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Abstract
Given a set of n sites in the plane, the order-k Voronoi diagram is a planar subdivision such that
all points in a region share the same k nearest sites. The order-k Voronoi diagram arises for the
k-nearest-neighbor problem, and there has been a lot of work for point sites in the Euclidean
metric. In this paper, we study order-k Voronoi diagrams defined by an abstract bisecting curve
system that satisfies several practical axioms, and thus our study covers many concrete order-k
Voronoi diagrams. We propose a randomized incremental construction algorithm that runs in
O(k(n − k) log2 n + n log3 n) steps, where O(k(n − k)) is the number of faces in the worst case.
Due to those axioms, this result applies to disjoint line segments in the Lp norm, convex polygons
of constant size, points in the Karlsruhe metric, and so on. In fact, this kind of run time with
a polylog factor to the number of faces was only achieved for point sites in the L1 or Euclidean
metric before.
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1 Introduction

Given a set S of n sites in the plane, the order-k abstract Voronoi diagram Vk(S) of S
partitions the plane into Voronoi regions such that all points within a region VRk(H,S)
share the same set H of k nearest sites in S where the underlying proximity is defined by
an abstract bisecting curve system. Order-k Voronoi diagrams solve the k nearest neighbor
problem. However, the distance measure in the real world is in general not the Euclidean
but depends on the type of geometric sites and the underlying environment. To deal with
diverse proximities, Klein [16] introduced the notion of abstract Voronoi diagrams to model
the proximity by an abstract bisecting curve system J . For two sites p, q ∈ S, he considered
a simple curve J(p, q) as a bisector that splits the plane into two domains D(p, q) and D(q, p).
D(p, q) represents the set of points closer to p than to q. Under these circumstances, the
order-k Voronoi region VRk(H,S) is defined as:

VRk(H,S) =
⋂

p∈H,q∈S\H

D(p, q).
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If a bisecting curve system satisfies certain axioms, combinatorial properties and algorithms
are directly applicable to the resulting Voronoi diagrams [3, 5, 16, 17, 18, 21].

We consider the following six axioms: for each subset S′ of S of size at least 3,
(A1) Each first-order Voronoi region in V1(S′) is pathwise connected.
(A2) Each point in the plane belongs to the closure of some first-order Voronoi region.
(A3) No first-order Voronoi region in V1(S′) is empty.
(A4) Each curve J(p, q), where p 6= q, is unbounded. After stereographic projection to the

sphere, it can be completed to be a closed Jordan curve through the north pole.
(A5) Any two curves J(p, q) and J(s, t) have only finitely many intersection points, and

these intersections are transversal. At most three bisecting curves J(p, ·) associated with
the same site p can pass through the same point.

(A6) The number of vertical tangencies of a curve J(p, q) is O(1), and for any two curves
J(p, q) and J(s, t), their vertical tangencies are distinct.

Despite Axiom (A1), VRk(H,S), where k > 1, may consist of disjoint faces, i.e., connected
components. The six axioms cover many concrete Voronoi diagrams, so the abstract Voronoi
diagram is a prototype of many concrete ones. It is known that axioms (A1) and (A2) need
only be verified for subsets S′ of size 3, and (A3), for size 4 subsets [17, 3]. The properties
postulated in (A5) are to avoid technical difficulties; for order-1 abstract Voronoi diagrams it
has been shown in [16, 17] how to proceed without these assumptions, and we are confident
that the results in this paper can be generalized, too.

Lee [19] first proved that the order-k Voronoi diagram has O(k(n− k)) faces for point
sites in the Euclidean metric. Only recently, Papadopoulou and Zavershynskyi [23] showed
that the number of faces for disjoint line segments remains O(k(n − k)), and this bound
remains valid for intersecting segments if k ≥ n/2. Soon later, Bohler et al. [3] proved that
the number of faces in the order-k abstract Voronoi diagram is at most 2k(n− k), which is a
tight bound in the abstract setting. Gemsa et al. [14] and Liu and Lee [20] studied point
sites in the city and geodesic metrics, respectively, neither of which lies under the envelope
of the above axioms. Construction algorithms have been well-studied for point sites in the
Euclidean metric. Deterministic algorithms by Lee [19] and by Chazelle and Edelsbrunner [10]
achieve O(k2n logn) and O(n2 + k(n− k) log2 n) time, respectively. Clarkson [12] proposed
a randomized divide-and-conquer algorithm with O(kn1+ε) time. Moreover, Aurenhammer
and Schwarzkopf [2] and Boissonnat et al. [6] studied on-line algorithms. Most efficient
algorithms rely on a geometric transformation that maps each point site to a hyperplane in
three dimensions which is tangent to a unit paraboloid z = x2 + y2 at the vertical projection
of the point site. In this situation, computing the order-k Voronoi diagram is reduced to
computing the so called k-level of the arrangement formed by the transformed hyperplanes.

