−k × {0, 1}k → {0, 1} of size s such that: for every x ∈ {0, 1}n−k,

C(x) = 1 ⇔ ∃y ∈ {0, 1}k s.t. D(x, y) = 1,

and Pr[C(Un−k) = 1] ≥ 1
2 . It follows that Pr[D(Un) = 1] ≥ 1

2 · 2
−k = ε (here we view

D as a circuit with n input bits). Thus, by the guarantee of the HSG, there exists an
s′ ∈ {0, 1}r such that D(G(s′)) = 1. Denote G(s′) = (x′, y′) so that G′(s′) = x′. It follows
that D(x′, y′) = 1 which implies that C(x′) = 1, and we have that C(G′(s′)) = 1. J

This means that in the case that r = Ω(log(1/ε)) the notions of 1
2 -HSG for nondeterministic

circuits with k = log(1/ε) bits of nondeterminism, and the notion of ε-HSGs for standard
circuits are essentially equivalent (in the sense that conversions between them incur only
slight penalties in seed length and circuit size).

Consequently, if we are interested in low error HSGs for deterministic circuits that have
polynomial stretch, we should be interested in HSGs against the class of polynomial size
nondeterministic circuits on n bits with γ · n nondeterministic bits, for a small γ > 0.

6.2 Hardness assumptions that imply HSGs for circuits with weak
nondeterminism

How hard is it to construct 1
2 -HSGs for poly-size nondeterministic circuits with γ · n nonde-

terministic bits? Given the success of the hardness versus randomness paradigm exhibited in
Theorems 1.3 and Theorem 1.7, we can hope that hardness for this circuit class, translates
into pseudorandomness for this circuit class. If this is the case, we can start from the
assumption that there exists a γ > 0 such that E is hard for exponential size nondeterministic
circuits that use γn nondeterministic bits.

An inspection of the hardness versus randomness tradeoffs in the literature reveal that
they do not give such a result. Loosely speaking, because of the need for a hybrid argument,
the reductions need to “perform decoding” from error less than 1/n and make a super-linear
number queries to the distinguisher circuit. This overall means that we require hardness
against circuits with a super-linear number of nondeterministic bits.

This is a pity because it trivially follows that nondeterministic circuits of size s with k
nondeterministic bits can be simulated by deterministic circuits of size s · 2k, and this implies
that:

I Fact 6.3. If E is hard for exponential size circuits, then there exists a γ > 0 such that E
is hard for exponential size nondeterministic circuits that use γn nondeterministic bits.

CCC 2016

9:22 Pseudorandomness When the Odds are Against You

Consequently, a hardness versus randomness tradeoff of the form we hope for, would
be able to start from the assumption that E is hard for exponential size circuits. By the
discussion in the introduction, such hardness versus randomness tradeoffs cannot have
black-box proofs.

6.3 Hardness assumptions implied by HSGs with low error
In the previous section we observed that it is unlikely that we can prove that hardness
for nondeterministic circuits with few nondeterministic bits implies HSGs with low error
against deterministic circuits. We are able to prove the other direction. Specifically, we
show that HSGs with low error and polynomial stretch, that run in time exponential in their
seed length, imply that E is hard for polynomial size nondeterministic circuits with Ω(n)
nondeterministic bits on inputs of length n. The following is a restatement of Theorem 1.11

I Theorem 6.4. Let δ > 0 be a constant. Assume that for every sufficiently large n, there
is a 2−nδ -HSG H : {0, 1}O(nδ) → {0, 1}n for size s ≥ n circuits, and furthermore that the
family of functions H = {Hn} is computable in time exponential in the seed length, that is
time 2O(nδ). Then, there exists a constant γ > 0, and a problem L ∈ E such that for every
sufficiently large n′, nondeterministic circuits of size (γn′)1/δ with γ · n′ nondeterministic
bits fail to compute the characteristic function of L on inputs of length n′.

Our current state of knowledge doesn’t give us any reason to think that HSGs with
ε = 1/n imply the same conclusion.

We use the following simple argument from [23] to prove the following:

I Theorem 6.5. Let H : {0, 1}r → {0, 1}n be a 1
2 -HSG for size s nondeterministic circuits

that use k bits. Let f : {0, 1}r+2 → {0, 1} be the function

f(y) = 0 ⇔ ∃z ∈ {0, 1}n−(r+2),∃x ∈ {0, 1}n s.t. H(x) = y ◦ z

where “◦” denotes concatenation. f cannot be computed by size s-circuits that use k bits of
nondeterminism.

Proof. A circuit C : {0, 1}r+2 → {0, 1} computing f , can be thought of a circuit C :
{0, 1}n → {0, 1} (that only looks at the r + 2 prefix of its input). It is immediate that
Pr[C(Un) = 1] ≥ 3

4 and yet C answers zero on all outputs of G. J

Theorem 6.4 now follows by converting the low error HSG into a 1
2 -HSG for nondeter-

ministic circuits with few nondeterministic bits, and then using Theorem 6.5 to convert the
HSG into a hard function.

Proof of Theorem 6.4. Let c be the constant hidden in the seed length of H, and let n
be sufficiently large. By Lemma 6.2 we have that H ′ : {0, 1}r → {0, 1}n−k is a 1

2 -HSG
for size s ≥ n, nondeterministic circuits with k bits of nondeterminism, for k = nδ − 1.
Let n′ = c · nδ + 2, and let f : {0, 1}n′ → {0, 1} be the function obtained by applying
Theorem 6.5 on H ′. We have that f cannot be computed by size s-circuits that use k bits of
nondeterminism. Note that s ≥ n ≥ Ω(n′)1/δ, and k ≥ Ω(n′). Let L be the language of the
decision problem f . It follows that L ∈ E as f can be computed by running over all 2O(nδ)

seeds of G and computing G, and this takes time 2O(nδ) = 2O(n′). J

S. Artemenko, R. Impagliazzo, V. Kabanets, and R. Shaltiel 9:23

7 A construction of an re-PRG

In this section we construct re-PRGs and prove Theorem 1.17. We will actually construct rt-
PRGs which are in particular re-PRGs. We begin by constructing a poly(n)-time computable
function g : {0, 1}n → {0, 1}, such that the function G : {0, 1}n → {0, 1}n+1 defined by
G(x) = (x, g(x)) is an (1/poly(n), 2−Ω(n))-rt-PRG for fixed polynomial size circuits. This
construction is given in Section 7.1 and builds on ideas from [43, 2]. In order to obtain an
re-PRG with polynomial stretch we apply the Nisan-Wigderson generator [29] where the
function g plays the role of the hard function. The analysis of the NW-generator can be used
(with some modifications) to argue that this yields an rt-PRG.

7.1 rt-PRGs with one bit stretch
7.1.1 The construction
We use the following result by Trevisan and Vadhan [43].

