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Abstract
Approximating convex bodies succinctly by convex polytopes is a fundamental problem in discrete
geometry. A convex body K of diameter diam(K) is given in Euclidean d-dimensional space,
where d is a constant. Given an error parameter ε > 0, the objective is to determine a polytope
of minimum combinatorial complexity whose Hausdorff distance fromK is at most ε·diam(K). By
combinatorial complexity we mean the total number of faces of all dimensions of the polytope.
A well-known result by Dudley implies that O(1/ε(d−1)/2) facets suffice, and a dual result by
Bronshteyn and Ivanov similarly bounds the number of vertices, but neither result bounds the
total combinatorial complexity. We show that there exists an approximating polytope whose
total combinatorial complexity is Õ(1/ε(d−1)/2), where Õ conceals a polylogarithmic factor in
1/ε. This is a significant improvement upon the best known bound, which is roughly O(1/εd−2).

Our result is based on a novel combination of both new and old ideas. First, we employ
Macbeath regions, a classical structure from the theory of convexity. The construction of our
approximating polytope employs a new stratified placement of these regions. Second, in order to
analyze the combinatorial complexity of the approximating polytope, we present a tight analysis
of a width-based variant of Bárány and Larman’s economical cap covering, which may be of
independent interest. Finally, we use a deterministic variation of the witness-collector technique
(developed recently by Devillers et al.) in the context of our stratified construction.
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1 Introduction

Approximating general convex bodies by convex polytopes is a fundamental geometric
problem. It has been extensively studied in the literature under various formulations. (See
Bronstein [13] for a recent survey.) Consider a convex body (that is, a closed, convex set of
bounded diameter) K in Euclidean d-dimensional space. At issue is determining the simplest
polytope P that approximates K.
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11:2 On the Combinatorial Complexity of Approximating Polytopes

There are various ways to define the notions of “simplest” and “approximates.” Our notion
of approximation will be based on the Hausdorff metric, that is, the maximum distance
between a point in the boundary of P or K and the boundary of the other body. Normally,
approximation error is defined relative to K’s diameter. It will simplify matters to assume
that K has been uniformly scaled to unit diameter. For a given error ε > 0, we say that a
polytope P is an ε-approximating polytope to K if the Hausdorff distance between K and P
is at most ε. The simplicity of an approximating polytope P will be measured in terms of its
combinatorial complexity, that is, the total number of k-faces, for 0 ≤ k ≤ d − 1. For the
purposes of stating asymptotic bounds, we assume that the dimension d is a constant.

The bounds given in the literature for convex approximation are of two common types [13].
In both cases, the bounds hold for all ε ≤ ε0, for some ε0 > 0. In nonuniform bounds, the
value of ε0 depends on K (for example, on K’s maximum curvature). Such bounds are often
stated as holding “in the limit” as ε approaches zero, or equivalently as the combinatorial
complexity of the approximating polytope approaches infinity. Examples include bounds by
Gruber [18], Clarkson [14], and others [10, 23]. Our interest is in uniform bounds, where the
value of ε0 is independent of K. Examples include the results of Dudley [16] and Bronshteyn
and Ivanov [12]. Such bounds hold without any assumptions on K.

Dudley showed that, for ε ≤ 1, any convex bodyK of unit diameter can be ε-approximated
by a convex polytope P with O(1/ε(d−1)/2) facets. This bound is known to be optimal in
the worst case and is achieved when K is a Euclidean ball (see, e.g., [13]). Alternatively,
Bronshteyn and Ivanov showed the same bound holds for the number of vertices, which is
also the best possible. No convex polytope approximation is known that attains both bounds
simultaneously.1

Establishing good uniform bounds on the combinatorial complexity of convex polytope
approximations is a major open problem. The Upper-Bound Theorem [22] implies that
a polytope with n vertices (resp., facets) has total combinatorial complexity O(nbd/2c).
Applying this to the results of either Dudley or Bronshteyn and Ivanov directly yields a
bound of O(1/ε(d2−d)/4) on the combinatorial complexity of an ε-approximating polytope.
Better uniform bounds without d2 in the exponent are known, however. Consider a uniform
grid Ψ of points with spacing Θ(ε), and let P denote the convex hull of Ψ ∩K. It is easy
to see that P is an ε-approximating polytope for K. The combinatorial complexity of any
lattice polytope2 is O(V (d−1)/(d+1)), where V is the volume of the polytope [2, 8]. This
implies that P has combinatorial complexity O(1/εd(d−1)/(d+1)) ≈ O(1/εd−2). While this is
significantly better than the bound provided by the Upper-Bound Theorem, it is still much
larger than the lower bound of Ω(1/ε(d−1)/2).

We show that this gap can be dramatically reduced. In particular, we establish an upper
bound on the combinatorial complexity of convex approximation that is optimal to within a
polylogarithmic factor in 1/ε.

I Theorem 1.1. Let K ⊂ Rd be a convex body of unit diameter, where d is a fixed constant.
For all sufficiently small positive ε (independent of K) there exists an ε-approximating convex
polytope P to K of combinatorial complexity O(1/ε̂ (d−1)/2), where ε̂ = ε/ log(1/ε).

This is within a factor of O(log(d−1)/2(1/ε)) of the aforementioned lower bound. Our ap-
proach employs a classical structure from the theory of convexity, called Macbeath regions [21].

1 Jeff Erickson noted that both bounds can be attained simultaneously but at the cost of sacrificing
convexity [14].

2 A lattice polytope is the convex hull of any set of points with integer coordinates.
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Macbeath regions have found numerous uses in the theory of convex sets and the geometry of
numbers (see Bárány [7] for an excellent survey). They have also been applied to a small but
growing number of results in the field of computational geometry (see, e.g., [11, 5, 4, 3]). Our
construction of the approximating polytope uses a new stratified placement of these regions.
In order to analyze the combinatorial complexity of the approximating polytope, in Section 3
we present a tight analysis of a width-based variant of Bárány and Larman’s economical
cap covering. This result may be of independent interest. Finally, we use a deterministic
variation of the witness-collector technique (developed recently by Devillers et al. [15]) in the
context of our stratified construction.

