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—— Abstract

Tightness is a generalisation of the notion of convexity: a space is tight if and only if it is “as
convex as possible”, given its topological constraints. For a simplicial complex, deciding tightness
has a straightforward exponential time algorithm, but more efficient methods to decide tightness
are only known in the trivial setting of triangulated surfaces.

In this article, we present a new polynomial time procedure to decide tightness for triangu-
lations of 3-manifolds — a problem which previously was thought to be hard. In addition, for
the more difficult problem of deciding tightness of 4-dimensional combinatorial manifolds, we
describe an algorithm that is fixed parameter tractable in the treewidth of the 1-skeletons of the
vertex links. Finally, we show that simpler treewidth parameters are not viable: for all non-trivial
inputs, we show that the treewidths of both the 1-skeleton and the dual graph must grow too
quickly for a standard treewidth-based algorithm to remain tractable.
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1 Introduction

The notion of converity is very powerful in mathematics. Many theorems in many different
mathematical fields only hold in the case of a convex base space. However, in geometry and
topology, the concept of convexity has significant limitations: most topological spaces simply
do not admit a convex representation. That is, most topological features of a space, such as
handles or “holes” in the space, are an obstruction to convexity.
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Nonetheless, there is a distinct intuition that even for topologically non-trivial spaces,
some representations look “more convex” than others. For example, for a solid torus, a
doughnut shape is intuitively “more convex” than a coffee mug with one handle.

The idea of tightness captures this intuition in a mathematically precise way that applies
to a much larger class of topological spaces than just balls and spheres. We give a precise
definition in Section 3, but roughly speaking, a particular embedding of a topological space
into some Euclidean space is said to be tight if it is “as convex as possible” given its topological
constraints. In particular, a topological ball or sphere is tight if and only if it is convex.

Originally, tight embeddings were studied by Alexandrov in 1938 as objects that minimise
total absolute curvature [1]. Later work by Milnor [34], Chern and Lashof [15] and Kuiper [30]
linked the concept to topology, by relating tightness to the sum of the Betti numbers ; of a
d-dimensional topological space (these essentially count i-dimensional “holes”; see Section 2.2
for details). The framework was then applied to polyhedral surfaces by Banchoff [5], and later
fully developed in the combinatorial setting by Kiihnel [27]. Finally, work by Effenberger
[20], and the first and third authors [3] made the concept accessible to computations.

There is a straightforward relaxation of tightness linking it to another powerful concept
in geometry and topology: Morse theory (see Section 2.3 for a brief introduction). In a sense,
all Morse functions on a tight embedding of a topological space must be perfect; that is, they
must satisfy the Morse inequalities with equality. ! Deciding whether a given embedding is
tight is closely related to the much-studied problem of finding a perfect Morse function: the
former asks if every Morse function is perfect, and the latter asks if there is at least one.

This article deals with tightness in the discrete setting, where our topological spaces
are represented as simplicial complexes. Here there are only a finite number of “essentially
distinct” ways of (i) embedding the complex into Euclidean space, as used for tightness;
or (ii) defining a simplexwise linear “height” function on it, as used in Morse theory. For
instance, in the latter setting, the critical points of a simplexwise linear height function are
completely determined by the order of the heights of the vertices of the complex.

In this discrete setting, we can replace the notion of a tight embedding with a purely
combinatorial notion of a tight combinatorial manifold. These are rare but very special
objects. For instance, tight combinatorial manifolds are conjectured to be strongly minimal
(i.e., to contain the minimum number of faces of every dimension) amongst all triangulations
of the same manifold [29, Conjecture 1.3]. More generally, they make deep connections
between the combinatorial condition of tightness and its geometric and topological properties
of a manifold, which are still far from being fully understood. Few such connections are
known, which emphasises the importance of tightness in discrete and computational topology.

In this discrete setting, both deciding tightness of an embedding and finding a perfect
Morse function become (decidable) algorithmic problems. The question remains as to how
hard these problems are. It is known that, for discrete Morse functions as defined by
Forman [21], finding perfect Morse functions is NP-hard in general [25, 33, 36|, but also
fixed parameter tractable in the treewidth of the dual graph of the triangulation [10] (see
Sections 2.1 and 2.4 for definitions of the dual graph and treewidth respectively). For
the related piecewise-linear variant of Morse theory as formulated by Kuiper and Banchoff
[5, 19, 27] the hardness remains unknown; however, both theories are closely related since
they both discretise smooth Morse theory in similar (but technically different) ways.

L This statement only holds in general when applied within the right version of Morse-type theory; namely,
the theory of piecewise linear functions and the lower star filtration [19]. This is sometimes also referred
to as the theory of regular simplez-wise linear functions [27].
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In this paper, we consider the hardness of deciding tightness in the discrete setting. In
Section 5 of this article, we give a polynomial time solution in the case of 3-manifolds:

» Theorem 1. Let M be a combinatorial 3-manifold with n vertices. There is an algorithm
to decide whether or not M is tight with running time polynomial in n. Furthermore, the
dominating term in the running time of the algorithm is the time required to compute the
first Betti number 5y (M, Fs).