I Theorem 7.1 ([43]). Let i ≥ 0. If E is hard for exponential size Σi+1-circuits, then for
every constant b > 1, there exists some constant α > 0 such that for every sufficiently large
n, there is a function f : {0, 1}n → {0, 1}m=α·n such that for every size nb, Σi-circuit A,
PrX←Un [A(X) = f(X)] ≤ 2−m/3. Furthermore, f is computable in time poly(nb).

I Remark. Theorem 7.1 is not stated in this form in [43]. Nevertheless, it is implicit in the
work of [43] as we now explain.

Lemma 5.1 in [43] states that if a circuit C computes a degree d multivariate polynomial
p : Ft → F (over a field F of size q) correctly on an ε fraction of its inputs (and if certain
conditions on the parameters t, d, q and ε are met) then there exists a Σj-circuit C ′ that
computes p correctly on all inputs, and the size of C ′ is polynomial in the size of C and in
t, d, log q (but does not depend on ε). The lemma claims this for j = 2, but we will later
observe that this holds also for j = 1.

The parameters in the lemma allow ε which is roughly
√
d/q and thinking of p as a

boolean function outputting log q bits, this allows ε to approach 2− 1
2 ·log q if d� q.

By using the “low degree extension” it is standard that E has complete problems that
can be represented as such low degree polynomials. More precisely, given an input length
n, we consider a restriction of an E complete problem to inputs of length ` = c logn and
perform the low degree extension with d = 2γ·`, where γ > 0 is a small constant, t = O(1/γ)
and huge field size q = 2n/t so that the input length of p (in bits) is t log q = n and the
output length is log q = Ω(n). It follows that p can be computed in time 2O(c`) = nO(c) and
if we assume that E is hard for Σj-circuits then p cannot be computed by circuits of size
2β·` = nβc, which we can control by choosing c. The reader can also find this argument in
the proof of Theorem 5.5 in [43].

From this, Lemma 5.1 in [43] gives that p (interpreted as a function with boolean input
and output) is a function that is hard on average. This proves a version of Theorem 7.1 in
which Σ1 is replaced by Σ2. The stronger statement (for Σ1) follows because Lemma 5.1 in
[43] also holds for j = 1. This was stated in an earlier version of [43] and follows by a more
efficient implementation of the proof.

More specifically, the proof of Lemma 5.1 constructs the circuit C ′ by first specifying a
randomized procedure which for every input x ∈ Ft computes p(x) correctly with probability
say 2/3. The procedure requires “nonuniform advice” about p in the form of a point z ∈ Ft
and its evaluation p(z) (the existence of a “good point” z is shown in the proof). The

CCC 2016

9:24 Pseudorandomness When the Odds are Against You

Goal: Construct a poly(n)-time computable (n−b, 2−Ω(n))-rt-PRG, G : {0, 1}n → {0, 1}n+1 for
Σi-circuits of size nb.

Assumption: E is hard for exponential size Σi+3-circuits.
Parameters:

i, b, n - We are shooting to fool Σi-circuits of size nb.
We set ρ = 2−µn for a constant 0 < µ < 1

2 to be specified later.
We set t = νn for a constant ν > 1

2 to be specified later.
Ingredients:

We make use of an exponentially hard on average function due to Trevisan and Vadhan [43].
Specifically, let b′ = a · b for a constant a > 1 to be chosen later. By Theorem 7.1, there
exists a constant α > 0 such that under the assumption that E is hard for exponential size
Σi+3-circuits, for every sufficiently large n, there is a polynomial time computable function
f : {0, 1}t → {0, 1}t

′=α·t such that for every size nb
′
, Σi+2-circuit A, PrX←Ut [A(X) =

f(X)] ≤ 2−t
′/3.

A strong (k = O(log(1/ρ)), ρ/2000)-extractor, E : {0, 1}t
′
× {0, 1}d → {0, 1}, with seed

length d = O(log(1/ρ)). There are constructions of polynomial time computable extractors
with these parameters [17]. (In fact, such extractors immediately follow from binary poly-
time (1/2 − Ω(ρ),poly(1/ρ))-list-decodable codes with rate poly(ρ) [42]. We have that
d = O(log(1/ρ) = e · µ · n for some constant e > 1. We now specify the constant ν (which
was used to define t = ν · n) so that the equality n = t + d holds, we will later choose
µ > 0 to be sufficiently small so that we indeed have that ν > 1/2 as promised.

The rt-PRG: Define g : {0, 1}t × {0, 1}d → {0, 1}, by g(v, y) = E(f(v), y). The final generator
G : {0, 1}n → {0, 1}n+1 is given by G(v, y) = (v, y, g(v, y)).

Figure 2 An rt-PRG with one bit stretch.

computation of the procedure can be expressed in the following form: Given x, the procedure
nondeterministically guesses polynomially many strings h1, . . . , h` of polynomial length. For
each one it prepares a circuit Ti which depends on hi (and also on x, z, p(z)). The procedure
then uses approximate counting to verify that sufficiently many of the Ti’s accept more than
a fixed number of inputs.

Indeed, such a computation can be described (after removing the random coins) by a
nondeterministic circuit that uses an NP-oracle to perform approximate counting. Overall,
this gives a Σ2-circuit.

However, approximate counting is only used to check that a given circuit accepts more
than a fixed number of inputs. The problem of checking that the number of accepting inputs
is larger than a fixed quantity is easier than approximating the number of accepting inputs:
it can be solved by an Arthur-Merlin protocol as shown by Goldwasser and Sipser [16]. With
this implementation, the entire procedure can be seen (after removing the randomness) as a
Σ1-circuit.

Our construction is given in Figure 2. Note that an intuitive overview is given in Section 2.

I Theorem 7.2 (rt-PRG with one bit stretch). Let i ≥ 0, b > 1 be constants. Assume that E
is hard for exponential size Σi+3 circuits. Let g,G be the functions constructed in Figure 2,
with the parameters chosen there. Then there exists a constant µ > 0 such that for every
sufficiently large n, G(x) = (x, g(x)) is an (n−b, ρ)-rt-PRG for size nb, Σi-circuits, for
ρ = 2−µ·n. Furthermore, g is computable in time poly(nb).

S. Artemenko, R. Impagliazzo, V. Kabanets, and R. Shaltiel 9:25

7.1.2 Proof of Theorem 7.2
We start by proving the following lemma (which captures the role that strong seeded extractors
play in the proof).

I Lemma 7.3. Let E : {0, 1}n × {0, 1}d → {0, 1} be a (k, ρ)-strong extractor, and let
T : {0, 1}d × {0, 1} → {0, 1} be a function. Let

Z =
{
z : Pr

Y←Ud
[T (Y,E(z, Y)) = 1]

ad

6∼ρ Pr
Y←Ud,W←U1

[T (Y,W) = 1]
}
.