The paper is organized as follows. In Section 2, we define concepts related to Macbeath
regions and present some of their key properties. In Section 3, we prove the width-based
economical cap covering lemma. The stratified placement of the Macbeath regions and the
bound on the combinatorial complexity of approximating polytopes follow in Section 4.

2 Geometric Preliminaries

Recall that K is a convex body of unit diameter in Rd. Let ∂K denote its boundary. Let O
denote the origin of Rd, and for x ∈ Rd and r ≥ 0, let Br(x) denote the Euclidean ball of
radius r centered at x. It will be convenient to first map K to a convenient form. We say
that a convex body K is in canonical form if B1/2d(O) ⊆ K ⊆ B1/2(O). A body in canonical
form is (1/d)-fat and has diameter Θ(1). We will refer to point O as the center of K.

The following lemma shows that, up to constant factors, the problem of approximating
an arbitrary convex body can be reduced to approximating a convex body in canonical form.
The proof (which will be given in the full version) follows from a combination of John’s
Theorem [20] and Lemma 3.1 of Agarwal et al. [1].

I Lemma 2.1. Let K be a convex body of unit diameter in Rd. There exists a non-
singular affine transformation T such that T (K) is in canonical form and if P is any
(ε/d)-approximating polytope to T (K), then T−1(P ) is an ε-approximating polytope to K.

We assume henceforth that K is given in canonical form and that ε has been appropriately
scaled. This scaling only affects the constant factors in our asymptotic bounds.

A cap C is defined to be the nonempty intersection of the convex body K with a halfspace
H (see Fig. 1(a)). Let h denote the hyperplane bounding H. We define the base of C to
be h ∩K. The apex of C is any point in the cap such that the supporting hyperplane of K
at this point is parallel to h. The width of C is the distance between h and this supporting
hyperplane. Given any cap C of width w and a real λ ≥ 0, we define its λ-expansion,
denoted Cλ, to be the cap of K cut by a hyperplane parallel to and at distance λw from
this supporting hyperplane. (Note that Cλ = K, if λw exceeds the width of K along the
defining direction.) An easy consequence of convexity is that, for λ ≥ 1, Cλ is a subset of
the region obtained by scaling C by a factor of λ about its apex. It follows that, for λ ≥ 1,
vol(Cλ) ≤ λd · vol(C). For a given ε > 0, let K(ε) ⊂ K denote the points of K within
distance at most ε from ∂K (equivalently, the union of all ε-width caps).

Given a point x ∈ K and real parameter λ ≥ 0, the Macbeath region Mλ(x) (also called
an M-region) is defined as:

Mλ(x) = x+ λ((K − x) ∩ (x−K)).

It is easy to see that M1(x) is the intersection of K and the reflection of K around x (see
Fig. 1(b)), and so M1(x) is centrally symmetric about x. Mλ(x) is a scaled copy of M1(x)

SoCG 2016
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Figure 1 (a) Cap concepts and (b) Macbeath regions.

by the factor λ about x. We refer to x as the center of Mλ(x) and to λ as its scaling factor.
As a convenience, we define M(x) = M1(x) and M ′(x) = M1/5(x).

We begin with two lemmas that encapsulate relevant properties of Macbeath regions.
Both were proved originally by Ewald, Larman, and Rogers [17], but our statements follow
the forms given by Brönnimann, Chazelle, and Pach [11]. (Lemmas 2.2 and 2.3 below are
restatements of Lemmas 2.5 and 2.6 from [11], respectively.)

I Lemma 2.2. Let K be a convex body. If x, y ∈ K such that M ′(x) ∩M ′(y) 6= ∅, then
M ′(y) ⊆M(x).

I Lemma 2.3. Let K ⊂ Rd be a convex body in canonical form, and let ∆0 = 1/(6d) be a
constant. Let C be a cap of K of width at most ∆0. Let x denote the centroid of the base of
this cap. Then C ⊆M3d(x).

The following lemma is an immediate consequence of the definition of Macbeath region.

I Lemma 2.4. Let K be a convex body and λ > 0. If x is a point in a cap C of K, then
Mλ(x) ∩K ⊆ C1+λ. Furthermore, if λ ≤ 1, then Mλ(x) ⊆ C1+λ.

The next lemma is useful in situations when we know that a Macbeath region partially
overlaps a cap of K. It allows us to conclude that a constant factor expansion of the cap will
fully contain the Macbeath region.

I Lemma 2.5. Let K be a convex body. Let C be a cap of K and x be a point in K such
that C ∩M ′(x) 6= ∅. Then M ′(x) ⊆ C2.

Proof. Let y be any point in C ∩M ′(x). Since M ′(x) ∩M ′(y) 6= ∅ obviously holds, we can
apply Lemma 2.2 to conclude that M ′(x) ⊆M(y). By Lemma 2.4 (with λ = 1), M(y) ⊆ C2.
It follows that M ′(x) ⊆ C2. J

Next, we give two straightforward lemmas 3 dealing with scaling of centrally symmetric
convex bodies. As Macbeath regions are centrally symmetric, these lemmas will be useful to
us in conjunction with their standard properties. A proof of Lemma 2.6 appears in Bárány [6].
For any centrally symmetric convex body A, define Aλ to be the body obtained by scaling A
by a factor of λ about its center.

3 We have omitted a number of technical proofs from this version of the paper. An expanded version is
available on http://www.arxiv.org.

http://www.arxiv.org
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I Lemma 2.6. Let λ ≥ 1. Let A and B be centrally symmetric convex bodies such that
A ⊆ B. Then Aλ ⊆ Bλ.

I Lemma 2.7. Let λ ≥ 1. Let A be a centrally symmetric convex body. Let A′ be the body
obtained by scaling A by a factor of λ about any point in A. Then A′ ⊆ A2λ−1.

The following lemma is an easy consequence of Lemmas 2.3 and 2.7.