This is a surprising result, given the close relation between deciding tightness and finding
perfect Morse functions which, for Forman’s discrete Morse theory, is known to be NP-hard
(see above). Furthermore, this polynomial time solution links to a number of other problems
in 3-dimensional computational topology where polynomial time procedures are unknown
but conjectured to exist. For instance, finding a perfect Morse function on a 3-manifold
solves specific instances of the 3-sphere and the unknot recognition problems, both of which
are conjectured but not known to be polynomial time solvable [22, 23, 32, 35].

We next move to the more difficult setting of four dimensions. Here we do not obtain
a polynomial time algorithm, but we do show that deciding tightness is fixed parameter
tractable (see Section 2.4 for an overview of fixed parameter tractability):

» Theorem 2. Let M be a combinatorial d-manifold, d < 4. Then deciding tightness for any
field is fixed parameter tractable in the treewidth of the 1-skeletons of the vertex links of M.

This essentially means that deciding tightness is polynomial time for inputs where the

parameter — i.e., the treewidth of the 1-skeletons of the vertex links — is universally bounded.

This parameter is complex to describe, but our final result shows that this is necessarily
so. In Section 7 we consider the simpler parameters of (i) the treewidth of the 1-skeleton
of M; and (ii) the treewidth of the dual 1-skeleton of M, also known as the dual graph of
M. We show that, for all non-trivial inputs, both of these parameters must grow with the
input size, and therefore cannot be universally bounded. In other words, for these simpler
parameters, the notion of fixed parameter tractability cannot help.

The results in this paper are not only relevant for computational geometry — they also hold
significance for the study of tightness itself. One of the major difficulties in studying tightness
is in obtaining explicit examples of tight combinatorial manifolds. Some infinite families

are known for simple manifolds [27, 17, 8]; beyond these, only sporadic examples are known.

However, these sporadic examples feature several of the most fascinating triangulations
in the field, including minimal triangulations of the complex projective plane [28], the K3
surface [14], and a triangulation of an 8-manifold conjectured to be PL-homeomorphic to the
quaternionic plane [6] (see [29] for a comprehensive overview of many more examples).

Most of these examples were proven to be tight using theoretical arguments specific
to each case. Fast algorithms, such as those presented here in Theorems 1 and 2, will
open the door to finding and exploring new tight combinatorial manifolds using powerful
computer-assisted techniques.

The proofs in this paper are relatively simple — they use significant theoretical groundwork
from the literature to do the heavy lifting, as outlined through Sections 2-4. The main
contribution of this paper is to bring together significant results from combinatorial topology,
computational complexity and Morse theory to build tractable and fixed parameter tractable
algorithms for problems that have until now been beyond the realm of computation.

12:3

SoCG 2016



12:4

Efficient Algorithms to Decide Tightness

2 Preliminaries

2.1 Combinatorial manifolds

Let C be an abstract simplicial complex, i.e., a simplicial complex without a particular
embedding. For any vertex v € C, the star of v in C' is the set of all faces of C' containing v,
as well as all of their subfaces, and is denoted by stc(v). The boundary of sto(v), that is, all
faces of stc(v) which do not contain v, is called the link of v in C, written lkc(v). Given an
abstract simplicial complex C| its underlying set |C| is called the geometric carrier of C. An
abstract simplicial complex is said to be pure of dimension d if all of its maximal faces (that
is, faces which are not contained in any other face as a proper surface) are of dimension d.

A combinatorial d-manifold is an abstract pure simplicial complex M of dimension d
in which all vertex links are combinatorial (d — 1)-dimensional standard PL-spheres. A
combinatorial (d — 1)-dimensional standard PL sphere is a combinatorial (d — 1)-manifold
whose underlying space, i.e., its geometric carrier, is a PL standard sphere.

The f-vector of M is the (d + 1)-tuple f(M) = (fo, f1,---fa) where f; denotes the
number of i-dimensional faces of M. The set of vertices of M is denoted by V' (M), and the
d-dimensional faces of M are referred to as facets.

We call M k-neighbourly if fr_1 = (j,:“), that is, if M contains all possible (k — 1)-
dimensional faces. Given a combinatorial manifold M with vertex set V(M) and W C V(M),
the sub-complex of M induced by W is the simplicial complex M[W] = {oc € M |V (o) C W},
i.e., the simplicial complex of all faces of M whose vertices are contained in W.

A pure simplicial complex of dimension d is said to be a weak pseudomanifold if every
(d — 1)-dimensional face is contained in at most two facets. Naturally, any combinatorial
manifold is a weak pseudomanifold. However, a weak pseudomanifold is not always a
combinatorial manifold — it might allow singularities around faces of co-dimension > 2 (e.g.,
the apex of a double cone). Given a weak pseudomanifold M, the dual graph of M is the
graph whose vertices represent the facets of M, and whose edges represent gluings between
the facets along common (d — 1)-faces of M; this is denoted T'(M). Weak pseudomanifolds
are the most general class of simplicial complexes for which a dual graph can be defined.

For brevity, we call a combinatorial manifold a triangulation of the underlying space.