In recent years, some algorithms for settings different from point sites in the Euclidean
metric were invented. For point sites in the L1 metric, Liu et al. [20] derived an output-
sensitive algorithm with O(m logn) time, where m = O(min{k(n− k), (n− k)2}); for line
segments, Papadopoulou and Zavershynskyi [23] obtained O(k2n logn) time. Bohler et al. [5]
developed a randomized divide-and-conquer algorithm for the abstract version, and obtained
O(kn1+ε) time, which works for many concrete cases including disjoint line segments. Their
algorithm interprets Clarkson’s general idea [12] and replaces geometric operations with
combinatorial ones.

Agarwal et al. [1] proposed a randomized incremental algorithm to compute the k-level
which intermediately maintains cells that possibly intersect the final k-level, and their al-
gorithm yields O(k(n− k) logn) construction time for order-k Voronoi diagrams. Chan [7]
proposed a framework to compute the k-level, and adopted Agarwal et al’s algorithm as a
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black-box to obtain O(nk log k + n logn) time. Ramos [24] later improved the construction
time to O(n logn+ nkO(log∗ k)), and his algorithm is a mixture of divide-and-conquer and
incremental scheme with Chan’s framework on the top. Very recently, Chan and Tsaka-
lidis [8] derandomized Chan’s framework and achieved O(nk log k) (or O(nk log k log log k))
deterministic time.

It is an interesting question if a construction time with a polylogarithmic factor to the
output size can be achieved for settings different from point sites in L1 or L2. In other words,
is it possible to extend classical k-level algorithms [1, 7, 24] to abstract Voronoi diagrams?
Such an extension would be quite different from Bohler et al.’s [5] extension of Clarkson [12],
because Clarkson’s algorithm principally adopts two planar sub-algorithms although he
explained the general idea in three dimensions. In contrast, those k-level algorithms fully
perform in three dimensions, exploiting the geometry of planes tangent to the paraboloid,
and it seems quite challenging to convert them to non-point sites and non-Euclidean metrics,
or even to the abstract version, based only on combinatorial properties of curves.

In this paper we give a first positive answer, proposing an O(k(n− k) log2 n+ n log3 n)-
time randomized incremental algorithm for order-k abstract Voronoi diagrams. Due to
the six axioms, this result applies to a wide range of concrete order-k Voronoi diagrams
including point sites in any algebraic convex distance metric or the Karlsruhe metric, disjoint
line segments and disjoint convex polygons of constant size in the Lp norms, or under the
Hausdorff metric (assuming for now sites to be in general position; see the comment on axiom
(A5) from above). Such near-optimal run time is achieved for the first time for examples
different from point sites in the Euclidean and L1 metrics.

Our algorithm is strongly inspired by the k-level algorithm of Agarwal et al. [1]. We also
proceed incrementally and maintain all faces of the higher-order Voronoi regions that are
“active”. This notion can be translated to abstract Voronoi diagrams in the following way.
For a subset R of S and for each face F of VRj(Q,R) we maintain its intersections with the
farthest Voronoi diagram FV(Q), and with the nearest Voronoi diagram V (R \Q).

Each resulting sub-face F ∩ FVR(q,Q) is decomposed into trapezoids. Such a trapezoid
4 is called active if, for some representative point y ∈ 4, the level of q at y does not exceed
k plus the number of conflicts of 4. Here, the level of q equals the number of s ∈ S such that
y ∈ D(s, q) holds, plus 1. The conflicts of 4 are sites s ∈ S whose bisector J(s, q) intersects
4 (or one of its defining edges, which may exceed the trapezoid).

Similarly, a trapezoid in a sub-face F ∩VR(p,R \Q) is called active if the level of p, at
some point, is larger than k minus the number of conflicts. Face F is called active if both
intersections contain an active trapezoid.

