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Abstract
Given a set P of n points in Rd, we show how to insert a set Z of O

(
n1−1/d

)
additional points,

such that P can be broken into two sets P1 and P2, of roughly equal size, such that in the Voronoi
diagram V(P ∪ Z), the cells of P1 do not touch the cells of P2; that is, Z separates P1 from P2
in the Voronoi diagram (and also in the dual Delaunay triangulation). In addition, given such
a partition (P1, P2) of P , we present an approximation algorithm to compute a minimum size
separator realizing this partition. We also present a simple local search algorithm that is a PTAS
for approximating the optimal Voronoi partition.
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1 Introduction

Many algorithms work by partitioning the input into a small number of pieces, of roughly
equal size, with little interaction between the different pieces, and then recurse on these
pieces. One natural way to compute such partitions for graphs is via the usage of separators.
A (vertex) separator of a graph G = (V,E), informally, is a “small” set Z ⊆ V whose removal
breaks the graph into two (or more) subgraphs, each of which is of size at most n/c, where c
is some constant strictly larger than one. As a concrete example, any tree with n vertices
has a single vertex, which can be computed in linear time, such that its removal breaks the
tree into subtrees, each with at most n/2 vertices.

Separators in planar graphs. Ungar [34] showed that a planar graph with n vertices contains
a separator of size O

(√
n logn

)
. This was later improved by Lipton and Tarjan [24] to O(

√
n),

and they also provided an algorithm to compute the separator in linear time. Specifically,
there exists a separator of size O(

√
n) such that its removal partitions the graph into two

disjoint subgraphs each containing at most 2n/3 vertices (each of these subgraphs is not
necessarily connected).

There has been a substantial amount of work on planar separators in the last four decades,
and they are widely used in data-structures and algorithms for planar graphs, including
(i) shortest paths [15], (ii) distance oracles [33], (iii) max flow [13], and (iv) approximation
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18:2 Separating a Voronoi Diagram via Local Search

Figure 1 On the left a Voronoi partition, and on the right, a separator realizing it.

algorithms for TSP [22]. This list is a far cry from being exhaustive, and is a somewhat
arbitrary selection of some recent results on the topic.

Geometric separators. Any planar graph can be realized as a set of interior disjoint disks,
where a pair of disks touch each other, if and only if the corresponding vertices have an edge
between them. This is the circle packing theorem [31], also known as the Koebe-Andreev-
Thurston theorem [23].

Surprisingly, the existence of a planar separator is an easy consequence of the circle
packing theorem. This was proved by Miller et al. [26] (see also [19]). Among other things,
Miller et al. showed that given a set of n balls in Rd, such that no point is covered more
than k times, the intersection graph of the balls has a separator of size O

(
k1/dn1−1/d

)
. This

implies that the k-nearest neighbor graph of a set of points in Rd, has a small separator
[26, 19]. Various extensions of this technique were described by Smith and Wormald [32].

Other separators. Small separators are known to exist for many other families of graphs.
These include graphs (i) with bounded tree width [8], (ii) with bounded genus [16], (iii) that
are minor free [1], and (iv) grids. Furthermore, graphs with hereditary sublinear separators
have polynomial expansion [11], and vice versa – graphs with polynomial expansion have
sublinear separators [29].

Voronoi separators. In this paper, we are interested in geometric separation in a Voronoi
diagram [3]. Specifically, given a set P of points in Rd, we are interested in inserting a small
set of new points Z, such that there is a balanced partition of P into two sets P1, P2, such
that no cell of P1 touches a cell of P2 in the Voronoi diagram V(P ∪ Z). Note, that such a
set Z also separates P1 and P2 in the Delaunay triangulation of P ∪ Z.

Using Voronoi separators. One of the motivations of Lipton and Tarjan [24, 25] was
implementing divide and conquer algorithms on graphs. For example, generalized nested
dissection – solving a system of linear equations rising out of numerical simulations done
over planar meshes. Thus, Voronoi separators (which in the dual are Delaunay separators)
provide a way to breakup Delaunay meshes. Unlike their planar graph counterpart, Voronoi
separators also exist in higher dimensions.



V.V. S. P. Bhattiprolu and S. Har-Peled 18:3

Specifically, some meshing algorithms rely on computing a Delaunay triangulation of
geometric models to get good triangulations that describe solid bodies. Such meshes in
turn are fed into numerical solvers to simulate various physical processes. To get good
triangulations, one performs a Delaunay refinement that involves inserting new points into
the triangulations, to guarantee that the resulting elements are well behaved. Since the
underlying geometric models can be quite complicated and these refinement processes can be
computationally intensive, it is natural to try and break up the data in a balanced way, and
Voronoi separators provide one way to do so. In particular, small Voronoi separators provide
a way to break up a point set in such a way that there is limited interaction between two
pieces of the data.