I Lemma 2.8. Let λ ≥ 1 and let K,C, and x be as defined in Lemma 2.3. Then Cλ ⊆
M3d(2λ−1)(x).

Proof. By Lemma 2.3, C ⊆M3d(x). Recall that Cλ is contained within the region obtained
by scaling C by a factor of λ about its apex. Applying Lemma 2.7 (applied to M3d(x) and
the apex point), it follows that Cλ ⊆M3d(2λ−1)(x). J

It is well known that if two (1/5)-shrunken Macbeath regions have a nonempty intersection,
then a constant factor expansion of one contains the other [17, 11]. We show that this holds
for the associated caps.

I Lemma 2.9. Let ∆0 be the constant of Lemma 2.3 and let λ ≥ 1 be any real. There exists
a constant β ≥ 1 such that the following holds. Let K ⊂ Rd be a convex body in canonical
form. Let C1 and C2 be any two caps of K of width at most ∆0. Let x1 and x2 denote the
centroids of the bases of the caps C1 and C2, respectively. If M ′(x1) ∩M ′(x2) 6= ∅, then
Cλ1 ⊆ C

βλ
2 .

Proof. By Lemma 2.8, Cλ1 ⊆ Mα(x1), where α = 3d(2λ− 1). Since M ′(x1) ∩M ′(x2) 6= ∅,
by Lemma 2.2, M ′(x1) ⊆ M(x2). By definition, M ′(x1) = M1/5(x1) and so Mα(x1) =
(M ′(x1))5α. Since M ′(x1) and M(x2) are centrally symmetric bodies and M ′(x1) ⊆M(x2),
by Lemma 2.6, it follows that (M ′(x1))5α ⊆ M5α(x2). Putting it together, we obtain
Cλ1 ⊆Mα(x1) = (M ′(x1))5α ⊆M5α(x2).

By Lemma 2.4, M5α(x2) ∩ K ⊆ C1+5α
2 . Since Cλ1 ⊆ M5α(x2) and Cλ1 ⊆ K, we have

Cλ1 ⊆ M5α(x2) ∩K ⊆ C1+5α
2 . Recalling that α = 3d(2λ − 1), we have Cλ1 ⊆ C30dλ

2 . This
proves the lemma for constant β = 30d. J

3 Economical Cap Covering

In this section we present a tight analysis of a width-based variant of Bárány and Larman’s
economical cap covering [9]. The lemma applies to any convex body K that is fat and has
constant diameter. The proof of this lemma follows from the ideas in [17, 9, 6]. Our principal
contribution is an optimal bound of O(1/ε(d−1)/2) on the number of bodies needed.

I Lemma 3.1 (Width-based economical cap covering lemma). Let ε > 0 be a sufficiently small
parameter. Let K ⊂ Rd be a convex body in canonical form. There exists a collection R of
k = O(1/ε(d−1)/2) disjoint centrally symmetric convex bodies R1, . . . , Rk (see Fig. 2(a)) and
associated caps C1, . . . , Ck such that the following hold (for some constants β and λ, which
depend only on d):
1. For each i, Ci is a cap of width βε, and Ri ⊆ Ci ⊆ Rλi .
2. Let C be any cap of width ε. Then there is an i such that Ri ⊆ C and C1/β2

i ⊆ C ⊆ Ci
(see Fig. 2(b)).

The Ri’s in this lemma are Macbeath regions with scaling factor 1/5. Since any cap of
width ε is contained in some cap Ci, it follows that the Ci’s together cover K(ε). Further,

SoCG 2016
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Figure 2 Illustrating Lemma 3.1.

from Property 1, we can see that the sum of the volume of the Ci’s is no more than a constant
times the volume of K(ε). It is in this sense that the Ci’s constitute an economical cap
covering.

It is worth mentioning that Property 2 is stronger than similar properties given previously
in the literature in the following sense. For any cap of width ε, we show not merely that it is
contained within some cap Ci of the cover, but it is effectively “sandwiched” between two
caps with parallel bases, each of width Θ(ε).

A key technical contribution of our paper is the following lemma. It will help us bound
the number of bodies needed in the width-based cap covering lemma.

I Lemma 3.2. Let K ⊂ Rd be a convex body in canonical form. Let 0 < δ ≤ ∆0, where ∆0
is the constant of Lemma 2.3. Let C be a set of caps, whose widths lie between δ and 2δ, such
that the Macbeath regions M ′(x) centered at the centroids x of the bases of these caps are
disjoint. Then |C| = O(1/δ(d−1)/2).

Our proof of Lemma 3.2 will require the following geometric observation, which is a
straightforward extension of Dudley’s convex approximation construction (see Lemma 4.4
of [16]). It is similar to other results based on Dudley’s construction (including Lemma 3.6
of [1] and Lemma 23.12 of [19]).

I Lemma 3.3. Let K be a convex body that lies within a unit sphere centered at the origin,
and let 0 < δ ≤ 1. Let x′ and y′ be two points of S. Let x and y be the points of ∂K that are
closest to x′ and y′, respectively. Let h denote the supporting hyperplane at x orthogonal to
the segment xx′. Let C denote the cap cut from K by a hyperplane parallel to and at distance
δ from h. If y /∈ C, then ‖x′ − y′‖ ≥

√
δ.

We are now ready to present the proof of Lemma 3.2.

Proof. (of Lemma 3.2) Let A be the set of disjoint Macbeath regions M ′(x) described in the
lemma. For each region M ′(x), let C(x) denote the cap whose base centroid point generates
M ′(x). We begin by pruning A to obtain a subset B, which to within constant factors has
the same cardinality as A. We construct B incrementally as follows. Initially B is the empty
set. In each step, from among the Macbeath regions that still remain in A, we choose a
Macbeath region M ′(x) that has the smallest volume, and insert it into B. We then prune
all the Macbeath regions from A that intersect the cap C4(x). We continue in this manner
until A is exhausted.