The analysis in [1] relies on two simple facts: a hyperplane that crosses a segment must
separate its two endpoints, and a new hyperplane separates a cell into two adjacent cells. The
former implies that both the conflict size of a simplex (the number of hyperplanes intersecting
it) and the level difference between two points in a cell (the number of hyperplanes separating
them) are upper bounded by a constant times the diameter of the cell (the maximal number
of hyperplanes intersecting a line segment in it); the latter implies that the diameter of
one generated cell is at least half that of the original cell. However, this geometric analysis
could not be directly applicable to the abstract setting because a bisector that intersects a
vertical segment or a Voronoi edge does not necessarily separate its two endpoints, and a
new site can separate a face into a non-constant number of new faces and they are even not
necessarily pairwise adjacent. The second reason also illustrates an important phenomenon
in the abstract setting that an order-k region may be disconnected for k > 1.

Therefore, we are using a different approach that may be interesting in its own right.

SoCG 2016
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What one would really like to maintain, in the incremental construction, are those faces
F ⊆ VRj(Q,R) that contain a non-empty face of some region VRk(H,S), such thatQ = H∩R
holds. We call these faces F essential. It is easy to verify that all essential faces are active.
We were able to show some sort of converse: with high probability, all faces our algorithm
constructs, including all active faces and those who are found to be inactive and discarded,
are essential with respect to some order k′ in a certain interval around k.

In [1], a new hyperplane partitions a cell of the arrangement into two cells. The geometry
of the lowest-vertex triangulation can be used to decide the activity of the two new cells in
time proportional to the total number of new or destroyed simplices. In the abstract setting,
a face may be split into many faces, and in each of them old trapezoids may survive. Since
we cannot afford to re-check them, in order to decide the activity of the new faces, we employ,
for each active face, a nested data structure storing sub-faces and their edges. This approach
only works because the intersections F ∩ FV(Q) and F ∩ V (R \Q) can be shown to be trees;
for the second structure, this fact was not previously known. The tree structure allows the
sub-faces of F in these intersections to be stored in cyclic order, which behave well under
insertion of a new site. However, using the data structure approach incurs an extra logn
factor in our run time bound.

When inserting a new site s, for each face F of VRj(Q,R), we compute the sets

F ∩ FVR(s,Q ∪ {s}) ⊆ VRj(Q,R ∪ {s})
F ∩VR(s,R ∪ {s} \Q) ⊆ VRj+1(Q ∪ {s}, R ∪ {s}).

Each of these intersections can consist of several connected components, giving rise to several
faces of the new Voronoi regions on the right hand side. But the way F may split up is
controlled by an unexpected structural property, as we will see below. This property also
shows how disconnected Voronoi regions emerge.

To conclude, our algorithm can be seen as a combinatorial interpretation of Agarwal
et al’s algorithm [1], with a different analysis and with geometric properties replaced by
combinatorial facts about bisecting curves. The algorithm applies to a wide range of order-k
Voronoi diagrams, at the cost of an extra O(logn) factor. To some extent, our work decodes
the powerful geometric transformation between points in the plane and hyperplanes in
three dimensions, and indicates that the happy marriage between arrangements and random
sampling techniques can be extended to more general proximities than point sites in the
Euclidean metric.

2 Preliminaries

The common boundary between two faces in Vk(S) is called a Voronoi edge, and the common
vertex among more than two faces in Vk(S) is called a Voronoi vertex. The order-k Voronoi
diagram Vk(S) equals the union of the boundaries of all order-k regions or, equivalently, the
union of the intersections of the closures of any two order-k Voronoi regions.

Due to Axiom (5), a Voronoi vertex v among VRk(H1, S), VRk(H2, S), and VRk(H3, S)
can be categorised into two types: v is called new if |H1 ∩H2 ∩H3| = k − 1, and v is called
old if |H1 ∩H2 ∩H3| = k − 2 [3].

Due to Axioms (A1) and (A5), any two bisecting curves J(p, q) and J(p, r) intersect at
most twice [16]. Moreover, the following lemma holds [18].

I Lemma 1. For any three sites p, q, r ∈ S one has D(p, q) ∩D(q, r) ⊆ D(p, r).
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This transitivity property ensures that, for each point x not situated on any bisecting
curve, the relation p <x q ⇐⇒ x ∈ D(p, q) is a total ordering on any subset of S. For R ⊆ S
we define

lp(x,R) := 1 + |{t ∈ R \ {p} |x ∈ D(t, p)}|

to be the level of p at point x with respect to R, abbreviated lp(x) if R = S. For every
Voronoi vertex v of Vk(S), if v is the intersection between J(p, q), J(p, t), and J(q, t), we
have lq(v) = lp(v) = lt(v) = k − 2 or k − 1 depending on whether v is old or new.