Geometric hitting set. Given a set of objects in Rd, the problem of finding a small number
of points that stab all the objects is an instance of geometric hitting set. There is quite a bit
of research on this problem. In particular, the problem is NP-Hard for almost any natural
instance, but a polynomial time (1 + ε)-approximation algorithm is known for the case of
balls in Rd [9], where one is allowed to place the stabbing points anywhere. The discrete
variant of this problem, where there is a set of allowable locations to place the stabbing
points, seems to be significantly harder and only weaker results are known [20]. See Mustafa
et al. [27] for a QPTAS for the case of disks and points, and Har-Peled and Quanrud [21] for
PTAS for shallow fat objects and matching hardness results.

One of the more interesting versions of the geometric hitting set problem, is the art
gallery problem, where one is given a simple polygon in the plane, and one has to select a
set of points (inside or on the boundary of the polygon) that “see” the whole polygon. While
much research has gone into variants of this problem [30], nothing is known as far as an
approximation algorithm (for the general problem). The difficulty arises from the underlying
set system being infinite, see [12] for some efforts in better understanding this problem.

Geometric local search. Relatively little is known regarding local search methods for geo-
metric approximation problems. Arya et al. [2] gave a local search method for approximating
k-median clustering by a constant factor, and this was recently simplified by Gupta and
Tangwongsan [17]. Mustafa and Ray [28] gave a local search algorithm for the discrete hitting
set problem over pseudo disks and r-admissible regions in the plane, which yields a PTAS.
Chan and Har-Peled [10] gave a local search PTAS for the independent set problem over fat
objects, and for pseudodisks in the plane. Both works use separators in proving the quality
of approximation.

More recently, Bandyapadhyay and Varadarajan [4] have employed some of the results in
this paper to give a bi-criteria local search PTAS for variants of the k-means problem.

1.1 Our results
In this paper we give algorithms for the following:
(A) Computing a small Voronoi separator. Given a set P of n points in Rd, we show how to

compute, in expected linear time, a balanced Voronoi separator of size O
(
n1−1/d

)
. This

is described in Section 3. The existence of such a separator was not known before, and
our proof is relatively simple and elegant.

(B) Exact algorithm for computing the smallest Voronoi separator realizing a given partition.
In Section 4, given a partition (P1, P2) of a point set P in Rd, we describe an algorithm
that computes a minimum size Voronoi separator realizing this separation. The running
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time of the algorithm is nO(d2b), where b is the cardinality of the optimal separating
sets.

(C) Constant approximation algorithm for the smallest Voronoi separator realizing a given
partition. In Section 5, we describe how to compute a constant factor approximation
to the size of an optimal Voronoi separator for a given partition of a set in Rd. This is
the natural extension of the greedy algorithm for geometric hitting set of balls, except
that in this case, the set of balls is infinite and is encoded implicitly, which somewhat
complicates things.

(D) A PTAS for the smallest Voronoi separator realizing a given partition. We present a
polynomial time approximation scheme to compute a Voronoi separator, realizing a
given partition, whose size is a (1 + ε)-approximation to the size of an optimal Voronoi
separator for a given partition of a set in Rd. The running time is nO(1/εd). See the full
version of the paper for the full details [7], which are omitted in this version.
Interestingly, the new algorithm provides a PTAS for the geometric hitting set problem
(for balls), that unlike previous approaches that worked top-down [9, 14], works more
in a bottom-up approach. Note, that since our set of balls that needs to be pierced
is infinite, and is defined implicitly, it is not obvious a priori how to use the previous
algorithms in this case.
Sketch of algorithm. The new algorithm works by first computing a “dirty” constant
approximation hitting set using a greedy approach (this is relatively standard). Somewhat
oversimplifying, the algorithm next clusters this large hitting set into tight clusters of
size k = O(1/εd) each. It then replaces each such cluster of the weak hitting set, by the
optimal hitting set that can pierce the same set of balls, computed by using the exact
algorithm – which is “fast” since the number of piercing points is at most O(1/εd). In
the end of this process the resulting set of points is the desired hitting set. Namely,
the new approximation algorithm reduces the given geometric hitting set instance, into
O(m/k) smaller instances where m is the size of the overall optimal hitting set and each
of the smaller instances has an optimal hitting set of size O(k).
For the analysis of this algorithm, we need a strengthened version of the separator
theorem. See Theorem 23 for details.

(E) Local search PTAS for Voronoi partition and continuous geometric hitting set problems.
An interesting consequence of the new bottom-up PTAS, is that it leads to a simple
local search algorithm for geometric hitting set problems for fat objects. Specifically, in
Section 7, we show that the algorithm starts with any hitting set (of the given objects)
and continues to make local improvements via exchanges of size at most O

(
1/εd

)
, until

no such improvement is possible, yielding a PTAS. The analysis of the local search
algorithm is subtle and involves simultaneously clustering the locally optimal solution,
and the optimal solution, and matching these clusters to each other.