We claim that in each step, we prune a constant number of Macbeath regions from A.
Let M ′(x) denote the Macbeath region inserted into B in this step. If M ′(y) is a Macbeath
region that is pruned in this step, then M ′(y) intersects the cap C4(x). It then follows from
Lemma 2.5 that M ′(y) ⊆ C8(x). Note that vol(C8(x)) ≤ 8dvol(C(x)) = O(vol(C(x))). Also,
by Lemma 2.3, C(x) ⊆M3d(x). It follows that vol(M(x)) ≥ vol(C(x))/(3d)d = Ω(vol(C(x))).
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Figure 3 Cases arising in the proof of Lemma 3.2. (Figures not to scale.)

Recall that each Macbeath region pruned has volume greater than or equal to the volume
of M ′(x). It follows that the volume of each Macbeath region pruned is Ω(vol(M(x))) =
Ω(vol(C(x))). Since the pruned Macbeath regions are disjoint and contained in a region
of volume O(vol(C(x))), a straightforward packing argument implies that the number of
Macbeath regions pruned is O(1).

The claim immediately implies that |A| = O(|B|). In the remainder of the proof, we will
show that |B| = O(1/δ(d−1)/2), which will complete the proof.

LetX denote the set of centers of the Macbeath regions ofB, that is,X = {x : M ′(x) ∈ B}.
We map each point x ∈ X to a point x′ on the Dudley sphere such that xx′ is normal to the
base of the cap C(x). We claim that the distance between any pair of the projected points
x′ on the Dudley sphere is at least

√
δ. Note that this claim would imply the desired bound

on |B| and complete the proof.
To see this claim, consider any two Macbeath regions M ′(x) and M ′(y) in the set B.

Without loss of generality, suppose that M ′(y) is inserted into B after M ′(x). By our
construction, it follows that y is not contained in C4(x) (because otherwise M ′(y) would
intersect C4(x) and would have been pruned after inserting M ′(x) into B). We now consider
two cases, depending on whether or not x is contained in C(y).

Case 1: x /∈ C(y). Consider the convex body K ′ that is the closure of K \ (C(x) ∪ C(y))
(outlined in red in Fig. 3(a)). Note that x and y are on the boundary of the convex body K ′
and these are the points of ∂K ′ that are closest to x′ and y′, respectively. Next, consider the
cap of K ′ whose apex is x and width is δ. Call this cap C ′(x). Since the width of C(x) is at
least δ, and y /∈ C4(x), it is easy to see that y /∈ C ′(x). Applying Lemma 3.3 to the convex
body K ′ and the points x′, y′, x, and y, it follows that ‖x′y′‖ ≥

√
δ.

Case 2: x ∈ C(y). Let h denote the hyperplane that forms the base of C(y) (see Fig. 3(b)).
Let h′ denote the hyperplane parallel to h that passes through x. Let v denote the vector
normal to h, whose magnitude is the distance between h and h′. Note that h′ = h + v.
Since C(y) is a cap of width at most 2δ, the magnitude of the translation vector v is at most
2δ. Let y∗ = y + v. Let Hy denote the halfspace bounded by h′ that contains the origin.
Let Hx denote the halfspace that contains the origin and whose boundary is the hyperplane
forming the base of C(x). Define the convex body K ′ as the intersection of Hx and Hy and
a ball of unit radius centered at the origin. Note that x and y∗ lie on the boundary of K ′
(since ‖Ox‖ < 1 and ‖Oy∗‖ < 1; ‖Ox‖ < 1 holds trivially since x ∈ K and K ⊆ B1/2(O),
and ‖Oy∗‖ ≤ ‖Oy‖+ ‖yy∗‖ ≤ 1/2 + 2δ ≤ 1/2 + 2∆0 < 1).

SoCG 2016
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Further, the points x and y∗ are the points of ∂K ′ that are closest to x′ and y′, respectively.
Next, consider the cap of K ′ whose apex is x and width is δ and whose base is parallel to
the base of C(x). Call this cap C ′(x). Recall that y /∈ C4(x), the width of C(x) is at least
δ, and the distance between y and y∗ is at most 2δ. It follows that y∗ is at distance bigger
than 3δ − 2δ = δ from the hyperplane passing through the base of C(x). Since the distance
between the hyperplanes passing through the bases of C(x) and C ′(x), respectively, is δ, it
follows that y∗ /∈ C ′(x). Applying Lemma 3.3 to the convex body K ′ and the points x′, y′, x,
and y∗, it follows that the distance between x′ and y′ is at least

√
δ. This establishes the

above claim and completes the proof. J

The remainder of this section is devoted to proving Lemma 3.1. Assume that ε ≤ ∆0,
where ∆0 is the constant of Lemma 2.3. Let β = 30d be the constant of Lemma 2.9. Let C
be a maximal set of caps, each of width ε/β, such that the (1/5)-scaled Macbeath regions
centered at the centroids of the bases of these caps are disjoint. Let A1, . . . , Ak denote the
caps of C. Let xi denote the centroid of the base of cap Ai. With each cap Ai, we associate
a convex body Ri = M ′(xi) and a cap Ci = Aβ

2

i . We will show that the convex bodies Ri
and caps Ci satisfy the properties given in the lemma.

By Lemma 3.2, |C| = O(1/ε(d−1)/2), which implies the desired upper bound on k. Since
Ci is a β2-expansion of Ai, its width is βε. To prove Property 1, it remains to show that
M ′(xi) ⊆ Ci ⊆ (M ′(xi))λ. By Lemma 2.4, M ′(xi) ⊆ A

6/5
i . Since A6/5

i ⊆ Aβ
2

i = Ci, we
obtain M ′(xi) ⊆ Ci. Also, applying Lemma 2.8, we obtain

Ci = Aβ
2

i ⊆M
3d(2β2−1)(xi) = (M ′(xi))15d(2β2−1) ⊆ (M ′(xi))λ,

where λ = 30dβ2. Thus, M ′(xi) ⊆ Ci ⊆ (M ′(xi))λ.
To show Property 2, let C be any cap of width ε. Let x denote the centroid of the base

of C1/β . By maximality of C, there must be a Macbeath region M ′(xi) that has a nonempty
intersection with M ′(x) (note xi may be the same as point x). Applying Lemma 2.2, it
follows that M ′(xi) ⊆M(x). By Lemma 2.4, M(x) ⊆ C2/β . Putting it together, we obtain
M ′(xi) ⊆M(x) ⊆ C2/β ⊆ C, which establishes the first part of Property 2.