We define Γ to be a large closed Jordan curve such that no pair of bisectors cross on or
outside Γ, and each bisector crosses Γ exactly twice and these intersections are transversal. If
we add Γ to Vk(S) and cut off all parts contained in the outer domain, we obtain a connected
graph without unbounded edges, so we can view all faces in Vk(S) to be bounded.

In our algorithm, the following basic operations are assumed to take O(1) time:
1. For an arbitrary point x, determine if x belongs to D(p, q), J(p, q) or D(q, p).
2. For a point x on J(p, q), along one direction of J(p, q), determine the next intersection

with J(s, t) or a straight line, or determine the next point where the curve reverses
direction.

3. For two points x, y on J(p, q), determine which point comes first in a given direction.

Notations. For simplicity, the first order region of a site p in R will be denoted by VR(p,R),
and the first order diagram by V (R). Similarly, if R is of size r, the Voronoi diagram of
order r − 1 is the farthest diagram, FV(R), and the farthest region of a site q is FVR(q,R).

For a subset R of S, we define VF(R) as the collection of all faces in Vj(R) for 1 ≤ j ≤
|R| − 1. For an open set A ⊆ R2, we use ∂A and clA to denote its boundary and closure,
respectively.

3 Main concepts

Let (s1, s2, . . . , sn) be a random sequence of S, and let Ri be the first i sites in the sequence,
i.e., Ri = {s1, s2, . . . , si}. We incrementally insert a site in the sequence and finally obtain
Vk(S). However, since E[

∑n
i=k+1 |Vk(Ri)|] = Ω(nk2) [2] but |Vk(S)| = O(k(n− k)) [3], it is

too expensive to compute all Vk(Ri) for k + 1 ≤ i ≤ n.
We now describe an alternate approach inspired by [1].

3.1 Dominance
To compute the faces of the non-empty regions of Vk(S) we are maintaining certain faces of
lower-order diagrams.

I Definition 2. A face F1 of VRj1(Q1, R1) dominates a face F2 of VRj2(Q2, R2), where
R1 ⊆ R2 and j1 ≤ j2, if F1 ⊇ F2 and Q1 = R1 ∩Q2. A face is called essential if it dominates
a face of Vk(S).

We observe that Q1 = R1 ∩Q2 implies (R1 \Q1)∩Q2 = ∅. Moreover, Q1 ⊆ Q2 and R1 ⊆ R2
imply VRj1(Q1, R1) ⊇ VRj2(Q2, R2), so that F1 ⊇ F2 already follows from F1 ∩F2 6= ∅ since
faces are path-connected. Clearly, the dominance relation is transitive.

Essential faces can be characterized in the following way.

I Lemma 3. A face F of VRj(Q,R) dominates a face of Vk(S) if and only if there exists a
point x ∈ F where x ∈ FVR(q,Q) and x ∈ VR(p,R \Q) such that lq(x) ≤ k < lp(x).

SoCG 2016
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e1

e2
e2

r1
r2

q2

q1r2

e1

e2
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∆ ∆

e1 q1
r1

Figure 1 Left: F̌= (V (R\Q)∩F )∪∂F . Middle: F̌O. Right: d(4) = r1 and D(4)={r1, r2, q1, q2}.

Proof. Necessity: Let C be the face of Vk(S) dominated by F and let C belong to VRk(H,S).
Consider a point x ∈ C that does not lie on any bisector. Since H are the k nearest sites of
x and Q ⊆ H, q is at most the kth nearest neighbor of x, and since (R \Q) ∩H = ∅, p is at
least the (k + 1)st nearest neighbor of x, implying lq(x) ≤ k < lp(x).

Sufficiency: Let C be the face of Vk(S) that contains x and let C belong to VRk(H,S).
Since lq(x) ≤ k and q is the farthest neighbor of x in Q, Q ⊆ H, and since lp(x) > k and p
is the nearest neighbor of x in R \Q, we have (R \Q)∩H = ∅, implying Q = R∩H, so that
F dominates C. J

Lemma 3 suggests to partition a face F of VRj(Q,R) by FV(Q) and V (R\Q), respectively,
and we use F̂ and F̌ to denote these two subdivisions. Faces in F̂ and F̌ are called sub-faces.
The following lemma determines the structures of F̂ and F̌ , and implies that each sub-face
of F̂ or F̌ shares exactly one edge with the boundary of F , which is called an outer edge,
while the edges of the refined Voronoi diagrams are called inner edges. (See Fig. 1)

I Lemma 4. For a face F of VRj(Q,R), if j > 1, FV(Q) ∩ F is a tree, and if j < |R| − 1,
V (R \Q) ∩ F is a tree. (If j = 1 (resp. j = |R| − 1), F̂ (resp. F̌ ) has exactly one sub-face.)