2.2 Homology and F-orientability

Given a d-dimensional topological space M and a field F, the homology groups of M are a
series of F-vector spaces H,(M,F) = (Ho(M,F), Hi(M,F), ..., Hiy(M,F)) associated with
M. Roughly speaking, the ith homology group counts i-dimensional “holes” in M.

Homology can be defined on abstract simplicial complexes as follows. Let K be a d-
dimensional abstract simplicial complex with an ordering on its vertices V(K), and let F be
a field. The group of i-chains of K (0 < i < d), denoted C;(K,T), is the group of formal
sums of ordered i-dimensional faces of K with coefficients in F. The boundary operator is a
linear operator 0; : C;(K,F) — C;_1(K,F) that maps each i-face to its (i — 1)-dimensional
boundary: 0;(vg,--- ,v;) = Z;ZO(—I)j(UO, <ee,0j,- -+ ,v;), where (vg,...,v;) denotes the
ordered i-face with vertices vy, ..., v;, and 0; means v; is deleted from the tuple. Denote by
Z;(K,F) and B;_1(K,F) the kernel and the image of 9; respectively. Observing ;00,11 =0,
we define the ith (simplicial) homology group H;(K,F) of K to be the F-vector space
H;(K,F) = Z;(K,F)/B;(K,F). The rank of H;(M,F) is called the ith Betti number of
M, denoted B;(M,F). The field F is called the field of coefficients. This construction is
a topological invariant, in that two distinct simplicial complexes triangulating the same
topological space will have isomorphic homology groups.
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As an example, the circle C' and the solid torus T" both have exactly one “1-dimensional
hole”. Hence, they both have first homology group H(C,F) = H,(T,F) = F (for any F), and
B1(T,F) = 1. The surface of a torus, however, has two “1-dimensional holes” and thus first
homology group H(T,F) = F2. The 2-dimensional sphere S has trivial first homology group
H,(S,F) = 0. For more details about homology theory see [24].

A triangulation of a d-manifold is orientable if all of its d-faces A, and thus their boundaries
044, can be endowed with a sign such that d-faces are glued together along their boundary
(d — 1)-faces with opposite signs in a globally consistent way. Otherwise the triangulation
is called mon-orientable. For instance, triangulations of the 2-sphere are orientable, but
triangulations of the Mébius strip are not. Orientability is likewise a topological invariant.

Orientability can be generalised in terms of homology. A triangulation of a manifold is
F-orientable if it forms a d-dimensional void; that is, if Hq(M,F) = F (instead of 0). All
manifolds are orientable with respect to the field with two elements Fs.

The homology groups of orientable manifolds satisfy a special relation known as Poincaré
duality: if F is a field and M is an F-orientable d-manifold, then 8;(M,F) = 4_;(M,F). We
make use of this fact in our algorithms to decide tightness for 3- and 4-manifolds.

2.3 Piecewise linear Morse theory

Smooth Morse theory studies functions f : M — F from a manifold M to the real numbers.

Here we introduce a piecewise linear analogue to this theory as defined in [19, 27].

Let M be a d-dimensional combinatorial manifold. A function f : |[M| — R is called
piecewise linear, or regular simplezwise linear (rsl), if f(v) # f(w) for any two vertices v # w
of M and f is linear when restricted to any simplex of M.

Fix a field F. A vertex z € V(M) is said to be critical with respect to F for an rsl-function
[ M| = Rif H(lkp(x)7,F) #(0,...,0). Here lkps(x)~ denotes the lower link of x with
respect to f, defined as lky(z)” = lka(z)[{y € V(km(z))| f(y) < f(z)}]. Essentially, a
point z is critical whenever an i-dimensional hole is contained in M[{y € V(M) | f(y) <
f(x)}], but not in M[{y € V(M) | f(y) < f(z)}]. In the language of filtrations, the hole
appears at value f(z) in the filtration defined by f. Such a hole must intersect the lower

link lkps(2)~ in a hole of dimension (i — 1), yielding the homology relation described above.

We call a vertex x critical of index i and multiplicity m if 5;(lkps(x)~,F) = m. The
vector (Bo(lkas ()™, F), ..., Ballkas (z)~,F)) is called multiplicity vector of x with respect to
F. The sum my(f,F) := > .y, Bi(lkas(2) 7, F) is called the number of critical points of f
of index i with respect to F. The sum of m;(f,F) over all indices i is called the number of
critical points of f with respect to F. Note that in the theory of piecewise linear functions,
higher order multiplicities cannot always be avoided.

» Theorem 3 (Morse relations, [31]). Let M be a combinatorial d-manifold, f : |M| — R a
piecewise linear function, and F a field. Then the following statements hold:

d ) d )
i) Z:O(—l)’mi(ﬁ F) = x(M) = Z:O(—l)’ﬁi(M, F),
where x(M) is an invariant of M called the Euler characteristic.

If there exists a field F such that m;(f,F) = 8;(M,F) for all 0 < i < d, then f is called
perfect. Geometrically speaking this means that M, seen from the direction described by f,
is “as convex as possible”.