It remains to show that C1/β2

i ⊆ C ⊆ Ci. Since M ′(xi) ∩M ′(x) 6= ∅, we can apply
Lemma 2.9 to caps Ai and C1/β (for λ = 1) to obtain Ai ⊆ (C1/β)β . Applying Lemma 2.9
again to caps C1/β and Ai (for λ = β), we obtain (C1/β)β ⊆ Aβ

2

i . Thus Ai ⊆ C ⊆ Aβ
2

i .
Recalling that Ci = Aβ

2

i , we obtain C1/β2

i ⊆ C ⊆ Ci, as desired.

4 Polytope Approximation

In this section, we will show how to obtain an ε-approximating convex polytope P of low
combinatorial complexity. Let K be a convex body in canonical form. Our strategy is
as follows. First, we build a set R of disjoint centrally symmetric convex bodies lying
within K and close to its boundary. These bodies will possess certain key properties to
be specified later. For each R ∈ R, we select a point arbitrarily from this body, and let
S denote this set of points. The approximation P is defined as the convex hull of S. In
Lemma 4.9, we will prove that P is an ε-approximation of K and, in Lemma 4.10, we will
apply a deterministic variation of the witness-collector approach [15] to show that P has low
combinatorial complexity.

Before delving into the details, we provide a high-level overview of the witness-collector
method, adapted to our context. Let H denote the set of all halfspaces in Rd. We define a
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set W of regions called witnesses and a set C of regions called collectors, which satisfy the
following properties:
1. Each witness of W contains a point of S in its interior.
2. Any halfspace H ∈ H either contains a witness W ∈ W or H ∩ S is contained in a

collector C ∈ C.
3. Each collector C ∈ C contains a constant number of points of S.

The key idea of the witness-collector method is encapsulated in the following lemma.

I Lemma 4.1. Given a set of witnesses and collectors satisfying the above properties, the
combinatorial complexity of the convex hull P of S is O(|C|).

Proof. We map each face f of P to any maximal subset Sf ⊆ S of affinely independent
points on f . Note that this is a one-to-one mapping and |Sf | ≤ d. In order to bound the
combinatorial complexity of P it suffices to bound the number of such subsets Sf .

For a given face f , let H be any halfspace such that H ∩ P = f . Clearly H does not
contain any witness since otherwise, by Property 1, it would contain a point of S in its
interior. By Property 2, H ∩ S is contained in some collector C ∈ C. Thus Sf ⊆ C. Since
|Sf | ≤ d, it follows that the number of such subsets Sf that are contained in any collector C
is at most

∑
1≤j≤d

(|C|
j

)
= O(|C|d) = O(1), where in the last step we have used the fact that

|C| = O(1) (Property 3). Summing over all the collectors, it follows that the total number of
sets Sf , and hence the combinatorial complexity of P , is O(|C|). J

A natural choice for the witnesses and collectors would be the convex bodies Ri and the
caps Ci, respectively, from Lemma 3.1. Unfortunately, these bodies do not work for our
purposes. The main difficulty is that Property 3 could fail, since a cap Ci could intersect a
non-constant number of bodies of R, and hence contain a non-constant number of points of S.
(To see this, suppose that K is a cylinder in 3-dimensional space. A cap of width Θ(ε) that
is parallel to the circular flat face of K intersects Ω(1/

√
ε) bodies, which will be distributed

around the circular boundary of this face.) In this section, we show that it is possible to
construct a set of witnesses and collectors that satisfy all the requirements by scaling and
translating the convex bodies from Lemma 3.1 into a stratified placement according to their
volumes. The properties we obtain are specified below in Lemma 4.4.

The following technical lemma gives upper and lower bounds on the volume of a cap of
width α.

I Lemma 4.2. Let K ⊂ Rd be a convex body in canonical form and let α < 1 be a positive
real. Then the volume of any cap C of width α is O(α) and Ω(αd).

The following lemma states that containment of caps is preserved if the halfspaces defining
both caps are consistently scaled about a point that is common to both caps.

I Lemma 4.3. Let K be a convex body and let λ ≥ 1. Let C1 and C2 be two caps of K
such that C1 ⊆ C2. Let H1 and H2 be the defining halfspaces of C1 and C2, respectively. Let
H ′1 and H ′2 be the halfspaces obtained by scaling H1 and H2, respectively, by a factor of λ
about p, where p is any point in K ∩ C1. Let C ′1 and C ′2 be the caps K ∩H ′1 and K ∩H ′2,
respectively. Then C ′1 ⊆ C ′2.

Proof. Given λ and p, consider the affine transformation f(q) = λ(q − p) + p, which scales
space by a factor of λ about p. Thus, H ′1 = f(H1) and H ′2 = f(H2), Since p ∈ K and
λ ≥ 1, it follows directly from convexity that K ⊆ f(K). Given any halfspace H such
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that p ∈ K ∩ H, it follows that K ∩ f(H) = K ∩ f(K ∩ H). Since, C1 ⊆ C2, we have
f(K ∩H1) ⊆ f(K ∩H2), and thus,

C ′1 = K ∩ f(H1) = K ∩ f(K ∩H1) ⊆ K ∩ f(K ∩H2) = K ∩ f(H2) = C ′2,

as desired. J

Our choice of witnesses and collectors will be based on the following lemma. Specifically,
the convex bodies R1, . . . , Rk, will play the role of the witnesses and the regions C1, . . . , Ck,
will play the role of the collectors. The lemma strengthens Lemma 3.1, achieving the
critical property that any collector Ci intersects only a constant number of convex bodies
of R. As each witness set Ri will contain one point, this ensures that a collector contains
only a constant number of input points (Property 3 of the witness-collector system). This
strengthening is achieved at the expense of only an extra polylogarithmic factor in the
number of collectors needed, compared with Lemma 3.1. Also, the collectors are no longer
simple caps, but have a more complex shape as described in the proof (this, however, has no
adverse effect in our application).