Relation to known results. The separator result is similar in spirit (but not in details) to
the work of Miller et al. [26] and Chan [9] on a separator for a k-ply set of balls – the main
difference being that Voronoi cells behave differently than balls do. The bottom-up PTAS
approach seems to be new, and should be applicable to other problems. Having said that,
it seems like the top-down approaches [9, 14] potentially can be modified to work in this
case, but the low level details seem to be significantly more complicated, and the difficulty in
making them work was the main motivation for developing the new approach. The basic
idea of using separators in analyzing local search algorithms appear in the work of Mustafa
and Ray [28] and Chan and Har-Peled [10].
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2 Preliminaries

For a point set P ⊆ Rd, the Voronoi diagram of P , denoted by V(P ) is the partition of space
into convex cells, where the Voronoi cell of p ∈ P is

CP (p) =
{

q ∈ Rd
∣∣∣ ‖q− p‖ ≤ d(q, P )

}
,

where d(q, P ) = mins∈P ‖q− s‖ is the distance of q to the set P . Voronoi diagrams are a
staple topic in Computational Geometry, see [6], and we include the definitions here for the
sake of completeness.

In the plane, the Voronoi diagram has linear descriptive complexity. Here, the complexity
refers to the length of encoding a set as a semialgebraic set [5]. Specifically, the diagram
can be broken into linear number of cells (i.e., triangles in this case), where each cell can be
described by a constant number of algebraic inequalities.

For a point set P , and points p, q ∈ P , the geometric loci of all points in Rd that
have both p and q as nearest neighbor, is the bisector of p and q – it is denoted by
βp,q =

{
s ∈ Rd

∣∣∣ ‖s− p‖ = ‖s− q‖ = d(s, P )
}
. A point s ∈ βp,q is the center of a ball whose

interior does not contain any point of P and that has p and q on its boundary. The set of all
such balls induced by βp,q is the pencil of p and q, denoted by pencil(p, q).
I Definition 1. Let P be a set of points in Rd, and P1 and P2 be two disjoint subsets of P .
The sets P1 and P2 are Voronoi separated in P if for all p1 ∈ P1 and p2 ∈ P2, we have that
their Voronoi cells are disjoint; that is, CP (p1) ∩ CP (p2) = ∅.
I Definition 2. For a set P , a partition of P is a pair of sets (P1, P2), such that P1 ⊆ P ,
and P2 = P \ P1. A set Z is a Voronoi separator for a partition (P1, P2) of P ⊆ Rd, if P1
and P2 are Voronoi separated in P ∪ Z; that is, the Voronoi cells of P1 in V(P ∪ Z) do not
intersect the Voronoi cells of P2. We will refer to the points of the separator Z as guards.

See Figure 1 for an example of the above definitions.
I Definition 3. For a ball b, its cover number is the minimum number of (closed) balls of
half the radius that are needed to cover it. The doubling constant of a metric space is the
maximum cover number over all possible balls. Let cd

dbl be the doubling constant for Rd.

The constant cd
dbl is exponential in d, and cd

dbl ≤
⌈
2
√
d
⌉d

– indeed, cover a ball (say, of
unit radius) by a grid with sidelength 1/

√
d, and observe that each grid cell has diameter 1,

and as such can be covered by a ball of radius 1/2.
I Definition 4. For a closed set X ⊆ Rd, and a point p ∈ Rd, the projection of p into X is
the closest point in X to p. We denote the projected point by nn(p,X).

3 Computing a small Voronoi separator

3.1 Preliminaries and how to guard a sphere
Given a set P of n points in Rd, we show how to compute a balanced Voronoi separator for
P of size O

(
n1−1/d

)
.

I Definition 5. A set Y ⊆ X ⊆ Rd is `-dense in X, if for any point p ∈ X, there exists a
point s ∈ Y, such that ‖p− s‖ ≤ `.
I Lemma 6 (proof in [7]). Consider an arbitrary sphere S, and a point p ∈ Rd \ S. Then one
can compute, in constant time, a set of points Q ⊆ S, such that the Voronoi cell CQ∪{p}(p)
does not intersect S, and |Q| = O(1). We denote the set Q by blockerSet(p,S).

SoCG 2016
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pencil(p, q)
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Figure 2 (a) The unbounded bisector induced by p and q. (b) The pencil of p and q.

r′
r

Figure 3 A slightly inaccurate depiction of how the algorithm works.

3.2 The algorithm computing the Voronoi separator
The input is a set P of n points in Rd. The algorithms works as follows:
(A) Let cd = cd

dbl + 1, see Definition 3. Let ball(ψ, r) be the smallest (closed) ball that
contains n/cd points of P where ψ ∈ Rd.