12:5
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2.4 Parameterised complexity and treewidth

The framework of parameterised complexity, as introduced by Downey and Fellows [18],
provides a refined complexity analysis for hard problems. Given a typically NP-hard problem
p with A as its set of possible inputs, we choose some parameter k : A — N, which grades
the inputs according to their corresponding parameter values. This parameterised version of
p is then said to be fized parameter tractable (FPT) with respect to parameter k if p can be
solved in time O(f(k) - n®™M), where f is an arbitrary (computable) function independent of
the input size n and k is the parameter value of the input. Note that the exponent of n must
be independent of k. In essence, if p is FPT in parameter k, then k (and not the problem
size) encapsulates the hardness of p.

A priori, a parameter can be many things, such as the maximum vertex degree of a graph,
the sum of the Betti numbers of a triangulation, or the output size. However, the significance
of an FPT result strongly depends on specific properties of the parameter — the parameter
should be small for interesting classes of problem instances and ideally efficient to compute.

In the setting of computational topology, the treewidths of various graphs associated with
triangulations turn out to be such good choices of parameter [10, 12, 9]. Informally, the
treewidth of a graph measures how “tree-like” a graph is. The precise definition is as follows.

» Definition 4 (Treewidth). A tree decomposition of a graph G is a tree T = (B, E) whose
vertices {B; |i € I} are called bags. Each bag B; is a subset of vertices of G, and we require:
every vertex of G is contained in at least one bag (vertex coverage);
for each edge of G, at least one bag must contains both its endpoints (edge coverage);
the induced subgraph of T' spanned by all bags sharing a given vertex of G must form a
(connected) subtree of T' (subtree property).
The width of a tree decomposition is defined as max |B;| — 1, and the treewidth of G is the
minimum width over all tree decompositions.

When describing FPT algorithms which operate on tree decompositions, the following
construction has proven to be extremely convenient.

» Definition 5 (Nice tree decomposition). A tree decomposition T = ({B;|i € I}, E) is
called a nice tree decomposition if T can be expressed as rooted tree for which:
1. Every bag of the tree T" has at most two children.
2. The bag B, at the root of the tree (called the root bag) has |B,| = 1.
3. If bag B; has no children, then |B;| =1 (in this case Bj is called a leaf bag).
4. If a bag B; has two children B; and By, then the sets B;, B; and By, are identical (in
this case B; is called a join bag).
5. If a bag B; has one child Bj, then either:
a. |B;| =|Bj| +1 and B; C B; (in this case B; is called an introduce bag); or
b. |B,| = |B;| + 1 and B; C B; (in this case B; is called a forget bag).

Nice tree decompositions are small and easy to construct by virtue of the following.

» Lemma 6 ([26]). Given a tree decomposition of a graph G that has width k and O(n) bags,
where n is the number of vertices of G, we can find a nice tree decomposition of G that also
has width k and O(n) bags in time O(n).

We make use of nice tree decompositions in Section 6.
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Ho(D) =F

Ho(D N h) =F?

s

D D

Figure 1 Non-convex embedding of the disk D in the plane. There exist a half space h such that
h N D has homological features (two connected components) which D has not.

3 Tightness

In its most general form, tightness is defined for compact connected subsets of Euclidean
space. Here and in the following, H,(M,F) = (Ho(M,F), Hy(M,F), ..., Hy(M,F)) denote
the simplicial homology groups of a d-manifold M with coefficients in the field F.

Intuitively, a manifold M embedded into some Euclidean space E? is tight if intersecting
it with a half space h C E? does not introduce any topological (more precisely, homological)
features in h N M which are topologically (homologically) trivial in M C E9. For instance,
think of a non-convex embedding of the 2-dimensional disk D into E?, as illustrated in
Figure 1. We can always cut D with a half space h C E¢ such that h N D is disconnected,
or, in homology terms, Hyo(h N D,F) = F? (note that multiple connected components are
“0-dimensional holes”). But D itself is connected and thus Hy(D,F) = F. Hence a topological
feature of h N D disappears in D, and so D is not tight.

For a different type of non-tight embedding, imagine an embedding of the 3-dimensional
ball B into E? with a dent. Because of the dent, we can find a half space h C E® such that
hN B is a solid torus. Thus, AN B is still connected, but we have Hy(h N B,F) = F whereas
Hy(B,F) =0 and B is not tight. We formalise this intuition through the following definition.

» Definition 7 (k-tightness and tightness [27]). A compact connected subset M C E< is
called k-tight with respect to a field F if, for every open or closed half space h C E<, the
induced homomorphism Hy(h N M,F) — Hy(M,F) is injective. If M C E? is k-tight with
respect to F for all k, 0 < k < d, then it is called F-tight.

If a connected subset M C E? is referred to as tight without specifying a field, then it is
usually understood that there exists a field F such that M is F-tight. See Figure 2 on the
left for a tight embedding of the torus into Euclidean 3-space.

If M is given as an abstract simplicial complex, tightness can be formulated as a
combinatorial condition. In this setting, all half spaces from the geometric definition are
replaced by subsets of vertices W C V(M) of M, thought of as lying inside the half space. In
particular, there are only 2!V (M)l distinct subsets and thus only 2!V ()| “essentially distinct”
half spaces to consider. The restriction M N h from the geometric definition translates to
combinatorics via the concept of induced subcomplexes M[W].