I Lemma 4.4. Let ε > 0 be a sufficiently small parameter, and ε̂ = ε/ log(1/ε). Let K ⊂ Rd
be a convex body in canonical form. There exists a collection R of k = O(1/ε̂ (d−1)/2) disjoint
centrally symmetric convex bodies R1, . . . , Rk and associated regions C1, . . . , Ck such that the
following hold:
1. Let C be any cap of width ε. Then there is an i such that Ri ⊆ C.
2. Let C be any cap. Then there is an i such that either (i) Ri ⊆ C or (ii) C ⊆ Ci.
3. For each i, the region Ci intersects at most a constant number of bodies of R.

As mentioned earlier, our proof of this lemma is based on a stratified placement of the
convex bodies from Lemma 3.1, which are distributed among O(log(1/ε)) layers that lie close
to the boundary of K. Let α = c1 ε/ log(1/ε), where c1 is a suitable constant to be specified
later. We begin by applying Lemma 3.1 to K using ε = α. This yields a collection R′ of
k = O(1/α(d−1)/2) disjoint centrally symmetric convex bodies {R′1, . . . , R′k} and associated
caps C′ = {C ′1, . . . , C ′k}. Our definition of the convex bodies Ri and regions Ci required in
Lemma 4.4 will be based on R′i and C ′i, respectively. In particular, the convex body Ri will
be obtained by translating a scaled copy of R′i into an appropriate layer, based on the volume
of R′i.

Before describing the construction of the layers, it will be convenient to group the bodies
in R′ based on their volumes. We claim that the volume of any convex body R′i lies between
c2α

d and c3α for suitable constants c2 and c3. By Property 1 of Lemma 3.1, R′i ⊆ C ′i ⊆ (R′i)λ
and C ′i has width βα, for constants β and λ depending only on d. By Lemma 4.2, the volume
of C ′i is O(α) and Ω(αd). Since vol(R′i) = Θ(vol(C ′i)), the desired claim follows.

We partition the set R′ of convex bodies into t groups, where each group contains bodies
whose volumes differ by a factor of at most 2. More precisely, for 0 ≤ j ≤ t − 1, group j
consists of bodies in R′ whose volume lies between c3α/2j and c3α/2j+1. The lower and
upper bound on the volume of bodies in R′ implies that the number of groups t can be
expressed as bc4 log(1/α)c for a suitable constant c4 (depending on c2 and c3).

Next we describe how the layers are constructed. We will construct t layers corresponding
to the t groups of R′. Let γ = 1−4dβα. For 0 ≤ j ≤ t, let Tj denote the linear transformation
that represents a uniform scaling by a factor of γj about the origin, and let Kj = Tj(K) (see
Fig. 4(a)). Note that K0 = T0(K) = K. For 0 ≤ j ≤ t− 1, define layer j, denoted Lj , to be
the difference Kj \Kj+1. Whenever we refer parallel supporting hyperplanes for two bodies
Ki and Kj , we assume that both hyperplanes lie on the same side of the origin.
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(a) (b)

Ri

Ci
K

K1 · · · KtKt−1

Figure 4 (a) Stratified placement of the bodies Ri and (b) the region Ci corresponding to a body
Ri. (Figures not to scale.)

The following lemma describes some straightforward properties of these layers and the
scaling transformations. In particular, the lemma shows that the t layers lie close to the
boundary of K (within distance ε) and each layer has a “thickness” of Θ(α).

I Lemma 4.5. Let ε > 0 be a sufficiently small parameter. For sufficiently small constant c1
in the definition of α (depending on c4, β, and d), the layered decomposition and the scaling
transformations described above satisfy the following properties:
(a) For 0 ≤ j ≤ t− 1, the distance between parallel supporting hyperplanes of Kj and Kj+1

is at most 2dβα.
(b) For 0 ≤ j ≤ t− 1, the distance between parallel supporting hyperplanes of Kj and Kj+1

is at least βα.
(c) The distance between parallel supporting hyperplanes of K and Kt is at most ε.
(d) For 0 ≤ j ≤ t, the scaling factor for Tj is at least 1/2 and at most 1.
(e) For 0 ≤ j ≤ t, Tj preserves volumes up to a constant factor.
(f) For 0 ≤ j ≤ t, and any point p ∈ K, the distance between p and Tj(p) is at most 2jdβα.

We are now ready to define the regions Ri and Ci required in Lemma 4.4. Suppose that
R′i is in group j and let C ′i = K ∩H ′i, where H ′i is a halfspace. We define Ri = Tj(R′i). In
order to define Ci, we first define caps Ci,r of Kr as Ci,r = Kr ∩ Tj(H ′i) for 0 ≤ r ≤ j. We
then define Ci =

⋃j
r=0 C

σ
i,r ∩ Lr, where σ = 4dβ2. (See Fig. 4(b).)

In Lemma 4.6, we show that the regions Ri are contained in layer j if R′i is in group j.
In Lemma 4.7, we establish Properties 1 and 2 of Lemma 4.4. Finally, in Lemma 4.8, we
establish Property 3 of Lemma 4.4.

I Lemma 4.6. Let Ri ∈ R. If R′i is in group j, then Ci,j = Tj(C ′i) and Ri ⊆ Ci,j ⊆ Lj.

Proof. Let H ′i denote the halfspace as defined above, that is, C ′i = K ∩H ′i. By definition,
Ci,j = Kj ∩ Tj(H ′i) = Tj(K ∩H ′i) = Tj(C ′i). By Property 1 of Lemma 3.1, R′i ⊆ C ′i and C ′i
is a cap of K of width βα. By Lemma 4.52, the distance between any parallel supporting
hyperplanes of K and K1, respectively, is at least βα. It follows that R′i ⊆ C ′i ⊆ L0 = K \K1.
Applying the transformation Tj to all these sets yields Ri ⊆ Ci,j ⊆ Lj = Kj \Kj+1. J

I Lemma 4.7. Let C be any cap of K. Then there is an i such that either (i) Ri ⊆ C or
(ii) C ⊆ Ci. Furthermore, if the width of C is ε, then (i) holds.