3.2 Trapezoidal Decompositions
As before, let F be a face of VRj(Q,R). For efficient computations, we partition (the
sub-faces in) F̂ and F̌ into vertical trapezoids, and denote the result by F̂O and F̌O,
respectively. Abusing the notation slightly, we also use F̂ and F̌ to denote the corresponding
decompositions. FO is the set of trapezoids in F̂O and F̌O. For example, the middle drawing
of Fig. 1 illustrates F̌O.

We assume that each trapezoid is adjacent to at most two trapezoids on either side. This
assumption can be attained by inserting zero-width trapezoids whenever necessary [9].

I Lemma 5. FO has O(|F |) trapezoids, where |F | is the number of edges bounding F .

Now, we describe what information on single trapezoids we are interested in. For all
trapezoids 4 in F̂O of a sub-face F ∩FVR(q,Q), we call q the owner of 4, denoted by d(4).
Similarly, for all trapezoids 4 in F̌O that decompose a sub-face F ∩ V R(p,R \Q), we call
d(4) := p the owner of 4.

By D(4) we denote the set of sites defining 4. Precisely, 4 is defined by at most two
edges (top and bottom) and two vertical segments (left and right). Note that an edge here
means an edge of F̂ or F̌ , and it could exceed the boundary of 4. For example, as shown
in the right of Fig. 1, the top and bottom edges of 4 are e1 and e2. All the edges and the
segments are associated with d(4)-bisectors, and |D(4)| ≤ 9. See Fig. 1 for an illustration.

Moreover, for a trapezoid 4, we say a site t ∈ S \D(4) is in conflict with 4 if J(t, d(4))
intersects 4 or one of the two edges that define 4. In other words, 4 does not exist
in VFO(R ∪ {t}), or one of its defining edges has been changed. It is clear that no site
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t ∈ R \D(4) can have a conflict with 4. We let J(4) be the set of sites t in conflict with
4, and w(4) be |J(4)|. We call J(4) and w(4) the conflict list and conflict size of 4,
respectively. In addition, we say a site t ∈ S \R conflicts with F ∈ VF(R) if t conflicts with
a trapezoid of FO.

In the sequel, we will select an arbitrary point y4 ∈ 4 for each trapezoid 4 ∈ FO, and
compute the level of its owner, ld(4)(y4).

3.3 Active faces
Since it is hard to determine the existence of x in Lemma 3, instead of processing the essential
faces, we define “active” faces in the following way.

I Definition 6. Consider a face F of VRj(Q,R). For a trapezoid 4 of F̂O, 4 is called active
if ld(4)(y4)−w(4) ≤ k; for a trapezoid 4 of F̌O, 4 is called active if ld(4)(y4) +w(4) > k.
Finally, F is called active if both F̂O and F̌O contain an active trapezoid.

I Lemma 7. An essential face must be active. Active faces in VF(S) are faces in Vk(S).

4 Algorithm

Let AF(R) be the set of active faces in VF(R), the set of all faces of all higher order regions
over site set R, and let AFi be AF(Ri), for short. We first compute AF10 directly, and then
from i = 10 to i = n − 1, we iteratively compute AFi+1 from AFi, leading to the faces of
Vk(S) (Lemma 7). Finally, since adjacencies between faces are not recorded in AFi, we gather
all vertices of Vk(S) from faces of Vk(S), and link all those vertices in O(k(n− k) logn) time
[5] to obtain Vk(S).

During the incremental construction we maintain the following structures:
The decompositions FO for all faces F ∈ AF(R); for every trapezoid in FO, its at most
four adjacent trapezoids, and its at most two defining edges; for every edge of F̂ and F̌ ,
all adjacent trapezoids on its two sides.
The conflict lists: for every trapezoid 4 ∈ AF(R)O, the conflict list J(4), and for every
site s ∈ S \R, the set of all trapezoids of 4 ∈ AF(R)O in conflict with s.
Levels: for every trapezoid 4 ∈ AF(R)O, a chosen point y4 ∈ 4 and ld(4)(y4).
Decompositions of nearest- and farthest-site Voronoi diagrams: V (R)O and FV(R)O.
Data structures: a data structure for every face F ∈ AF(R), allowing the localization of
trapezoids in F and a quick test of the active status of F ; these data structures will be
discussed in Section 4.4.