» Definition 8 (k-tightness and tightness [3, 27]). Let C be an abstract simplicial complex
and let F be a field. We say that C is tight with respect to T if, for all subsets W C V(C)
and all 0 < k < d, the induced homomorphism Hy(C[W],F) — Hy(C,F) is injective.

See Figure 2 in the center and on the right hand side for the unique tight triangulations
of the 2-sphere (the boundary of the tetrahedron) and the torus (the so-called Mobius torus,
see [16] for an embedding of this complex into Euclidean 3-space with straight lines). Take a
moment to verify that no induced subcomplex introduces holes which are filled in the full
complex, or disconnected components which become connected in the full complex.

12:7
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2 6 5 9
a
7 < 7
b c
4 1 4
a d a 2 6 5 2

Figure 2 Left: tight embedding of the torus into E®. Center: unique tight triangulation of the
2-sphere, the boundary of a tetrahedron. Right: unique tight triangulation of the torus with 7
vertices. Vertices with equal labels are identified.

Note that the above definition does not depend on a specific embedding. However,
Definition 7 can be linked to Definition 8 by considering the standard embedding of a
simplicial complex C into the (]V(C')| — 1)-simplex (every vertex of C' is sent to a unit vector
in EIV(©)), Also, notice that in Definition 8, and as mentioned above, tightness is a definition
depending on a finite number of conditions, namely 2!V()!  giving rise to an exponential
time algorithm to decide tightness. Unless otherwise stated we work with Definition 8.

There are many criteria in the literature on when a simplicial complex is tight. See [29]
for a more thorough survey of the field and [3, 4] for a summary of recent developments.

One of the most fundamental criteria says that an orientable triangulated surface is tight
if and only if it is 2-neighbourly [27, Section 2A] (i.e., its set of edges forms a clique, see
Section 2.1).

It is not difficult to see that the condition of 2-neighbourliness is necessary for tightness:
Assume a connected simplicial complex C has two vertices u and v not connected by an
edge, then the induced subcomplex C[{u, v}] is not connected, and thus C cannot be 0-tight.
Note that for dimensions greater than two, and for 2-dimensional complexes different from
combinatorial surfaces, the converse of this statement no longer holds: there are 2-neighbourly
complexes which are not tight.

In particular, for d > 2, no easy-to-check characterisation of tightness for general combin-
atorial d-manifolds is known (see [4] for a full characterisation of tightness of combinatorial
3-manifolds with respect to fields of odd characteristic).

Instead, the above condition for combinatorial surfaces generalises to combinatorial 3-
and 4-manifolds in the following way.

» Theorem 9 (Bagchi, Datta). An F-orientable combinatorial manifold of dimension < 4 is
F-tight if and only if it is O-tight and 1-tight with respect to F.

This directly follows from Theorem 2.6 (c) in [3]. The F-orientability is necessary to
apply Poincaré duality to the Betti numbers.

The two main results of this paper (presented in Sections 5 and 6) make use of this fact,
yielding (i) a polynomial time procedure to decide tightness for combinatorial 3-manifolds,
and (ii) a fixed parameter tractable algorithm for combinatorial 4-manifolds.

The o- and p-vectors

We briefly review the definition of the o- and p-vectors as introduced in [3] by the first and
third authors. These combinatorial invariants build the foundation of a more combinatorial
study of tightness of simplicial complexes. In essence they count the number of critical points
of all piecewise linear functions on a complex simultaneously in order to detect a function
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with too many critical points (i.e., a non-perfect Morse function) which then can be used to
conclude that the complex is not tight.

» Definition 10 (Bagchi, Datta [3]). Let C be a simplicial complex of dimension d. The

o-vector (0,01, ...,04) of C with respect to a field F is defined as
Bi(C[A],F) .
o;=0i(C;F) == > (MC)) , 0<i<d,
ACV(C) |A]

where B; denotes the reduced ith Betti number (8; = j; for i > 0, and 8y = fy + 1). For
i > dim(C), we formally set o;(X;F) = 0.

In other words, o;(C, F) adds the number of i-dimensional homological features, 0 < i < d,

in induced subcomplexes C[A], weighted by the number of subsets A C V(C) of size |A|.

Definition 10 can then be used to define the p-vector.

» Definition 11 (Bagchi [2] and Bagchi, Datta [3]). Let C be a 2-neighbourly simplicial
complex of dimension d, n = |[V(C')|. We define

po = po(C;F) :=1 (1)

1 .
pi = pi(C;F) := 5¢1+E Z oi—1(lk,(C)), 1 <i < d,
veV(C)

where d;; is the Kronecker delta.

Note that 1 (C;F) only depends on the 0-homology of subcomplexes of C' and 0-homology
is independent of the field F. Hence, we sometimes write p;(X) instead of u1 (X;TF).

Intuitively speaking, u; averages over the number of homological features in the vertex
links of dimension 7 — 1. Thus, in some sense u; counts the average number of critical points
of index 7 of a piecewise linear function on C' (see the definition of critical points for piecewise
linear functions in Section 2.3). The following result is thus essentially a consequence of the
Morse relations, see Theorem 3.