(B) Pick a number r′ uniformly at random from the range [r, 2r].
(C) Let b′ = ball(ψ, r′).
(D) Let P1 = P ∩ b′ and P2 = P \ b′.
(E) Let ` = r′/n1/d. Compute an `-dense set Z, of size O

(
(r′/`)d−1

)
= O

(
n1−1/d

)
, on the

sphere S = ∂b′ using the algorithm of Lemma 7 described below.
(F) If a point p ∈ P is in distance smaller than ` from S, we insert blockerSet(p,S) into the

separating set Z, see Lemma 6.
We claim that the resulting set Z is the desired separator.

Efficient implementation. One can find a 2-approximation (in the radius) to the smallest
ball containing n/cd points in linear time, see [18]. This would slightly deteriorate the
constants used above, but we ignore this minor technicality for the sake of simplicity of
exposition. If the resulting separator is too large (i.e., larger than Ω

(
n1−1/d

)
see below for

details), we rerun the algorithm.

3.2.1 Computing a dense set
The following is well known, and we include it only for the sake of completeness.
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I Lemma 7 (proof in [7]). Given a sphere S of radius r′ in Rd, and given a number ` > 0,
one can compute a `-dense set X on S of size O

(
(r′/`)d−1

)
. This set can be computed in

O(|X|) time.

3.3 Correctness
I Lemma 8 (proof in [7]). We have |P1| ≥ n/cd and |P2| ≥ n/cd.

I Lemma 9 (proof in [7]). The sets P1 and P2 are Voronoi separated in V(P ∪ Z).

I Lemma 10 (proof in [7]). Let Y = |Z|. We have that E[Y ] ≤ csepn
1−1/d, where csep is

some constant.

3.4 The result
I Theorem 11. Let P be a set of n points in Rd. One can compute, in expected linear time,
a sphere S, and a set Z ⊆ S, such that
(i) |Z| = O

(
n1−1/d

)
,

(ii) S contains ≥ cn points of P inside it,
(iii) there are ≥ cn points of P outside S, and
(iv) Z is a Voronoi separator of the points of P inside S from the points of P outside S.
Here c > 0 is a constant that depends only on the dimension d.

Proof. Clearly, each round of the algorithm takes O(n) time. By Markov’s inequality the
resulting separator set Z is of size at most 2csepn

1−1/d, with probability at least 1/2, see
Lemma 10. As such, if the separator is larger than this threshold, then we rerun the algorithm.
Clearly, in expectation, after a constant number of iterations the algorithm would succeed,
and terminates. (It is not hard to derandomize this algorithm and get a linear running
time by defining an appropriate number of concentric balls around ball(ψ, r) and using an
averaging argument.) J

4 Exact algorithm for computing optimal separation of a partition

Given a set P of n points in Rd, and a partition (P1, P2) of P , we are interested in computing
the smallest Voronoi separating set realizing this partition.

4.1 Preliminaries and problem statement
I Definition 12. For a set P ∈ Rd and a pair of disjoint subsets (P1, P2), the set of bad
pairs is BP(P, P1, P2) =

{
(p1, p2) ∈ P1 × P2

∣∣∣ CP (p1) ∩ CP (p2) 6= ∅
}
.

For a Voronoi diagram V(P ), we can assume that all its faces (of various dimensions)
are all triangulated (say, using bottom-vertex triangulation). This does not change the
asymptotic complexity of the Voronoi diagram. For k = 0, 1, . . . , d, such a k dimensional
Voronoi simplex is a k-feature. Such a k-feature f, is induced by d− k + 1 sites, denoted by
sites(f); that is, any point p ∈ f has an equal distance to all the points of sites(f) and these
are the nearest neighbor of p in P . Thus, a vertex v of the Voronoi diagram is a 0-feature,
and |sites(v)| = d+ 1 (assuming general position, which we do). The span of a feature f, is
the set of points in Rd that are equidistant to every site in sites(f); it is denoted by span(f)
and is the k flat that contains f (it is the affine span of f). A k-halfflat is the intersection of
a halfspace with a k-flat.

SoCG 2016
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f
h1

h2

h3

Figure 4 A 2-feature f and its induced 2-halfflats h1, h2, h3.

Consider any k-feature f. The complement set span(f) \ f can be covered by k + 1 k-
halfflats of span(f). Specifically, each of these halfflats is an open k-halfflat of span(f), whose
boundary contains a (k − 1)-dimensional face of the boundary of f. This set of halfflats of f,
is the shell of f, and is denoted by shell(f), see Figure 4.

Once the Voronoi diagram is computed, it is easy to extract the “bad features”. Specifically,
the set of bad features is

Fbad(P, P1, P2) =
{

f ∈ features(V(P ))
∣∣∣ sites(f) ∩ P1 6= ∅ and sites(f) ∩ P2 6= ∅

}
.

Clearly, given a Voronoi diagram the set of bad features can be computed in linear time in
the size of the diagram.