Once a new site s ∈ S \R has been randomly chosen for insertion, we find the trapezoids
in conflict with s and, by means of the data structures, the faces they belong to.

4.1 Influence of a new site on an old face
Throughout the rest of this section, let F denote a face of VRj(Q,R) in conflict with s. We
compute the sets

F− := F ∩ FVR(s,Q ∪ {s})
F+ := F ∩VR(s,R ∪ {s} \Q)

by tracing their boundaries in F , denoted by J− and J+, through F̂O and F̌O, respectively.

SoCG 2016
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Figure 2 J− partitions F into F− and F3, J+ partitions F into F+ and F1, and F2 = F+ ∩ F−.

In this section we study which new faces arise from F and how to obtain their decompo-
sitions into farthest- and nearest-site Voronoi diagrams. In the subsequent sections, tracing
of J− and J+ at the trapezoid level and updating trapezoids, including conflict lists and
activity status, will be addressed.

The next lemma can be derived by evaluating local orderings.

I Lemma 8. Each face of F− is a face of VRj(Q,R∪ {s}), and each face of F+ is a face of
VRj+1(Q ∪ {s}, R ∪ {s}).

Note that F− and F+ can be disconnected and overlap; see Fig. 2. Yet, these sets and
their boundaries have surprising structural properties, as the following lemmas show.

I Lemma 9. F− ∪ F+ = F . J− and J+ do not intersect each other inside F .

Proof. For the first statement, assume the contrary that there exists a point x ∈ F such that
x /∈ F− and x /∈ F+. Since x /∈ F−, there exists a site q ∈ Q such that x ∈ D(s, q). Since
x /∈ F+, there exists a site p ∈ R \Q such that x ∈ D(p, s). By the transitivity (Lemma 1),
x ∈ D(p, q). However, since x ∈ F , x ∈ D(q, p), leading to a contradiction.

For the second statement, if J− and J+ intersect inside F , F− ∪ F+ ( F , contradicting
the first statement. J

I Lemma 10. Neither J− nor J+ contains a closed cycle in F

Proof. If J− contains a closed cycle, then FV(Q∪{s}) contains a bounded face, contradicting
Lemma 4. Assume that J+ contains a closed cycle in F , and let K be the region enclosed.
Since J+ is the boundary of VR(s,R ∪ {s} \Q), K must be VR(s,R ∪ {s} \Q); otherwise,
there must exist a site t ∈ R\Q such that VR(t, R∪{s}\Q) is enclosed by VR(s,R∪{s}\Q),
implying that J(s, t) is closed, i.e., a contradiction. In this situation, J+ is exactly a closed
curve. Since F− ∪ F+ = F (Lemma 9), J− does not contain any closed cycle, and J+ is a
closed curve, F− is exactly F , and contains VR(s,R∪ {s} \Q). By Lemma 8, F− is a face of
VRj(Q,R ∪ {s}), and by Lemma 4, each face of F− ∩ V (R ∪ {s} \Q) touches the boundary
of F . However, since J+ is a closed curve in F and does not intersect ∂F , VR(s,R∪ {s} \Q)
forms a bounded region in F− ∩ V (R ∪ {s} \Q), contradicting Lemma 4. J

I Lemma 11. J− intersects ∂F at a point x if and only if J+ intersects ∂F at x. Hence,
J− intersects F if and only if J+ intersects F .

Proof. For the first statement, we show necessity as follows. Let e be the Voronoi edge of F
which contains x and assume that e is between VRj(Q,R) and VRj(Q∪ {p} \ {q}, R), where
q ∈ Q and p ∈ R \Q, i.e., e ⊂ J(p, q). In this situation, q is the farthest site of x in Q, and
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p is the nearest site of x in R \ Q. Since x ∈ FVR(q,Q) and J− passes through x, J(q, s)
passes through x. Since J(q, s) and J(p, q) intersect at x, J(p, s) passes through x. Since
x ∈ VR(p,R \Q) and J(p, s) passes through x, J+ passes through x.