Then |Z| ≤ 2 · 2k.

Proof. We can partition Z into two sets according to which of the two terms in the definition
of Z is the maximal one. If |Z| > 2 · 2k then we can assume w.l.o.g

|{z : Pr
Y←Ud

[T (Y,E(z, Y)) = 1]− Pr
Y←Ud,W←U1

[T (Y,W) = 1] > ρ}| > 2k.

Let X be a random variable that is uniformly distributed over Z and note that H∞(X) > k.
E is a (k, ρ)-strong extractor which implies that (Y,E(X,Y)) is ρ-close to (Y,W). This
implies that |Pr[T (Y,E(X,Y)) = 1]−Pr[T (Y,W) = 1]| ≤ ρ, and we get a contradiction. J

We are now ready to prove Theorem 7.2. We assume (for contradiction) that G is not a
(n−b, ρ)-rt-PRG for size nb Σi-circuits, and our goal is to show that there is a Σi+2-circuit A
of size nb′ such that PrX←Ut [A(X) = f(X)] > 2−t′/3.

Our assumption says that there exists a size nb Σi-circuit C such that Pr[C(G(Un)) =

1]
rt

6∼(n−b,ρ) Pr[C(Un+1) = 1]. For the remainder of the proof, let us consider a probability
space that consists of three independent random variables: V ← Ut, Y ← Ud and U ← U1.
By the construction of G we have that:

Pr[C(V, Y,E(f(V), Y)) = 1]
rt

6∼(n−b,ρ) Pr[C(V, Y, U) = 1]

We now apply Lemma 4.10. For this purpose we set R = V , W = (Y,U). We use the notation
W1 = Y and W2 = U . Let ψ1(r, w) = C(r, w1, E(f(r), w1)) and ψ2(r, w) = C(r, w1, w2). We
apply the lemma and obtain that:

I Claim 7.4. Let ε′ = n−b/10, ρ′ = ρ · n−b/10 and let

G =
{
v ∈ {0, 1}t : Pr[C(v, Y,E(f(v), Y)) = 1]

rt

6∼(ε′,ρ′) Pr[C(v, Y, U) = 1]
}
.

It follows that Pr[V ∈ G] ≥ ρ · n−b/10.

Recall that our goal is to contradict the hardness of f by showing the existence of a
suitable circuit A that compute f(v) too well given a random v. For every v ∈ G, we
define Tv(y, b) = C(v, y, b) so that Tv distinguishes (Y,E(f(v), Y)) from (Y, U) in the sense

that Pr[Tv(Y,E(f(v), Y)) = 1]
rt

6∼(ε′,ρ′) Pr[Tv(Y,U) = 1]. By Lemma 4.5, this implies that

Pr[Tv(Y,E(f(v), Y)) = 1]
ad

6∼ρ′·ε′/3 Pr[Tv(Y, U) = 1]. This is helpful because by Lemma 7.3
there aren’t that many z ∈ {0, 1}t′ for which Tv distinguishes (Y,E(z, Y)) from (Y,U), and
yet z∗ = f(v) is one of those z’s. We will use this property to construct a small Σi+2 circuit
A that given a v ∈ G, produces f(v) with probability ρO(1), and this will be a contradiction.
The description of A appears in Figure 3. We first present A as a randomized circuit that
tosses coins, and will later fix its coins to give a circuit that does not toss coins. The
correctness of A will follow from the following claims.

CCC 2016

9:26 Pseudorandomness When the Odds are Against You

Goal: A size nb
′

Σi+2-circuit C that computes f with probability 2−t
′/3.

Description: On input v ∈ {0, 1}t, A computes as follows:
Prepare the Σi-circuit Tv(y, b) = C(v, y, b)
Prepare the Σi+1-circuit Bv, defined as follows:

On input z ∈ {0, 1}t
′
, Bv computes as follows:

Bv prepares the circuits Dv
1 : {0, 1}d → {0, 1} and Dv

2 : {0, 1}d+1 → {0, 1} defined by
D1(y) = Tv(y,E(z, y)) and D2(y, b) = Tv(y, b). Note that these are circuits of size
poly(nb).
Let p1, p2 be the number of accepting inputs of Dv

1 , D
v
2 respectively. Let η = ε′/10 =

n−b/100. B uses Theorem 4.2 to compute η-relative approximations p′1, p′2 to p1, p2.
Note that by Theorem 4.2, this can be done in a size poly(nb) Σi+1-circuit.
Bv accepts z if max(p′1, p′2) ≥ ρ′e−η and max(p′1, p′2)/min(p′1, p′2) ≥ eε

′−2η. This choice
is made so that by Lemma 4.9:

∗ p1
rt

6∼(ε′,ρ′) p2 ⇒ Bv accepts z, and

∗ Bv accepts z ⇒ p1
rt

6∼(ε′′,ρ′′) p2, where ε′′ = ε′ − 4η ≥ ε′/2 and ρ′′ = ρ′ · e−2η ≥ ρ′/2.
The circuit A uses Theorem 4.3 to sample an accepting input z of Bv (with error δ = 2−n).
Note that this can be done with a size poly(nb) Σi+2-circuit. Overall, the size of A is
poly(nb). Recall that in Figure 2 we have chosen b′ = a · b for an unspecified constant a.
Note that A is indeed a Σi+2-circuit, and we can now choose a to be sufficiently large so
that the size of A is poly(nb) = na·b = nb

′
.

Finally, the circuit A outputs z.

Figure 3 Circuit A: A Σi+2-circuit that computes f correctly with noticeable probability.

I Claim 7.5. For every v ∈ G, Bv accepts f(v).

Proof. Fix some v ∈ G. By Claim 7.4 and the definition of Tv, Pr[Tv(Y,E(f(v), Y)) =

1]
rt

6∼(ε′,ρ′) Pr[Tv(Y,U) = 1]. When Bv receives z = f(v) as input, it prepares the circuit
D1(y) = Tv(y,E(f(v), y)) and D2(y, b) = Tv(y, b). Recall that p1, p2 are the number of

accepting inputs of these two circuits. Therefore, we have that p1
rt

6∼(ε′,ρ′) p2, and by
construction, Bv accepts z. J

I Claim 7.6. For every v ∈ G, Bv accepts at most 2k+1 = (1
ρ)O(1) inputs.

Proof. By construction, if Bv accepts an input z, then the quantities p1, p2 in Figure 3,

satisfy p1
rt

6∼(ε′−4η,ρ′·e−2η) p2. By Lemma 4.5, this implies that p1
ad

6∼ε′′·ρ′′/3 p2, and note that

ε′′ · ρ′′/3 ≥ ε′ · ρ′/12 ≥ n−2b · ρ/1200 ≥ ρ/2000.