Given a k-feature f, it is the convex-hull of k + 1 points; that is, f = CH(X), where
X = {q1, . . . , qk+1}. We are interested in finding the closest point in a feature to an arbitrary
point p. This is a constant size problem for a fixed d, and can be solved in constant time. We
denote this closest point by nn(p, f) = arg minq∈f d(p, q). For the feature f, and any point p, we
denote by pencilf(p) the ball ball(p, d(p, sites(f))) (if it is uniquely defined). Furthermore, for
an arbitrary set S of points, pencilf(S) denote

{
ball(p, d(p, sites(f)))

∣∣∣ p ∈ S}. In particular,
for any point p ∈ f, consider ball(p, d(p, P )) – it contains the points of sites(f) on its boundary.
The set of all such balls is the pencil of f, denoted by

pencil(f) =
{

ball(p, d(p, sites(f)))
∣∣∣ p ∈ f

}
. (1)

The trail of f is the union of all these balls; that is, trail(f) =
⋃

p∈f ball(p, d(p, P )). Finally,
let mb(f) denote the smallest ball in the pencil of a feature f. Clearly, the center of mb(f)
is the point nn(p, f), where p is some arbitrary point of sites(f). As such, mb(f) can be
computed in constant time.

I Lemma 13 (proof in [7]). Let p be any point and let f be any k-feature. The point p induces
a halfflat of span(f) denoted by H(p, f), such that pencil(H(p, f)) is the set of all balls in
pencil(span(f)) that contain p.

We are now ready to restate our problem in a more familiar language.

I Lemma 14 (Restatement of the problem {proof in [7]}). Given a set P of n points in Rd,
and a pair of disjoint subsets (P1, P2), finding a minimum size Voronoi separator realizing
the separation of (P1, P2), is equivalent to finding a minimum size hitting set of points Z,
such that Z stabs (the interior) of all the balls in the set

B = B(P, P1, P2) =
⋃

f∈Fbad(P,P1,P2)

pencil(f). (2)
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4.2 Exact algorithm in Rd

Given a set P of n points in Rd, a pair of disjoint subsets (P1, P2) of P and an upper bound
b on the number of guards, we show how one can compute a minimum size Voronoi separator
realizing their separation in nO(d2b) time. Our approach is to construct a small number of
polynomial inequalities that are necessary and sufficient conditions for separation, and then
use cylindrical algebraic decomposition to find a feasible solution.

I Lemma 15 (proof in [7]). For a set of guards Z, a feature f is completely removed from
V = V(P ∪ Z), if and only if the induced halfflats of the guards, on span(f), cover f.

I Observation 16. Given a set H of at least k+ 1 halfflats in a k-flat, if H covers the k-flat,
then there exists a subset of k + 1 halfflats of H, that covers the k-flat. This is a direct
consequence of Helly’s theorem1.

Low dimensional example. To get a better understanding of the problem at hand, the
reader may imagine the subproblem of removing a bad 2-feature f (i.e. f is a triangle) from
the Voronoi diagram. We know that a set Z of n guards removes f from the Voronoi diagram,
if and only if the n 2-halfflats induced by Z cover the triangle f. If we add the feature-induced
halfflats induced by f to the above set of halfflats, then the problem of covering the triangle
f, reduces to the problem of covering the entire plane with this new set S of n+ 3 halfflats.
Then from Observation 16, we have that f is removed from the Voronoi diagram if and only
if there are three halfplanes of S, that cover the entire plane (there are O(n3) such triplets).
Lemma 20 below shows how to convert the condition that any three 2-halfflats cover the
plane, into a polynomial inequality of degree four in the coordinates of the guards.

4.2.1 Constructing the Conditions
I Lemma 17 (proof in [7]). Let f be a k-feature, and H be a set of k-halfflats on span(f).
Then, H covers f ⇐⇒ there exists a subset G ⊆ H′ = H ∪ shell(f) of size k + 1 that covers
span(f).

I Observation 18. Consider a set H of k + 1 k-halfflats all contained in some k-flat F.
We are interested in checking that H covers F. Fortunately, this can be done by computing
the k + 1 vertices induced by H on F, and verifying that each one of them is covered by
the other halfflat of H. Formally, H covers F ⇐⇒ for every halfflat h ∈ H, we have that⋂

i∈H\{h} ∂i ∈ h.

For a set P of d + 1 points in Rd in general position, let ballin(P ) be the unique
(circumscribing) ball having all the points of P on its boundary.

I Lemma 19 (proof in [7]). Consider a k-feature f, let H be a set of halfflats on span(f),
and let Z be a set of guards inducing the halfflats of H. Assume that |sites(f)|+ |Z| = d+ 2.
Let h ∈ H be a k-halfflat induced by a guard g, and let p =

⋂
i∈H\{h} ∂i. Then p ∈ h ⇐⇒

g ∈ ballin
(

sites(f) ∪
(
Z \ {g}

))
.

1 Indeed, the intersection of the complement of the halfflats of H is empty. As such, by Helly’s theorem
there exists k + 1 of them that have an empty intersection, and the union of their complement (which
are the original halfflats) cover the k-flat.