Proof. Let C ′ ⊆ C be the cap of width α, whose base is parallel to the base of C. Let H and
H ′ denote the defining halfspaces of C and C ′, respectively. By Property 2 of Lemma 3.1,
there is an i such that R′i ⊆ C ′. Suppose that R′i is in group j. We consider two cases,

SoCG 2016
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C ′ C

α
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c′

b′

C ′
2

Tj(H
′
i)

xr

a
b

c

C1

(a) (b)
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Figure 5 Proof of Lemma 4.7 (a) Case 1 and (b) Case 2. (Figures not to scale.)

depending on whether Tj(H ′) ⊆ H or H ⊂ Tj(H ′). To complete the proof of the lemma, we
will show that in the former case, Ri ⊆ C and, in the latter case, C ⊆ Ci. Additionally, we
will show that if C has width ε, then the former case holds (implying that Ri ⊆ C).

Case 1: Tj(H ′) ⊆ H. Arguing as in the proof of Lemma 4.6 (but with C ′ in place of C ′i), we
have Ri ⊆ Tj(C ′) = Kj∩Tj(H ′) ⊆ Lj (see Fig. 5(a)). Observe thatKj∩Tj(H ′) ⊆ K∩H = C.
Therefore Ri ⊆ C.

Also, by Lemma 4.53, the distance between any parallel supporting hyperplanes of K
and Kt is at most ε. Since Kj ∩ Tj(H ′) ⊆ Lj , it follows that the width of cap K ∩ Tj(H ′) is
at most ε. Therefore, if C has width ε, then Tj(H ′) ⊆ H and Case 1 holds.

Case 2: H ⊂ Tj(H ′). Recall that we need to show that C ⊆ Ci. Clearly, it suffices to
show that K ∩ Tj(H ′) ⊆ Ci since C = K ∩H ⊂ K ∩ Tj(H ′). In turn, the definition of Ci
implies that it suffices to show that for 0 ≤ r ≤ j, Tj(H ′) ∩Kr ⊆ Cσi,r.

By Property 2 of Lemma 3.1, there is an i such that (C ′i)φ ⊆ C ′ ⊆ C ′i, where φ = 1/β2. By
Property 1 of Lemma 3.1, the widths of the caps (C ′i)φ and C ′i are α/β and βα, respectively.
Recall that H ′i denotes the defining halfspace for the cap C ′i. Also, let x denote the apex of
C ′i, and let hi denote the supporting hyperplane to K passing through x and parallel to C ′i’s
base.

Let C1, C2, and C3 denote the caps of Kr obtained by applying the transformation Tr to
the caps (C ′i)φ, C ′, and C ′i, respectively (see Fig. 5(b)). We have C1 ⊆ C2 ⊆ C3. Let a, b
and c denote the point of intersection of the bases of the caps C1, C2 and C3, respectively,
with the line segment Ox. Let b′ denote the point of intersection of the base of the cap
K ∩ Tj(H ′) with the segment Ox. Let xr denote the point Tr(x). Consider scaling caps C2
and C3 as described in Lemma 4.3, about the point xr with scaling factor ρ = ‖b′xr‖/‖bxr‖.
Let C ′2 and C ′3 denote the caps of Kr obtained from C2 and C3, respectively, through this
transformation. By Lemma 4.3, C ′2 ⊆ C ′3. Our choice of the scaling factor implies that C ′2
is the cap Tj(H ′) ∩Kr. We claim that C ′3 ⊆ Cσi,r. Note that this claim would imply that
Tj(H ′) ∩Kr ⊆ Cσi,r, and complete the proof.

To prove the above claim, we first show that ρ = O(j − r + 1). Observe that ρ =
(‖b′b‖+ ‖bxr‖)/‖bxr‖ = ‖b′b‖/‖bxr‖+ 1. We have

‖bxr‖ ≥ ‖axr‖ ≥ width(C1) ≥ width((C ′i)φ)
2 ≥ α

2β ,

where in the third inequality, we have used Lemma 4.54 and the fact that C1 = Tr((C ′i)φ).
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Figure 6 Proof of Lemma 4.8. (Figures not to scale.)

Also, since Tj−r(b) = b′, it follows from Lemma 4.56 that ‖b′b‖ is at most 2(j − r)dβα.
Substituting the derived bounds on ‖b′b‖ and ‖bxr‖, we obtain ρ ≤ 4dβ2(j − r) + 1.

Recall that C ′3 and Ci,r are caps of Kr defined by parallel halfspaces. To prove that
C ′3 ⊆ Cσi,r, it therefore suffices to show that width(C ′3)/width(Ci,r) ≤ σ. We have

width(C ′3) = ρ · width(C3) ≤ ρ · width(C ′i) = ρβα,

where in the second step, we have used Lemma 4.54 and the fact that C3 = Tr(C ′i). Also,
it is easy to see that the width of Ci,r is the sum of the width of the cap Tj(C ′i) and the
distance between the hyperplanes Tr(hi) and Tj(hi). Since width(C ′i) = βα, by Lemma 4.54,
the width of the cap Tj(C ′i) is at least βα/2. Also, by Lemma 4.52, the distance between the
hyperplanes Tr(hi) and Tj(hi) is at least (j − r)βα. It follows that the width of Ci,r is at
least βα/2 + (j − r)βα = (j − r + 1/2)βα. Thus,

width(C ′3)
width(Ci,r)

≤ ρβα

(j − r + 1/2)βα = ρ

j − r + 1/2 ≤
4dβ2(j − r) + 1
j − r + 1/2 ≤ 4dβ2 = σ,

as desired. J

I Lemma 4.8. For each i, the region Ci intersects O(1) bodies of R.