The proof of sufficiency is symmetric to the necessity proof. The second statement directly
follows from the first statement and Lemma 10. J

For short, we let F1 := F \ F+ and F3 := F \ F−. By the above, the set F2 := F− ∩ F+
may consist of several faces, each of which is bounded by one segment of J− and one of
J+. Each face of F2 touches ∂F in exactly two points where J− and J+ meet; see Fig. 2.
The following observation helps in constructing the farthest-site and nearest-site Voronoi
diagrams inside the new faces.

I Observation. For points x1 ∈ F1, x2 ∈ F2, and x3 ∈ F3, the levels of the new site s at x1,
x2, and x3 with respect to R∪{s} are at least j+ 2, exactly j+ 1 and at most j, respectively.

For each face C of F−, we obtain FV(Q) ∩ C by clipping FV(Q) ∩ F with the segments
of J− bounding C. To obtain V (R ∪ {s} \Q) ∩C we observe that inside F1 site s cannot be
the nearest; here we can keep V (R \Q), clipped by J+. To be added is a face of F2 bounded
by J+ and J− which equals the nearest Voronoi region of s in V (R ∪ {s} \Q) inside C.

Similarly, let C ′ be a face of F+. Inside F3, site s cannot be the farthest in Q ∪ {s}; here
we can still use FV(Q)∩F , clipped by J−. To obtain FV(Q∪{s})∩C ′ we add the same face
of F2 as above, which also equals the farthest region of s in FV(Q∪{s}) inside C ′. Moreover,
we clip V (R \Q) ∩ F by J+ ∩ C ′ to obtain V (R ∪ {s} \ (Q ∪ {s}) ∩ C ′; see Figures 2 and 3.

To sum up, once we have J− and J+, we can generate new faces from F and update
their farthest-site and nearest-site Voronoi diagrams. Since this process will not generate
VR1({s}, R ∪ {s}) and VRr(R,R ∪ {s}) = FVR(s,R ∪ {s}), we maintain V (R) and FV(R)
separately during the incremental construction, as well as their trapezoidal decompositions,
conflict lists, and active statuses. The total expected time for this extra task is in O(n logn);
see [21, 18, 4].

I Remark. Generating F− from F is equivalent to removing F3 from F . Since each face
C of F− is a face of VRj(Q,R ∪ {s}), one may wonder which faces are adjacent to C in
Vj(R ∪ {s}). These faces belong to F ′+, for some faces F ′ in Vj−1(R), and are obtained in
the same way F+ is obtained from F .

4.2 Tracing bisecting curves
The boundary J− of F− in F (J− = ∂F− ∩ F ) can be traced through F̂O using local
information stored at trapezoids, starting from a trapezoid in conflict with s one of whose
edges is external, i. e., belongs to ∂F . Namely, if site q is the owner d(4) of a trapezoid 4
then J− = J(q, s) holds inside 4. This stays true as J− moves into a neighboring trapezoid
through a vertical edge of 4. If J− leaves 4 through its top or bottom edge e, two cases
are possible. If e ⊂ J(q, q′) is an inner edge, J− now becomes part of J(q′, s). In case of an
outer edge on the boundary of F , tracing this segment of J− halts.

Since two s-bisectors intersect at most twice, J− intersects the top and the bottom edges
of 4 at most four times, and since a bisector has a constant number of vertical tangencies,
J− intersects the left and right segments of 4 at most O(1) times. Therefore, the size of
J− ∩4 is O(1), and only O(1) time will be spent on computing J− ∩4. Thus, the time to
trace J− is upper bounded by the number of trapezoids in F̂O that are in conflict with s,
times a constant.

The same holds for tracing J+ through F̌O.
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Figure 4 Separating a trapezoid and merging trapezoids.

4.3 Updating Trapezoidal Decompositions
As Fig. 3 illustrates, in F− and F3 existing trapezoids will be altered by J− and J+, whereas
in F2 a new trapezoid decomposition has to be built from scratch. While the geometric
changes to the trapezoids are quite straightforward to implement, we also have to update
conflict lists and activity statuses.

4.3.1 Trapezoids in F− and F3

Reconstructing F̂−
O
and F̂3

O
, together with their conflict lists, is similar to the standard

incremental construction for vertical trapezoidal decompositions (see Mulmuley’s book [22]).
It involves separating existing trapezoids by J− and merging trapezoids sharing the same
edges, and takes time proportional to the total conflict size of destroyed trapezoids; see Fig. 4.
Also, testing the new trapezoids for activity is quite straightforward. Thus we only remark
on a subtle fact here: a trapezoid 4′ generated from an inactive trapezoid 4 may be active
although 4′ is smaller than 4. This is because the top or bottom edge changes such that a
site t that does not conflict with 4 may conflict with 4′. As shown in Fig. 5, J(q′, t) and
J(q′, t) intersect the top edge e′ of 4′ but not the top edge e of 4.