Therefore, if Bv accepts z, then Pr[Tv(Y,E(z, Y)) = 1]
ad

6∼ρ/2000 Pr[Tv(Y,U) = 1] and by
Lemma 7.3, there are at most 2 · 2k = poly(1/ρ) such strings z. J

The two claims above give that

I Claim 7.7. For every v ∈ G, Pr[A(v) = f(v)] ≥ 2−(k+1) = ρO(1) (where the probability is
over the coin tosses of A).

It follows that

Pr[A(V) = f(V)] ≥ Pr[V ∈ G] · Pr[A(V) = f(V)|V ∈ G] ≥

ρ · n−b/10 · ρO(1) = ρO(1) = 2−O(µ·n) ≥ 2−t
′/3,

S. Artemenko, R. Impagliazzo, V. Kabanets, and R. Shaltiel 9:27

where the last step follows because we can choose µ > 0 to be sufficiently small so that

t′/3 = α · t/3 = α · ν · n/3 ≥ α · n/6 ≥ O(µn).

Finally, by an averaging argument, we can hardwire the random coins of A to produce a
non-randomized circuit with the same success probability. Thus, the circuit A contradicts
the assumption that f is 2−t′/3-incomputable by Σi+2-circuits of size nb

′ .

7.2 rt-PRGs with polynomial stretch
We now use the NW-generator to transform the 1-bit stretch rt-PRG into an rt-PRG with
polynomial stretch.

7.2.1 Using the NW-generator
We review the construction of the NW-generator.

I Definition 7.8 (Design). A collection ∆ = (S1, . . . , Sn) of subsets of [r] is an (r, `, u)-design
if

For every i ∈ [n], |Si| = `.
For every distinct i, j ∈ [n], |Si ∩ Sj | ≤ u.

I Definition 7.9 (NW-generator). Let ∆ = (S1, . . . , Sn) be an (r, `, u)-design, and let
g : {0, 1}` → {0, 1} be a function. For y ∈ {0, 1}r, we define xi(y) = y|Si and zi(y) = g(xi(y)).
Let,

NW∆
g (y) = z1(y), . . . , zn(y).

Theorem 1.17 follows from the next theorem.

I Theorem 7.10. Let ∆ be an (r, `, u)-design with u = c · logn. If G(x) = (x, g(x)) is an
(ε

20n ,
ρ·ε
30n)-rt-PRG for size nc+1 + nb + O(n) circuits, then NW∆

g : {0, 1}r → {0, 1}n is an
(ε, ρ)-rt-PRG for size nb circuits.

We need the following notation for the proof.

I Definition 7.11. Given x ∈ {0, 1}`, v ∈ {0, 1}r−` and i ∈ [n] let y(i)(x, v) denote the r-bit
string y obtained by “placing” the bits of x in the ` indices of y that are in Si, and using v
to fill the remaining r − ` positions.

of Theorem 7.10. In this proof g and ∆ are fixed, and so, to avoid clutter we write NW
instead of NW∆

g . Assume for contradiction that NW is not an (ε, ρ)-rt-PRG for size nb
circuits. That is, that there exists a circuit D of size nb such that

Pr[D(NW(Ur)) = 1]
rt

6∼(ε,ρ) Pr[D(Un) = 1].

I Claim 7.12 (“Relative error hybrid argument”). Consider a probability space consisting of
independent random variables Y ← Ur and B1, . . . , Bn ← U1, and define

Hi = z1(Y), . . . , zi(Y), Bi+1, . . . , Bn,

so that H0 = Un and Hn = NW(Y). There exists 0 ≤ i < n such that

Pr[D(Hi) = 1]
rt

6∼(ε/2n,ρ·e−ε/2) Pr[D(Hi+1) = 1]

CCC 2016

9:28 Pseudorandomness When the Odds are Against You

Proof. Let pi = Pr[D(Hi) = 1]. We have that p0
rt

6∼(ε,ρ) pn which indeed implies that there

exists an i such that pi
rt

6∼(ε/2n,ρ·e−ε/2) pi+1. J

We have that

Pr[D(z1(Y), . . . , zi(Y), Bi+1, . . . , Bn) = 1]
rt

6∼(ε/2n,ρ·e−ε/2)

Pr[D(z1(Y), . . . , zi+1(Y), Bi+2, . . . , Bn) = 1

We can imagine that the experiment of choosing Y ← Ur is performed by choosing inde-
pendently X ← U` and V ← Ur and setting Y = y(i+1)(X,V). We now apply Lemma 4.10
setting R = (V,Bi+2, . . . , Bn) and W = (X,Bi+1). We conclude that there exists a fixing
(v, bi+2, . . . , bn) for R such that

Pr[D(z1(y(i+1)(X, v)), . . . , zi(y(i+1)(X, v)), Bi+1, bi+2, . . . , bn) = 1]
rt

6∼(ε/20n,ρ·e−ε·ε/20n)

Pr[D(z1(y(i+1)(X, v)), . . . , zi+1(y(i+1)(X, v)), bi+2, . . . , bn) = 1].

Note that by definition, zi+1(y(i+1)(X, v)) = g(X). Furthermore, note that as ∆ is a
(r, `, u)-design, for j ≤ i, zj(y(i+1)(X, v) depends only on u bits of X, and therefore, can be
computed by a circuit Cj(X) of size 2u. We now define a circuit C as follows:

C(x, b) = D(C1(x), . . . , Ci(x), b, bi+2, . . . , bn).

Substituting in the expression above, we have that:

Pr[C(X, g(X)) = 1]
rt

6∼(ε/20n,ρ·e−ε·ε/20n) Pr[C(X,Bi+1) = 1]

Note that C is of size n·2u+nb+O(n) = nc+1+nb+O(n) and that ρ·e−ε·ε/20n ≥ ρ·ε/30n. J

7.2.2 Putting it together: Proof of Theorem 1.17
We assume that E is hard for exponential size Σi+3-circuits. Let e, b > 1 be some constants.
Nisan and Wigderson [29] showed that there exists a constant c > 1 such that for every
sufficiently large n, there is an (r, `, u) design with n = re sets, that has r = O(`2) and u =
c logn. Note that n = O(`2e) and so, by Theorem 7.2 there are polynomial time computable
functions g : {0, 1}` → {0, 1} and G(x) = (x, g(x)) such that G is a (n−b′ , ρ)-rt-PRG for
size nb′ Σi-circuits, where b′ is a constant that we choose later, and ρ = 2−Ω(`) = 2−Ω(

√
r).