» Lemma 12 (Bagchi, Datta [3]). Let M be an F-orientable, 2-neighbourly, combinatorial
closed d-manifold, d < 4. Then 1(M;F) < pu1 (M), and equality holds if and only if M is
F-tight.

This is a special case of a much more general result, but suffices for the purpose of this
work. To read more about many recent advances in studying tightness of simplicial complexes
using the framework of combinatorial invariants, see [4].

4  Vertex links of tight 3-manifolds

Before we give a description of our polynomial time algorithm in Section 5, we first need
to have a closer look at the vertex links of tight combinatorial 3-manifolds and a way to
accelerate the computation of their o-vectors.

» Theorem 13 (Bagchi, Datta, Spreer [4]). Let M be a tight triangulation of a closed
combinatorial 3-manifold. Then each vertex link of M is a combinatorial 2-sphere obtained
from a collection of copies of the boundary of the tetrahedron S% and the boundary of
the icosahedron 12, glued together by iteratively cutting out triangles and identifying their
boundaries.
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Furthermore, we have the following decomposition theorem for the o-vector.

» Theorem 14 (Bagchi, Datta, Spreer [4]). Let Cy and Cy be induced subcomplexes of a
simplicial complex C and F be a field. Suppose C = C1 UCy and K = C1NCsy. If K is
k-neighbourly, k > 2, then

oi(Ci;F) | 0i(Cy;F)  0y(K;F) >

oi(C;F) = (fo(C) + 1) <f0(C1) +1 7 fo(Co)+ 1 fo(K)+1

for0<i<k-2.

Moreover, we call a simplicial complex C' a primitive simplicial complex if it does not
admit a splitting Cy U Cy = C such that K = Cy N Cs is k-neighbourly, k£ > 2.

In particular, this theorem applies to the ogp-value of a combinatorial 2-sphere S which
can be split into two discs D and D5 along a common triangle K (which is 2-neighbourly),
i.e. S = D;Ug D>. In this case we write S = S1#S5, where S; is the 2-sphere obtained
from D;, 1 <14 < 2, by pasting a triangle along the boundary. Note that whether or not
we paste the last triangle into D; does not change the og-value of the construction. Now,
Theorem 14, together with the explicit computation of the og-value of the tetrahedron and
the icosahedron, gives rise to the following statement.

» Corollary 15 (Bagchi, Datta, Spreer [4]). Let k,£ > 0 and (k,£) # (0,0). Then

617 11
oo( kIZ, #4657 ) = (9% + £+ 3) (17161: + 2—05— 4)

5 Deciding tightness of 3-manifold triangulations in polynomial time

In this section we give a proof of Theorem 1, that is, we describe a polynomial time procedure
to decide tightness for combinatorial 3-manifolds. The dominant part of the running time of
the procedure accounts for computing the first Betti number of the combinatorial 3-manifold
which runs in O(n%) = O(¢?) time, where n is the number of vertices and ¢ is the number of
tetrahedra of the triangulation.

The algorithm accepts any 3-dimensional simplicial complex M on n vertices, given as a
list of abstract tetrahedra, i.e., subsets of size four of {1,...,n}, together with a field F of
characteristic x(F) as input. It checks if M is an F-orientable combinatorial manifold and,
in the case it is, decides whether or not M is tight with respect to F.

We use the fact that, by Lemma 12, a 2-neighbourly, F-orientable combinatorial 3-manifold
M is F-tight if and only if 51 (M;F) = pu(M).

First note that there is an O(n?log(n)) procedure to determine whether an n-vertex
3-dimensional simplicial complex is an F-orientable 2-neighbourly combinatorial manifold:

Check that M has (%) edges and ((}) — n) tetrahedra, which can be done in O(n?) time.
Check that each of the triangles occurs exactly in two tetrahedra and store this gluing
information (this can be done in almost quadratic time O(n?logn)).

Compute all n vertex links of M. Since M is 2-neighbourly by the above, each vertex
link must have n — 1 vertices. Moreover, if M is a combinatorial manifold, each of the
vertex links triangulates a 2-sphere. Since an (n — 1)-vertex 2-sphere must have 2n — 6
triangles, we can either compute these vertex links in O(n) time, or else conclude that M
is not a combinatorial 3-manifold because some vertex link exceeds this size.
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Check that each vertex link is a 2-sphere. Since we know from the above that every
triangle in M is contained in exactly two tetrahedra, and hence each edge in a link is
contained in two triangles, this can be done by computing the Euler characteristic of each
link, again a linear time procedure for each vertex link.

If the characteristic of F is distinct from 2, use the gluing information from above to
compute an orientation on M in quadratic time. Otherwise M is always F-orientable.

Now, if M fails to be a combinatorial 3-manifold we stop. If M is a combinatorial
3-manifold, but either not 2-neighbourly or not F-orientable we conclude that M is not tight
(note that a non-orientable manifold can never be tight, see [3, Proposition 2.9 (b)]).

In case M is 2-neighbourly and F-orientable we now have to test whether 5, (M;F) =
w1 (M). More precisely, we must compute oq(lkas(v)) for all vertices v € V(M), a procedure
which naively requires the analysis of O(2") induced subcomplexes of 1k (v).