Proof. Suppose that R′i is in group j. Recall that Ri = Tj(R′i), C ′i = K ∩ H ′i and Ci =⋃j
r=0(Cσi,r ∩ Lr). We begin by bounding the number of bodies of R that overlap Cσi,j ∩ Lj .

(See Fig. 6(a).) By Lemma 4.6, Ci,j = Tj(C ′i) and Ri ⊆ Ci,j ⊆ Lj . By Property 1 of
Lemma 3.1, we have C ′i ⊆ (R′i)λ, which implies that vol(R′i) = Ω(vol(C ′i)). Recall that all the
bodies of R′ in group j have the same volumes to within a factor of 2, and so they all have
volumes Ω(vol(C ′i)). By Lemma 4.55, the scaling transformations used in our construction
preserve volumes to within a constant factor. Also, recall that the bodies of R in layer j are
scaled copies of the bodies of R′ in group j. It follows that the bodies of R in layer j all
have volumes Ω(vol(Ci,j)).

Next, we assert that any body of R that overlaps Cσi,j ∩ Lj is contained within the cap
C2σ
i,j . To prove this, recall from the proof of Lemma 3.1 that the bodies of R′ are (1/5)-scaled

disjoint Macbeath regions with respect to K. It follows that the bodies of R in layer j
are (1/5)-scaled disjoint Macbeath regions with respect to Kj . By Lemma 2.5, it now
follows that any body of R that overlaps Cσi,j ∩ Lj is contained within the cap C2σ

i,j . Since
vol(C2σ

i,j ) = O(vol(Ci,j)), and all bodies of R in layer j have volumes Ω(vol(Ci,j)), it follows
by a simple packing argument that the number of bodies of R that overlap Cσi,j ∩ Lj is O(1).
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Next we bound the number of bodies of R that overlap Cσi,r ∩ Lr, where 0 ≤ r < j. (See
Fig. 6(b).) Recall that Ci,r = Kr ∩ Tj(H ′i). Roughly speaking, we will show that the volume
of Ci,r exceeds the volume of Ci,j by a factor that is at most polynomial in j − r, while the
volume of the bodies in layer r exceeds the volume of the bodies in layer j by a factor that is
exponential in j − r. This will allow us to show that the number of bodies of R that overlap
Ci is bounded by a constant. We now present the details.

Define C ′i,r = Tr(C ′i). Recall that Ci,j = Tj(C ′i). By Lemma 4.55, Tj and Tr preserve
volumes up to constant factors, and so vol(C ′i,r) = Θ(vol(Ci,j)). Since the width of C ′i is
βα, by Lemma 4.54, it follows that the width of C ′i,r is at least βα/2. Also, the width
of Ci,r is upper bounded by the distance between parallel supporting hyperplanes of Kr

and Kj+1 which by Lemma 4.51 is at most 2dβα(j − r + 1). It follows that the width
of Ci,r is O(j − r + 1) times the width of C ′i,r. Recalling that, for λ ≥ 1, the volume
of a λ-expansion of a cap is at most λd times the volume of the cap, it follows that
vol(Ci,r) = O((j − r + 1)d) · vol(C ′i,r) = O((j − r + 1)d) · vol(Ci,j).

Next, recall that the volume of the bodies of R′ in group r exceeds the volume of the
bodies of R′ in group j by a factor of Ω(2j−r+1). It follows from Lemma 4.55 and our
construction that the volume of the bodies of R in layer r exceeds the volume of the bodies
of R in layer j by a factor of Ω(2j−r+1). For the same reasons as discussed above, any
body of R that overlaps Cσi,r ∩ Lr is contained within C2σ

i,r , and vol(C2σ
i,r) = O(vol(Ci,r)).

Putting this together with the upper bound on vol(Ci,r) shown above, we have vol(C2σ
i,r) =

O((j − r + 1)d) · vol(Ci,j). By a simple packing argument, it follows that the ratio of the
number of bodies of R that overlap Cσi,r ∩ Lr to the number of bodies of R that overlap
Cσi,j ∩ Lj is O((j − r + 1)d/2j−r+1). Recall that the number of bodies of R that overlap
Cσi,j ∩Lj is O(1). It follows that the number of bodies of R that overlap Ci =

⋃j
r=0(Cσi,r∩Lr)

is on the order of
∑

0≤r≤j(j − r + 1)d/2j−r+1 = O(1), as desired. J

Let S be a set of points containing one point inside each body of R defined in Lemma 4.4
and no other points.

I Lemma 4.9. The polytope P = conv(S) is an ε-approximation of K.

Proof. A set of points S stabs every cap of width ε if every such cap contains at least one
point of S. It is well known that if a set of points S ⊂ K stabs all caps of width ε of K,
then conv(S) is an ε-approximation of K [12]. Let C be a cap of width ε. By Lemma 4.4,
Property 1, there is a convex body Ri ⊆ C. Since S contains a point that is in Ri, we have
that the cap C is stabbed. J

To bound the combinatorial complexity of conv(S), and hence conclude the proof of
Theorem 1.1, we use the witness-collector approach [15].

I Lemma 4.10. The number of faces of P = conv(S) is O(1/ε̂ (d−1)/2).

Proof. Define the witness set W = R1, . . . , Rk and the collector set C = C1, . . . , Ck, where
the Ri’s and Ci’s are as defined in Lemma 4.4. As there is a point of S in each body Ri,
Property 1 of the witness-collector method is satisfied. To prove Property 2, let H be any
halfspace. If H does not intersect K, then Property 2 of the witness-collector method holds
trivially. Otherwise let C = K ∩H. By Property 2 of Lemma 4.4, there is an i such that
either Ri ⊆ C or C ⊆ Ci. It follows that H contains witness Ri or H ∩ S is contained in
collector Ci. Thus Property 2 of the witness-collector method is satisfied. Finally, Property 3
of Lemma 4.4 implies Property 3 of the witness-collector method. Thus, we can apply
Lemma 4.1 to conclude that the number of faces of P is O(|C|) = O(k), which proves the
lemma. J
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