We can choose the constant b′ to be sufficiently large so that by Theorem 7.10 we have
that NW∆

g is an (ε′, ρ′)-rt-PRG for size nb Σi-circuits, with ε′ = n−b
′ · 20n ≤ n−b and

ρ′ = ρ · 30n/n−b′ = ρΩ(1) = 2−Ω(
√
r) for sufficiently large n. This gives a re-PRG with the

same parameters.

8 A construction of re-nb-PRGs

In this section we construct rt-nb-PRGs which imply re-nb-PRGs.

S. Artemenko, R. Impagliazzo, V. Kabanets, and R. Shaltiel 9:29

8.1 rt-PRGs for Σ1-circuits are rt-nb-PRGs
We first show that sufficiently strong rt-PRGs for Σ1-circuits are rt-nb-PRGs. More specifically
that (ε, ρ)-rt-PRGs with ρ = O(2−` · ρ′ · ε) for Σ1-circuits are (`, O(ε), ρ′)-rt-nb-PRGs (for
standard circuits).

I Lemma 8.1. There exists a constant c > 1 such that for every constant b > 1, and for every
sufficiently large n, if G : {0, 1}r → {0, 1}n is an (ε, ρ)-rt-PRG for Σ1-circuits of size nbc
with ρ ≤ 2−(`+t) then G is a (`, 4 · ε, ρ′)-rt-nb-PRG for circuits of size nb for ρ′ = O(2−t/ε).

Proof. Let C : {0, 1}n → {0, 1}` be a size nb circuit. We consider the circuit A : {0, 1}` →
{0, 1} that on input z ∈ {0, 1}` computes a 1/10-relative approximation to the quantity
Pr[C(Un) = z] and accepts if and only if the approximation is smaller than 2ρ. By Theo-
rem 4.2, A can be implemented by a Σ1-circuit of size poly(nb). We use A also to denote
the set of inputs accepted by A. Note that for every z ∈ A, Pr[C(Un) = z] < 4ρ. It follows
that Pr[C(Un) ∈ A] ≤ 2` · 4ρ = 2−(t−2). By the pseudorandomness of G, this implies that
Pr[C(G(Ur)) ∈ A] ≤ eε2−(t−2).

Let H = {z : Pr[C(Un) = z] ≥ 4ρ}. We have that H ∩A = ∅. For every z ∈ {0, 1}`, we
can consider the circuit Tz(x) which accepts iff C(x) = z. This circuit is fooled by G. For
z 6∈ A, Pr[C(Un) = z] ≥ ρ, and we have that Pr[C(Un) = z] rt∼(ε,0) Pr[C(G(Ur)) = z]. This
in turn implies that for every T such that T ∩A = ∅, Pr[C(Un) ∈ T] rt∼(ε,0) Pr[C(G(Ur)) ∈ T].
We will show that:

I Claim 8.2. For every D ⊆ {0, 1}`, Pr[C(Un) ∈ D] re∼(ε,δ) Pr[C(G(Ur)) ∈ D] for δ =
2−(t−2).

Proof. We have that:

Pr[C(Un) ∈ D] = Pr[C(Un) ∈ D \H] + Pr[C(Un) ∈ D ∩H]
≤ 4ρ · 2` + eε · Pr[C(G(Ur)) ∈ D ∩H]

≤ 2−(t−2) + eε · Pr[C(G(Ur)) ∈ D ∩H]

We also have that:

Pr[C(Un) ∈ D] ≥ Pr[C(Un) ∈ D \A]
≥ e−ε · Pr[C(G(Ur)) ∈ D \A]
= e−ε · (Pr[C(G(Ur)) ∈ D]− Pr[C(G(Ur)) ∈ D ∩A])

≥ e−ε · (Pr[C(G(Ur)) ∈ D]− eε · 2−(t−2))

= e−ε · Pr[C(G(Ur)) ∈ D]− 2−(t−2) J

The lemma now follows because by Lemma 4.5 for ε ≤ 1
2 , p1

re∼(ε,δ) p2 ⇒ p1
rt∼(4ε,4δ/ε) p2.

J

Using the rt-PRG of Theorem 1.17 we obtain the following rt-nb-PRG.

I Theorem 8.3. Let b, e > 1 be constants, and ` = `(n) ≤ n, ρ = ρ(n) be functions.
If E is hard for exponential size Σ4-circuits, then there is a polynomial time computable
G : {0, 1}r → {0, 1}n, such that for every sufficiently large n, G is an (`, n−b, ρ)-rt-nb-PRG
for circuits of size nb, with r = O((`+ log(1/ρ))2).

This is disappointing as previous work on (non-relative) nb-PRGs achieves a better dependence
on ` in the form of r = O(`). We would like to also achieve a linear dependence of r on `.

CCC 2016

9:30 Pseudorandomness When the Odds are Against You

8.2 An rt-nb-PRG with seed length r = `+ O(log(1/ρ))2

We will use the approach of Theorem 1.18 to achieve a construction with shorter seed length.
Specifically, we design a poly(n) time randomized procedure P that produces circuit that
is with high probability an rt-PRG for Σ1-circuits that has excellent seed length. We then
show that checking whether a given circuit is an rt-PRG for Σ1-circuits can be done in the
polynomial time hierarchy. This means that our rt-PRG G′ of the earlier section can be used
to produce a circuit h that with high probability is an rt-PRG for Σ1-circuits. This in turn
implies that it is an rt-nb-PRG for standard circuits. Our final rt-PRGs takes two seeds,
x1, x2. It first constructs h by applying P (G′(x1)) and then outputs h(x2).

8.2.1 A random hash function is an rt-PRG

We use the following standard construction of t-wise independent hash functions (that is
based on degree t− 1 polynomials).

I Theorem 8.4 (t-wise independent hash functions). For every n,m, t there is a family
Htn,m of at most 2d=t·max(n,m) functions from n bits to m bits, such that for every distinct
x1, . . . , xt ∈ {0, 1}n, the random variables h(x1), . . . , h(xt) defined over the experiment
h ← Htn,m are uniformly distributed and t-wise independent. Furthermore, there is a
polynomial time algorithm that given the d bit description s of a hash function hs ∈ Htn,m,
and an input x ∈ {0, 1}n, computes hs(x).

A standard probabilistic argument shows that for any class C with 2k functions, a random
function G : {0, 1}r → {0, 1}n is w.h.p. a PRG for C with r ≈ log k. In the theorem below,
we repeat this argument and show that it also applies for rt-PRGs and achieves an excellent
dependence on ρ.

I Theorem 8.5. Let C be a family of at most 2k boolean functions on n bits. Let t =
2(k + 3) + 2n and r = log k + logn + 2 log(1/ε) + log(1/ρ) + c for a sufficiently large
universal constant c. With probability at least 1− 2−n over h← Htr,n, we obtain a function
h : {0, 1}r → {0, 1}n that is an (ε, ρ)-rt-PRG for C.