However, using Corollary 15, computing the og-value of the vertex link of a tight com-
binatorial 3-manifold simplifies to the following algorithm to be carried out for each vertex
link S (note that because of the 2-neighbourliness, every vertex link needs to contain n — 1
vertices, 3n — 9 edges, and 2n — 6 triangles):

Enumerate all induced 3-cycles of S and split S along these cycles into separate connected

components. This can be done in O(n?) time by first storing a list of adjacent edges for

each vertex and a list of adjacent triangles for each edge, and then running over all vertex
subsets of size three checking if the induced subcomplex is an empty 3-cycle.

For each connected component, check if the 1-skeleton of the component is isomorphic

to the graph of either S? or IZ,. If not, return that M is not tight. Otherwise, sum up

the number of connected components of each type. Note that each component can be
processed in constant time, but that there is a linear number of components.

Use Corollary 15 to compute the og-value of the link.

Add up all og-values and divide by n to obtain u1(M). Now, we know from Lemma 12
that M is tight if and only if p1 (M) = 51 (M, F). Thus, if p1 (M) is not an integer, M cannot
be tight. This step overall requires a running time of O(n?).

Finally, suppose p1 (M) is an integer. In this case, we must compute (1 (M,F). For all F,
this information is encoded in H;(M,Z) which can be computed in O(n®) by determining
the Smith normal form of the boundary matrix. Hence, this last step dominates the running
time of the algorithm.

Altogether, checking for tightness can be done in the same time complexity as computing
homology, a task which is considered to be easy in computational topology.

Furthermore, recent theoretical results in [4] show that, if the characteristic of F is odd,
then M must be what is called a 2-neighbourly, stacked combinatorial manifold. Such an

object can be identified in O(n?log(n)) time (i.e., almost linear in the number of tetrahedra).

6 A fixed parameter tractable algorithm for dimension four

In the previous section, we prove that deciding tightness of 3-manifolds can be done efficiently.

However, the algorithm for dimension three relies heavily on special properties of the vertex
links. No such characterisation of the vertex links is known in higher dimensions.

However, both Lemma 12 and Theorem 14 can still be applied in the 4-dimensional
setting. Hence, any computation of the gg-value of the vertex link of some combinatorial
4-manifold immediately reduces to computing the og-value of the primitive components of
that vertex link. For the remaining primitive pieces we have the following.

12:11
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» Theorem 16. Let C be a simplicial complex C whose 1-skeleton has treewidth < k. Then
there exists an algorithm to compute oo(C) in O(f(k) n®) time, where n is the number of
vertices of C'.

Proof. We give an overview of the structure of this algorithm.

Note that for a simplicial complex C, 0o(C) only depends on the 1-skeleton Cy of C.
Thus, let T = (B, E) be a nice tree decomposition of C;. We write B = {By, Ba,..., B},
where the bags are ordered in a bottom-up fashion which is compatible with a dynamic
programming approach. In other words: the tree T is rooted; whenever B; is a parent of B;
we have ¢ > j; and our algorithm processes the bags in the order By, ..., B,.

For each bag B;, we consider the induced subgraph C;[B;] spanned by all vertices in
the bag B;. Furthermore, we denote the induced subgraph of the 1-skeleton spanned by all
vertices contained in bags in or underneath B; by C ;.

Given a bag B;: for each subset of vertices S C B;, for each partition 7 of elements of S,
and for all integers ¢, m with ¢ < m < n, we count the number of induced subcomplexes
of Ci , With m vertices and ¢ connected components whose vertex set intersects bag B; in
precisely the set S, and whose connected components partition this set S according to 7.
Note that the count ¢ includes connected components which are already “forgotten” (i.e.,
which do not meet bag B; at all). Here, n denotes the number of vertices of C.

These lists can be trivially set up in constant time for each one-vertex leaf bag.

For each introduce bag, the list elements must be updated by either including the added
vertex to the induced subcomplex or not. Note that in each step, the edges inside C4[B;] place
restrictions on which partitions of subsets S C B; can correspond to induced subcomplexes
in C7 ;. The overall running time of such an introduce operation is dominated by the length
of the list, which is at most quadratic in n multiplied by a function in & (for each subset
and partition of vertices in B;, up to O(n?) distinct list items can exist corresponding to
different values of ¢, m).

For each forget bag, we remove the forgotten vertex from each list item, thereby possibly
aggregating list items with equal values of S, 7, ¢ and m. This operation again has a running
time dominated by the length of the lists.

Finally, whenever we join two bags, we pairwise combine list elements whenever the
underlying induced subcomplexes are well-defined (i.e., whenever the subsets in the bag
coincide and the partitions are compatible). This requires O(n?) time in total (the product
of the two child list lengths).

After processing the root bag we are left with O(n?) list entries, labelled by the empty
set, the empty partition, and the various possible values of ¢, m. Given the values of these
list items it is now straightforward to compute o¢(C'), as in Definition 10. Given that there
are overall O(n) bags to process, we have an overall running time of O(f(k) n®). <

The FPT algorithm to decide tightness for d-dimensional combinatorial manifolds M,
d < 4, now cousists of computing u1 (M) by applying Theorem 16 to each vertex link, and
comparing uq (M) to 51 (M,F). Since the computation of (M) is independent of F and
B1(M,F) < puy (M) for all F, we can choose F to maximise 5, and, by Theorem 9, M is tight
if and only if

max B1(M,F) = 1 (M).