SoCG 2016
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A set Z of m guards in Rd can be interpreted as a vector in Rdm encoding the locations
of the guards. One can then reduce the requirement that Z provides the desired separation
into a logical formula over the coordinates of this vector.

I Lemma 20 (proof in [7]). Let f be a bad k-feature of Fbad(P, P1, P2), and let m be a
parameter. One can compute a boolean sentence Af(Z) consisting of mO(k) polynomial
inequalities (of degree ≤ d+ 2), over dm variables, such that Af(Z) is true ⇐⇒ the set of
m guards Z (induced by the solution of this formula) destroys f completely when inserted.
Formally, for every f′ ∈ Fbad(P ∪ Z,P1, P2), we have f ∩ f ′ = ∅.

4.2.2 The Result
I Theorem 21. Let P be a set of n points in Rd. Let (P1, P2) be some disjoint partition of
P and b be a parameter, such that there exists a Voronoi separator for (P1, P2) of at most
b points. A minimum size Voronoi separator can be computed in nO(d2b) time, if such a
separator exists of size at most b.

Proof. Let g be a parameter to be fixed shortly. Let Z be a set of g guards in Rd. By
Lemma 20, the condition A(Z) that every bad feature is removed from the Voronoi diagram
of P ∪ Z, can be written as

A(Z) =
∧

f∈Fbad(P,P1,P2)

Af(Z).

Namely, Z is a Voronoi separator for (P1, P2). The formula A(Z) contains nO(d) degree-(d+2)
polynomial inequalities comprising of at most dg variables. By [5, Theorem 13.12], one can
compute, in nO(d2g) time, a solution as well as the sign of each polynomial in P, for every
possible sign decomposition that P can attain. Now for each attainable sign decomposition,
we simply check if A(Z) is true. This can be done in nO(d) time. The algorithm computes a
Voronoi separator for (P1, P2) in P of size g, in nO(d2g) time, if such a separator exists.

Now, the algorithms tries g = 1, . . . , b and stops as soon as a feasible solution is found. J

5 Constant factor approximation

Given a set P of n points in Rd, and a partition (P1, P2) of P , we show how one can
compute in nO(d) time, a Voronoi separator Z for (P1, P2), whose size is a constant factor
approximation to the size of an optimal Voronoi separator realizing such a partition.

I Theorem 22 (proof in [7]). Let P be a set of n points in Rd, and (P1, P2) be a given pair
of disjoint subsets of P . One can compute a Voronoi separator Z that realizes this partition.
The algorithm runs in O(n2 logn) time for d = 2, and in O

(
ndd/2e+1) time, for d > 2. The

algorithm provides a constant factor approximation to the smallest Voronoi separator realizing
this partition.

6 Stronger Separator for PTAS

We are interested in a (1 + ε)−approximation to an optimal Voronoi separator of a given
partition. As implied by Lemma 14, this boils down to a hitting set problem over balls. The
challenge here is that the set of balls is an infinite set, see Eq. (2). We need the following
improved separator theorem, whose proof can be found in the full version [7].
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I Theorem 23 (proof in [7]). Let X be a set of points in Rd, and k > 0 be an integer. One
can compute, in O(|X|) expected time, a set Z of O

(
k1−1/d

)
points and a sphere S containing

Θ(k) points of X inside it, such that for any set B of balls stabbed by X, we have that every
ball of B that intersects S is stabbed by a point of Z.

7 Local Search PTAS for geometric hitting set

Here, we present a simple local search (1 + ε)-approximation algorithm (PTAS) for hitting
set problems of balls (or fat objects) in Rd. The set of balls is either specified explicitly, or
as in the case of the Voronoi partition, implicitly.

7.1 The algorithm LocalHitBalls

7.1.1 Preliminaries

Let B be a set of balls (possibly infinite) in Rd that is represented (potentially implicitly) by
an input of size n, and let ν(B) be the size of its minimum hitting set. We assume that B
satisfies the following properties:
(A) Initial solution: One can compute a hitting set X0 of B in nO(1) time, such that the size

of X0 is a constant factor approximation to the optimal.
(B) Local exchange: Let X and Y be point sets, such that

(i) X is a hitting set of B (i.e., it is the current solution),
(ii) |X| ≤ nO(1) (i.e., it is not too large),
(iii) Y ⊆ X (i.e., Y is the subset to be replaced),
(iv) |Y| ≤ `, where ` is any integer.
Then one can compute in nO(`) time, the smallest set Y′, such that (X \ Y) ∪ Y′ is a
hitting set of B.

7.1.2 Algorithm

The input is a set B of balls in Rd satisfying the properties above. The algorithm works as
follows:
(A) Compute an initial hitting set X0 of B (see (P1)), and set X← X0.
(B) While there is a beneficial exchange of size ≤ ` = O

(
1/εd

)
in X, carry it out using (P2).