Proof. Let C : {0, 1}n → {0, 1} be a function in C, and let µ = Pr[C(Un) = 1]. Let XC be the
random variable that counts the number of s ∈ {0, 1}r such that C(h(s)) = 1. The random
variable XC is a sum of 2r, t-wise independent variables. We have that E(XC) = 2r · µ. By
the t-wise independent “Chernoff style” bound of Bellare and Rompel [8] we have that for
even t,

Pr[|XC − E(XC)| ≥ A] ≤ 8 ·
(
t · E(XC) + t2

A2

)t/2

Let A = 1
3 · ε · 2r · max(µ, ρ). This choice is made so that XC

2r
rt

6∼(ε,ρ) µ implies that
|XC − E(XC)| ≥ A. By our choice of parameters it follows that:

t · E(XC) + t2

A2 ≤ t · µ · 2r + t2

1
9 · ε2 · 22r ·max(µ, ρ)2 ≤

t
1
9 · ε2 · 2r · ρ

+
(

t
1
3 · ε · 2r · ρ

)2
≤ 1

2

where the last inequality follows for a sufficiently large constant c in the definition of r, and

S. Artemenko, R. Impagliazzo, V. Kabanets, and R. Shaltiel 9:31

using our choice of parameters. It follows that

Pr[XC

2r
rt

6∼(ε,ρ) µ] ≤ 8 ·
(
t · E(XC) + t2

A2

)t/2
≤ 8 ·

(
1
2

)t/2
≤ 2−n · 2−k

where the last inequality follows by our choice of t. By a union bound over all 2k functions
C in C we have that with probability 1− 2−n we obtain an rt-PRG. J

I Corollary 8.6. For every b > 1, and for every sufficiently large n, and every ε, ρ ≥ 2−n,
there is a randomized Turing Machine P running in time poly(nb) that with probability 1−2−n
produces a circuit h : {0, 1}r → {0, 1}n that is an (ε, ρ)-rt-PRG for Σ1-circuits of size nb,
with r = O(b logn) + 2 log(1/ε) + log(1/ρ).

8.2.2 The complexity of checking if a given circuit is an rt-PRG
We consider the problem of checking whether a given circuit is an rt-PRG. We would like to
show that this problem is in the polynomial time hierarchy. The following formulation as a
promise problem makes this possible, and will suffice for our needs.

I Definition 8.7. Let DCi,s,s′ε,ρ denote the following promise problem:
Input: a circuit G : {0, 1}r → {0, 1}n of size s.
Yes instances: G is not an (ε, ρ)-rt-PRG for Σi-circuits of size s′.
No instances: G is an (ε/2, ρ · (1− ε))-rt-PRG for Σi-circuits of size s′.

I Theorem 8.8. For every i ≥ 0, 0 < ε, ρ ≤ 1, and r ≤ n ≤ s′ ≤ s there is a nondeterministic
Σi+2-circuit of size poly(r, n, s, 1/ε) which solves DCi,s,s′ε,ρ .

Proof. We consider the following nondeterministic Σi+1-circuit A: when given the circuit
G as input, the circuit A guesses a Σi-circuit C : {0, 1}n → {0, 1} of size s′. Let η = ε/10.
Using Theorem 4.2, A computes η-relative approximations p′1, p′2 of the quantities of p1 =
Pr[C(Un) = 1] and p2 = Pr[C(G(Un) = 1]. A then applies the test T (p′1, p′2) of Lemma 4.9
and outputs its outcome. By Lemma 4.9:

p1
rt

6∼(ε,ρ) p2 ⇒ T (p′1, p′2) accepts.

T (p′1, p′2) accepts ⇒ p1
rt

6∼(ε−4η,ρ·e−2η) p2.
The theorem follows by our choice of η. J

The key is that the size of the circuit above does not depend on ρ, and note that if the
circuit rejects G, then G is an (ε, ρ)-rt-PRG.

8.3 rt-nb-PRGs with small seed length
The following Theorem implies Theorem 1.21.

I Theorem 8.9 (rt-nb-PRG with seed length 1 · `+ O(log(1/ρ))2). Let b > 1 and α > 0 be
constants and ` = `(n) ≤ n, ρ = ρ(n) ≤ 2−nα . Assume that E is hard for exponential size
Σ6-circuits. Let G be the function constructed in Figure 4, with the parameters chosen there.
Then for every sufficiently large n, there is a polynomial time computable (`, n−b, ρ)-rt-nb-PRG
G : {0, 1}r → {0, 1}n for size nb circuits, with r = `+O(log(1/ρ))2.

CCC 2016

9:32 Pseudorandomness When the Odds are Against You

Goal: Construct a poly(n)-time computable (`, n−b, ρ)-rt-nb-PRG, G : {0, 1}r → {0, 1}n for
circuits C : {0, 1}n → {0, 1}` of size nb.

Assumption: E is hard for exponential size Σ6-circuits.
Parameters:

`, b, n - We are shooting to fool circuits C : {0, 1}n → {0, 1}` of size nb.
We require that ρ ≤ 2−n

α

for some constant α > 0. (This is done to simplify the
presentation).

Ingredients:
We make use of the Turing Machine P of Corollary 8.6. Specifically, let b′ = a · b for a
sufficiently large constant a > 1 to be chosen later. By Corollary 8.6 there is a randomized
Turing Machine P running in time poly(nb

′
) which produces a circuit h : {0, 1}r → {0, 1}n,

that with probability 1− 2−n is an (n−b
′
, ρ′ = 2−` · ρ · n−3b′)-rt-PRG for Σ1-circuits of

size nb
′
, and r1 = `+O(b′ · logn) + log(1/ρ).

We also make use of the rt-PRG of Theorem 1.17. Specifically, let b′′ = a · b′ and
recall that a sufficiently large constant a > 1 will be chosen later. By Theorem 1.17 the
hardness assumption that E is hard for exponential size Σ6-circuits implies that there is
a poly(nb

′′
) computable (1

2 , ρ
′)-rt-PRG G′ : {0, 1}r2 → {0, 1}n

b′′
for size nb

′′
Σ3-circuits,

with r2 = O(1/ρ))2. (Here we use the fact that ρ ≤ 2−n
α

so that log(1/ρ) ≥ nα).
The rt-nb-PRG:

Let r = r1 + r2 = `+O(b′ · logn) +O(log(1/ρ))2 = `+O(log(1/ρ))2. Given x ∈ {0, 1}r
interpret it as (x1, x2) ∈ {0, 1}r1 × {0, 1}r2 .
Run the procedure P using the string G′(x2) as random coins. (Note that we can choose
the constant a to be sufficiently large so that nb

′′
= nab

′
is larger than the number of

coins required by P). The procedure P produces a circuit h : {0, 1}r1 → {0, 1}n.
G(x) outputs h(x1).