Following the proof of Theorem 16, the overall running time of this procedure is O(poly(n) +
nSf(k)) for some function f.
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Note that the 1-skeleton of M must always be the complete graph (or M is trivially not
tight). It follows that each vertex link of M must contain n — 1 vertices — but possibly only a
linear number of edges. In this case the treewidth of the 1-skeleton of the links of M maybe
very low and the above algorithm efficient. However, the 1-skeleton of the vertex link of a
tight combinatorial 4-manifold M can be the complete graph, which has maximal treewidth.
In this case, the algorithm presented in this section fails to give feasible running times. But
in this case M must be a 3-neighbourly simply connected combinatorial 4-manifold which
is tight by [27, Theorem 4.9]. Hence, worst case running times for the algorithm above are
expected for combinatorial 4-manifolds of high topological complexity and with low, but
strictly positive, first Betti numbers.

7  The treewidth of the dual graph of tight triangulations

It seems plausible that similar techniques as applied in Section 6 can be used to decide
tightness in arbitrary dimensions. In fact, it can be shown that deciding j-tightness with
respect to the field s is fixed parameter tractable in the treewidth of the dual graph of the
combinatorial d-manifold. However, such an algorithm does not provide any real information
about the hardness of the problem of tightness due to the following result (see [9] by the
first author and Downey for a proof of a theorem implying this more special result).

» Theorem 17. Let M be a connected combinatorial d-manifold, d fized, with t facets and n
vertices. Then either M is trivially not tight, or the treewidth k of the dual graph I'(M) of
M satisfies

ke Q).

Proof. Let T'(M) be of treewidth k and let T = (B, E) be a tree-decomposition of I'(M)
of width k. For each bag B; € B, define B! to be the set of all vertices of M which are
contained in some facet in B;.

Claim: The tree T’ = (B’, F) is a tree-decomposition of the primal graph of M.

Every vertex and every edge of M is contained in some facet of M, thus 7" trivially
satisfies the properties of node coverage and arc coverage of a tree-decomposition.

To verify the subtree property, let v be a vertex of M, let B, C B’ be the set of bags
containing v, and let X,Y € B, be any two bags in this subset. By construction, both X
and Y correspond to bags in B containing facets Ax and Ay in the star of v in M. Since
M is a combinatorial manifold, the star of v is a ball and hence there exists a sequence

Ax = Ao, Ar,...,Ap = Ay

of facets in the star of v such that consecutive entries share a common (d — 1)-face. Since
T = (B, E) is a tree-decomposition of I'(M) the set of bags containing a node corresponding
to A;, 0 < i </, is a subtree of T. Moreover, any two subtrees of consecutive entries A;,
A;+1 must intersect because of the edge coverage property of T. Hence, there is a path in
T’ from X to Y of bags containing v (i.e., bags in B,). Since X,Y € B, were arbitrary it
follows that T"[B,] is connected and thus a subtree. This proves the claim.

Thus 7" is a tree-decomposition of the 1-skeleton of M of width (d+ 1)(k+ 1) — 1 and
the treewidth of the 1-skeleton of M is at most this number.

To complete the proof, let us first assume that two vertices v and w of M are not

connected by an edge. Then the induced subcomplex M[{v,w}] is not connected but M is.

It follows that M is not O-tight and thus trivially not tight.
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Now assume that any two vertices of M are connected by an edge. Hence the 1-skeleton
of M is the complete graph on the set of vertices which has treewidth n — 1, and we have
(d+1)(k+ 1) > n. Since M is a combinatorial manifold it follows from the upper bound
theorem that ¢t € O(n?), and thus k € Q(¢t'/%d~1). <

The treewidth of the dual graph of a triangulation has recently been established as a
standard tool to obtain fixed parameter tractable algorithms for problems in computational
geometry and topology, see for example [10, 12, 9, 11]. Theorem 17 seems to significantly
restrict the power of this approach, in particular in the simplicial setting where many typical
input triangulations are 2-neighbourly, i.e., contain the complete graph in their 1-skeleton.

However, few problems in topology require us not to modify the input triangulation
or even to stay in the simplicial category. In addition, there exist efficient algorithms to
transform triangulations with a large number of vertices and edges into (PL-)homeomorphic
triangulations with only a constant number of vertices. More precisely, there exist a polyno-
mial time algorithm [7] due to the second author which turns any generalised triangulation
of a (closed) 3-manifold M into a partial connected sum decomposition of M such that each
summand is a triangulation with only one vertex. For higher dimensions there exist effective
heuristics to produce crystallisations — which have a constant number of vertices — or even
1-vertex triangulations. For instance in [13] the second and fifth authors compute millions of
distinct 1-vertex, 1-edge triangulations of the so-called K 3-surface represented by a simplicial
complex containing the complete graph on 16 vertices.
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