Specifically, verify for every subset Y ⊆ X of size at most `, if it can be replaced by
a strictly smaller set Y′ such that (X \ Y) ∪ Y′ remains a hitting set of B. If so, set
X← (X \ Y) ∪ Y′, and repeat.

(C) If no such set exists, then return X as the hitting set.

Details. For the geometric hitting set problem where B is a set of n balls in Rd, (P1) follows
by a simple greedy algorithm hitting the smallest ball (in the spirit of Theorem 22) – see
also [9]. As for (P2), one can check for a smaller hitting set of size at most ` by computing
the arrangement A(B), and directly enumerating all possible hitting sets of size at most `.

The more interesting case is when the set B is defined implicitly by an instance of the
minimum Voronoi separation problem (i.e., we have a set P of n points in Rd, and a desired
Voronoi partition (P1, P2) of P ). Then (P1) follows from Theorem 22. Furthermore, (P2)
follows from the algorithm of Theorem 21 through computing the minimum hitting set Y′ of
B(P ∪ (X \ Y), P1, P2), in nO(`) time, where |Y′| ≤ `.

SoCG 2016
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ClusterLocalOpt(B, L, O):
// B: given set of balls need hitting.
// L ⊆ Rd: local optimum set hitting B computed by LocalHitBalls.
// O ⊆ Rd: optimal hitting set.

k := O
(
1/εd

)
, L1 := L, O1 := O, Z1 := ∅, B1 := B, and i := 1.

while Li ∪ Zi 6= ∅ do
Apply Theorem 23 to Li ∪ Zi with the parameter min(k, |Li ∪ Zi|).
bi, Ti: ball and the separator set returned, respectively.
fi := bi \

⋃i−1
j=1 bj be the region of space newly covered by bi.

Li := L ∩ fi and Oi = O ∩ fi.
Zi+1 := (Zi \ bi) ∪ Ti.
Li+1 := Li \ Li.
i := i+ 1

I := i.

Figure 5 Clustering the local optimal solution.

7.2 Quality of approximation
The bound on the quality of approximation follows by a clustering argument similar to our
bottom-up PTAS algorithm (see full version [7]). The clustering is described in Figure 5.
This simultaneously breaks up the local optimal solution L and the optimal solution O into
small clusters, and we will use a local exchange argument to bound their corresponding sizes.
The following lemma testifies that this clustering algorithm provides a “smooth” way to
move from L to O, through relatively small steps.

I Lemma 24. Any ball of B is stabbed by Xi+1 = Li+1 ∪ Zi+1 ∪
⋃i

j=1Oj, for all i, where
Li+1 =

⋃I
j=i+1 Li.

Proof. The claim holds clearly for i = 0, as L1 = L, where L is the locally optimal
solution. Now, for the sake of contradiction, consider the smallest i for which the claim
fails, and let b ∈ B be the ball that is not being stabbed. We have that b is stabbed by
Xi =

(⋃I
j=i Li

)
∪ Zi ∪

(⋃i−1
j=1Oj

)
but not by Xi+1.

It can not be that b is stabbed by a point of
⋃i−1

j=1Oj , as such a point is also present in
Xi+1. As such, b must be stabbed by one of the points of Li ∪ Zi, and then this stabbing
point must be inside bi – indeed, the points removed from Li and Zi as we compute Li+1
and Zi+1, respectively, are the ones inside bi. Now, if b intersects ∂bi, then Ti ⊆ Zi+1 stabs
b by Theorem 23, a contradiction.

So it must be that b ⊆ bi. But then consider the region Fi = ∪i
j=1fj = ∪i

j=1bj . It must be
that b ⊆ Fi. This in turn implies that the point of O stabbing b is in O∩Fi = ∪i

j=1Oi ⊆ Xi+1.
A contradiction. J

I Lemma 25. Consider any ball b ∈ B. Let i be the smallest index such that Oi stabs b.
Then b is stabbed by Li ∪Ti∪ (Zi ∩ bi). Furthermore for all i, oi ≤ λi + ti + zi and oi = O(k),
where oi = |Oi|, ti = |Ti|, λi = |Li|, and zi = |Zi ∩ bi|.

Proof. If b intersects ∂bi, then it is stabbed by Ti by Theorem 23. Otherwise, b ⊆ Fi =
∪i

j=1fj = ∪i
j=1bj . In particular, this implies that no later point of Oi+1 ∪ . . . ∪ Ot can

stab b. That is, only Oi stabs b. By Lemma 24 both Xi and Xi+1 stab b, where Xi =
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(L \ Fi−1)∪Zi∪
⋃i−1

j=1Oj . Namely, b is stabbed by a point of (L \ Fi−1)∪Zi that is contained
inside bi. Such a point is either in Zi ∩ bi, or in (L \ Fi−1) ∩ bi = Li, as claimed.

The second part follows by observing that otherwiseOi can be replaced by Li∪Ti∪(Zi ∩ bi)
in the optimal solution.