Figure 4 An rt-nb-PRG with seed length ≈ 1 · `.

Proof of Theorem 8.9. We first argue, that when G applies P to obtain a circuit h, then
w.h.p. it obtains an rt-PRG. Specifically,

I Claim 8.10. With probability 1 − 2ρ′ over x2 ← Ur2 , the circuit h : {0, 1}r1 → {0, 1}n
obtained by P (G′(x2)) is a (n−b′ , ρ′)-rt-PRG for size nb′ Σ1-circuits.

Proof. (of claim) Let s′ = nb
′ and s = poly(nb′) be a bound on the size of h. By Theorem 8.3

we have that the promise problem DC1,s,s′

n−2b′ ,ρ′
is solved by a nondeterministic Σ3-circuit T of

size poly(nb′). Recall that if T rejects a given circuit, then this circuit is a (n−2b′ , ρ′)-rt-PRG
for Σ1-circuits of size s′ = nb

′ . Let D(z) = T (P (z)) and note that D can be implemented
by a Σ3-circuit of size poly(nb′). The parameters of the generator G′ were chosen so that it
fools D. More specifically, by choosing a to be sufficiently large we have that the size of D
is smaller than nb′′ = na·b

′ . By the guarantee on P , we know that the probability that D
accepts a uniform input is at most 2−n. As G′ is a (1

2 , ρ
′)-PRG it follows that the probability

that D accepts G′(Ur2) is at most e 1
2 · ρ′ ≤ 2ρ′. The claim follows. J

We have that with probability 1− 2ρ′ over the choice of x2, G output h(Ur1) for h that is
a (n−b′ , ρ′)-rt-PRG for Σ1-circuits of size nb

′ . This implies that G is a (O(n−b′), O(ρ′/n−b′))-
rt-PRG for size nb′ Σ1-circuits. A trivial (albeit somewhat wasteful) way to see this is to
use Lemma 4.5 to transform the guarantee on rt∼(,) to re∼(,) which makes the calculation
straightforward, and then transform back. This is why we have n−b′ in the denominator.

S. Artemenko, R. Impagliazzo, V. Kabanets, and R. Shaltiel 9:33

Finally, we choose a to be sufficiently large so that by Lemma 8.1 an rt-PRG against
Σ1-circuits of size nb

′ = nab is a rt-nb-PRG for circuits of size nb. Applying the lemma, we get
that G is an (O(n−b′), O(ρ′/n−2b′))-rt-nb-PRG for circuits of size nb. The Theorem follows
as by our choice of parameters O(n−b′) can be made smaller than n−b and O(ρ′/n−2b′) is
smaller than ρ. J

9 Open Problems

Theorem 1.8 is the first hardness versus randomness tradeoff that is applicable to randomized
algorithm solving NP complete problem. It is interesting to find more instances where this
approach can be used to efficiently derandomize algorithms for other NP complete problems.
Is it possible to give hardness versus randomness tradeoffs for general randomized algorithms
(that are not necessarily OPP)?

The dependence of the seed length on the parameter δ in Theorem 1.17 is additive in
log(1/δ)2 can this be reduced to log(1/δ)? As explained in the introduction, this will give
improvements in applications of the theorem.

Can we find more applications of re-PRGS and re-nb-PRGs? It will be especially
interesting to find cryptographic applications in computational settings as discussed in
Section 1.14.

Acknowledgements. This work was done in part while the last three authors were visiting
Simons Institute for the Theory of Computing. We are grateful to anonymous referees for
helpful comments.

References
1 Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. J. ACM, 42(4):844–856, 1995.
2 Benny Applebaum, Sergei Artemenko, Ronen Shaltiel, and Guang Yang. Incompressible

functions, relative-error extractors, and the power of nondeterministic reductions (extended
abstract). In Conference on Computational Complexity, volume 33 of LIPIcs, pages 582–
600. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2015.

3 Sergei Artemenko and Ronen Shaltiel. Lower bounds on the query complexity of non-
uniform and adaptive reductions showing hardness amplification. Computational Complex-
ity, 23(1):43–83, 2014.

4 Sergei Artemenko and Ronen Shaltiel. Pseudorandom generators with optimal seed length
for non-boolean poly-size circuits. In STOC, pages 99–108. ACM, 2014.

5 László Babai, Lance Fortnow, Noam Nisan, and Avi Wigderson. BPP has subexponential
time simulations unless EXPTIME has publishable proofs. Computational Complexity,
3:307–318, 1993.

6 Boaz Barak, Shien Jin Ong, and Salil P. Vadhan. Derandomization in cryptography. SIAM
J. Comput., 37(2):380–400, 2007.

7 Mihir Bellare, Oded Goldreich, and Erez Petrank. Uniform generation of NP-witnesses
using an NP-oracle. Inf. Comput., 163(2):510–526, 2000.

8 Mihir Bellare and John Rompel. Randomness-efficient oblivious sampling. In FOCS, pages
276–287. IEEE Computer Society, 1994.

9 Manuel Blum and Silvio Micali. How to generate cryptographically strong sequences of
pseudo-random bits. SIAM J. Comput., 13(4):850–864, 1984.

10 Andrew Drucker. Nondeterministic direct product reductions and the success probability
of SAT solvers. In FOCS, pages 736–745. IEEE Computer Society, 2013.

CCC 2016

9:34 Pseudorandomness When the Odds are Against You

11 Bella Dubrov and Yuval Ishai. On the randomness complexity of efficient sampling. In
STOC, pages 711–720. ACM, 2006.

12 Uriel Feige and Carsten Lund. On the hardness of computing the permanent of random
matrices. Computational Complexity, 6(2):101–132, 1997.

13 Oded Goldreich. A sample of samplers: A computational perspective on sampling. In Stud-
ies in Complexity and Cryptography, volume 6650 of Lecture Notes in Computer Science,
pages 302–332. Springer, 2011.

14 Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way functions. In
STOC, pages 25–32. ACM, 1989.

15 Oded Goldreich and Avi Wigderson. Derandomization that is rarely wrong from short
advice that is typically good. In RANDOM, volume 2483 of Lecture Notes in Computer
Science, pages 209–223. Springer, 2002.

16 Shafi Goldwasser and Michael Sipser. Private coins versus public coins in interactive proof
systems. In STOC, pages 59–68. ACM, 1986.

17 Venkatesan Guruswami, Christopher Umans, and Salil P. Vadhan. Unbalanced expanders
and randomness extractors from parvaresh–vardy codes. J. ACM, 56(4), 2009.

18 Dan Gutfreund and Guy N. Rothblum. The complexity of local list decoding. In APPROX-
RANDOM, volume 5171 of Lecture Notes in Computer Science, pages 455–468. Springer,
2008.