The third claim follows by observing that by the algorithm design λi + zi = O(k), and
ti = O

(
k1−1/d

)
. As such, oi ≤ λi + ti + zi = O(k). J

I Lemma 26. Consider any ball b ∈ B that is stabbed by Li but it is not stabbed by L \ Li.
Then the ball b is stabbed by Oi∪Ti∪(Zi ∩ bi). Additionally, using the notations of Lemma 25,
we have λi ≤ oi + ti + zi.

Proof. If b intersects ∂bi, then it is stabbed by Ti by Theorem 23. So we assume for now on
that b is not stabbed by Ti. But then, b ⊆ bi ⊆ Fi = ∪i

j=1fj = ∪i
j=1bj .

Now, by Lemma 24 both Xi and Xi+1 stab b, where Xi+1 =
⋃I

j=i+1 Lj ∪ Zi+1 ∪
⋃i

j=1Oj .
Specifically, b is stabbed by a point of Zi+1 ∪

⋃i
j=1Oj that is contained inside bi. Such a

point is either in Zi ∩ bi and then we are done, or alternatively, it can be in bi ∩
⋃i

j=1Oj .
Now, if b ⊆ fi then Oi must stab b, and we are done. Otherwise, let k < i be the

maximum index such that bi intersects ∂bk. Observe that as b intersects fi, it can not be
that it intersects the balls bk+1, . . . , bi−1. In particular, Theorem 23 implies that there is a
point of Tk that stabs b, as b is being stabbed by Lk ∪Zk. This point of Tk is added to Zk+1,
and it is not being removed till Zi+1. As such, this point is in Zi, and it is also in bi, thus
implying the claim.

As for the second part, by Lemma 25, oi +ti +zi ≤ α = O(k). As such, setting ` = Ω(1/εd)
to be sufficiently large, we have that ` > 2α, and the local search algorithm would consider
the local exchange of Li with Oi ∪ Ti ∪ (Zi ∩ bi). As this is an exchange not taken, it must
be that it is not beneficial, implying the inequality. J

I Lemma 27. We have that (i)
∑I

i=1 ti ≤ (ε/4) |O|, and (ii)
∑I

i=1 zi ≤ (ε/4) |O|.

Proof. Observe that k = O(1/εd) and ti = |Ti| = O(k1−1/d) = O
(
1/εd−1) ≤ cεk, where c

can be made arbitrarily small by making k sufficient large. In particular, in every iteration,
the algorithm removes ≥ k points from Li ∪ Zi, and replaces them by ti points. Starting
with a solution of size |L| ≤ |X0| ≤ c′ |O|, where c′ is some constant, this can happen at most
I ≤ c′ |O| /(k − cεk) = O(εd |O|). As such, we have

∑I
i=1 ti = O

(
εd |O| cεk

)
= O(cε |O|), as

k = O(1/εd). The claim now follows by setting k to be sufficiently large.
The second claim follows by observing that ti counts the numbers of points added to

Zi+1, while zi counts the number of points removed from it. As ZI is empty, it must be that∑
i ti =

∑
i zi. J

I Lemma 28. We have that |L| ≤ (1 + ε) |O|.

Proof. We have by Lemma 26 and Lemma 27 that |L| =
∑I

i=1 λi ≤
∑I

i=1(oi + ti + zi) =
|O|+

∑I
i=1 ti +

∑I
i=1 zi ≤ (1 + ε/2) |O| . J

7.2.1 The Result
I Theorem 29. Let B be a set of balls in Rd satisfying properties (P1) and (P2). Then
LocalHitBalls computes, in nO(1/εd) time, a hitting set of B, whose size is a (1 + ε)-
approximation to a minimum size hitting set of B.

SoCG 2016
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Proof. Lemma 28 implies the bound on the quality of approximation.
As for the runtime, observe that the size of local solution reduces by at least one after

each local improvement, and from (P1), the initial local solution has size nO(1). Thus there
can be at most nO(1) local improvement steps before the algorithm stops. Furthermore, every
local solution has at most nO(`) subsets of size ` that are checked for local improvement. By
(P2), such a local improvement can be checked in nO(`) time. Thus LocalHitBalls runs in
nO(1/εd) time. J

8 Conclusions

We presented a new separator result that provides a new way to perform geometric divide
and conquer for Voronoi diagrams (or Delaunay triangulations). We use this to derive a new
PTAS for the Voronoi partition problem, making progress on a geometric hitting set problem
where the ranges to be hit are defined implicitly, and their number is infinite. Significantly,
the resulting local search algorithm is relatively simple, and should have other applications
[4].

There are many interesting open problems for further research. In particular, the new
PTAS might be more practical for the piercing balls problem than previous algorithms, and it
might be worthwhile to further investigate this direction. Additionally, the proof technique for
the local search algorithm might be applicable to other separator based geometric problems.
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