19 Dan Gutfreund, Ronen Shaltiel, and Amnon Ta-Shma. Uniform hardness versus random-
ness tradeoffs for arthur-merlin games. Computational Complexity, 12(3-4):85–130, 2003.

20 Yenjo Han, Lane A. Hemaspaandra, and Thomas Thierauf. Threshold computation and
cryptographic security. SIAM J. Comput., 26(1):59–78, 1997.

21 Russell Impagliazzo. Hard-core distributions for somewhat hard problems. In FOCS, pages
538–545. IEEE Computer Society, 1995.

22 Russell Impagliazzo, William Matthews, and Ramamohan Paturi. A satisfiability algorithm
for ac0. In SODA, pages 961–972. SIAM, 2012.

23 Russell Impagliazzo, Ronen Shaltiel, and Avi Wigderson. Near-optimal conversion of hard-
ness into pseudo-randomness. In FOCS, pages 181–190. IEEE Computer Society, 1999.

24 Russell Impagliazzo, Ronen Shaltiel, and Avi Wigderson. Reducing the seed length in the
nisan-wigderson generator. Combinatorica, 26(6):647–681, 2006.

25 Russell Impagliazzo and Avi Wigderson. P = BPP if E requires exponential circuits:
Derandomizing the XOR lemma. In STOC, pages 220–229. ACM, 1997.

26 Mark Jerrum, Leslie G. Valiant, and Vijay V. Vazirani. Random generation of combinatorial
structures from a uniform distribution. Theor. Comput. Sci., 43:169–188, 1986.

27 Adam Klivans and Dieter van Melkebeek. Graph nonisomorphism has subexponential size
proofs unless the polynomial-time hierarchy collapses. SIAM J. Comput., 31(5):1501–1526,
2002.

28 Peter Bro Miltersen and N. V. Vinodchandran. Derandomizing arthur-merlin games using
hitting sets. Computational Complexity, 14(3):256–279, 2005.

29 Noam Nisan and Avi Wigderson. Hardness vs randomness. J. Comput. Syst. Sci., 49(2):149–
167, 1994.

30 Ramamohan Paturi and Pavel Pudlák. On the complexity of circuit satisfiability. In STOC,
pages 241–250. ACM, 2010.

31 Ramamohan Paturi, Pavel Pudlák, Michael E. Saks, and Francis Zane. An improved
exponential-time algorithm for k-SAT. J. ACM, 52(3):337–364, 2005.

32 Ramamohan Paturi, Pavel Pudlák, and Francis Zane. Satisfiability coding lemma. Chicago
J. Theor. Comput. Sci., 1999, 1999.

33 Rahul Santhanam. Fighting perebor: New and improved algorithms for formula and QBF
satisfiability. In FOCS, pages 183–192. IEEE Computer Society, 2010.

S. Artemenko, R. Impagliazzo, V. Kabanets, and R. Shaltiel 9:35

34 Uwe Schöning. A probabilistic algorithm for k-SAT and constraint satisfaction problems.
In FOCS, pages 410–414. IEEE Computer Society, 1999.

35 Ronen Shaltiel and Christopher Umans. Simple extractors for all min-entropies and a new
pseudorandom generator. J. ACM, 52(2):172–216, 2005.

36 Ronen Shaltiel and Christopher Umans. Pseudorandomness for approximate counting and
sampling. Computational Complexity, 15(4):298–341, 2006.

37 Ronen Shaltiel and Christopher Umans. Low-end uniform hardness versus randomness
tradeoffs for AM. SIAM J. Comput., 39(3):1006–1037, 2009.

38 Ronen Shaltiel and Emanuele Viola. Hardness amplification proofs require majority. SIAM
J. Comput., 39(7):3122–3154, 2010.

39 Michael Sipser. A complexity theoretic approach to randomness. In STOC, pages 330–335.
ACM, 1983.

40 Larry J. Stockmeyer. The complexity of approximate counting (preliminary version). In
STOC, pages 118–126. ACM, 1983.

41 Madhu Sudan, Luca Trevisan, and Salil P. Vadhan. Pseudorandom generators without the
XOR lemma. J. Comput. Syst. Sci., 62(2):236–266, 2001.

42 Luca Trevisan. Extractors and pseudorandom generators. J. ACM, 48(4):860–879, 2001.
43 Luca Trevisan and Salil P. Vadhan. Extracting randomness from samplable distributions.

In FOCS, pages 32–42. IEEE Computer Society, 2000.
44 Christopher Umans. Pseudo-random generators for all hardnesses. J. Comput. Syst. Sci.,

67(2):419–440, 2003.
45 Andrew Chi-Chih Yao. Theory and applications of trapdoor functions (extended abstract).

In FOCS, pages 80–91. IEEE Computer Society, 1982.

CCC 2016

	Introduction
	Pseudorandom generators and hitting-set generators
	Limitations on deterministic reductions for PRGs and HSGs
	Hardness assumptions for nondeterministic circuits
	A construction of HSGs with low error
	Derandomizing randomized algorithms with large one sided error
	Deterministic k-SAT algorithms
	Hardness assumptions implied by HSGs with low error
	Limitations on nondeterministic reductions for PRGs
	Derandomizing randomized algorithms with large two sided error
	Implications to derandomization of BPPpath
	PRGs with relative error
	Randomness reduction in Monte-Carlo constructions
	PRGs with relative error for nonboolean distinguishers
	Cryptographic applications of re-nb-PRGs

	Overview of the technique
	HSGs with low error
	Derandomization of randomized algorithms with large error
	HSGs with low error imply hardness for weak nondeterministic circuits
	A construction of re-PRGs
	A construction of re-nb-PRGs

	Organization of the paper
	Preliminaries
	Approximate counting and uniform sampling of NP witnesses
	Notions of relative error
	Some useful technical lemmas on relative error

	Derandomization of poly-time randomized algorithms with large error
	An HSG for low error
	Extending the argument to 2-sided error randomized algorithms

	On minimal hardness assumptions for HSGs with low error
	1/2-HSGs for nondeterministic circuits with few nondeterministic bits
	Hardness assumptions that imply HSGs for circuits with weak nondeterminism
	Hardness assumptions implied by HSGs with low error

	A construction of an re-PRG
	rt-PRGs with one bit stretch
	The construction
	Proof of Theorem 7.2

	rt-PRGs with polynomial stretch
	Using the NW-generator
	Putting it together: Proof of Theorem 1.17

	A construction of re-nb-PRGs
	rt-PRGs for Sigma-1-circuits are rt-nb-PRGs
	An rt-nb-PRG with seed length r=l+O(log(1/rho))2
	A random hash function is an rt-PRG
	The complexity of checking if a given circuit is an rt-PRG

	rt-nb-PRGs with small seed length

	Open Problems