4.3.2 Trapezoids in F2

We separate each edge of F2 into x-monotone curves, and apply Chazelle’s algorithm [9] to
compute the vertical trapezoidal decomposition for each face of F2. His algorithm works for
x-monotone curves, and takes time proportional to the number of created trapezoids.

To construct the conflict lists, we note that each face of F2 is bounded by a curve of
J− and a curve of J+, due to the results in Subsection 4.1, and each trapezoid in FO

2 is
dominated by s. Consider a face C of F2. Since there is no closed bisector, if a trapezoid in
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4 4′

C

C2

C1

e
e′

J−J(q, t′)J(q, t′)

J(q, t)J(q, t)

Figure 5 C is a sub-face of F ∩ FVR(q, Q), and t and t′ conflict with 4′ but not 4.
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Figure 6 Left: Tracing conflicts for t where d(4) = q and d(4′) = s. Right: Walking from y to
y′ one must pass through J(q, s), J(t′, s) and J(s, t), so ls(y′) = lq(y) + 2− 1.

CO is conflicted by a site t ∈ S \ (R ∪ {s}), J(s, t) must intersect the boundary of C, and
thus t must also be in conflict with a trapezoid outside C and adjacent to the boundary of
C. Therefore, we can compute conflict lists for trapezoids in CO from the outside of C (see
the left drawing of Fig. 6).

To check the active statuses, for each face C of F2, we select a pair of trapezoids, 4 and
4′, outside and inside C, respectively, such that they share an edge along the boundary of
C. Recall that d(4′) = s. Since ld(4)(y4) is known, we arbitrarily choose a point y′4 ∈ 4′,
and compute ls(y4′) by testing for each site t ∈ J(4) ∪ J(4′) if J(t, s) separates y4 and
y4′ (see the right drawing of Fig. 6). Note that J(s, d(4)) separates y4 and y4′ , and
D(t, s) ∩D(s, d(4)) ⊆ D(t, d(4)) holds by Lemma 1. Then, we traverse from 4′ to other
trapezoids in CO, choose a point for each of them, and compute the corresponding level
similarly. All these operations take time proportional to the total conflict size of those
traversed trapezoids. Since all involved trapezoids are newly created and tested at most 4
times, the total time is proportional to the total conflict size of newly created trapezoids.

To sum up, the time to update trapezoids is proportional to the number of destroyed and
newly created trapezoids and their total conflict size. Actually, the time for F̂−

O
, F̂3

O
, F̌+

O

and F̌1
O
is charged to destroyed trapezoids, and the time for FO

2 is charged to trapezoids
newly created.

4.4 Updating Active Status of Faces
After generating new faces from a face F , we need to remove F , test new faces for being
active, and remove the inactive ones, together with their trapezoids. The problem is that a
new face may be active because it contains an old active trapezoid 4 that was not in conflict
with s, so that we could not afford to visit 4.

We suggest the following solution. By Lemma 4, sub-faces of F in F̂ or F̌ form a cyclic
sequence along the boundary of F , where each sub-face appears once. Let us call a sub-face
active if it contains an active trapezoid. We group consecutive inactive sub-faces into a single
element and store a cyclic list of such elements and active sub-faces. Then, F̂ contains an
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Figure 7 Left: Edges of F̂ (dash: inner, solid: outer). Right: a 3-layer data structure for F̂ .

active sub-face if and only if this list contains more than one entry, or if its only entry is an
active sub-face.

Each internal edge appears in two copies, one for the trapezoids on either side. Such
a half-edge is called active if one of its adjacent trapezoids is active. For each sub-face C
we group together inactive half-edges along ∂C, and obtain another cyclic sequence of such
elements and active half-edges. Again, we can decide in O(1) time if the sub-face C is active.

These lists are stored in a 3-level data structure, as shown in Fig. 7, one for each active face.
If implemented as an enhanced red-black tree [25], operations insert, delete, concatenation,
split, and find-set run in O(logm) amortized time (or faster), where m counts the total
number of operations. When considering site set R, m can be upper bounded by rO(1), so
that each operation takes amortized time in O(log r). This data structure allows to determine
the activity of a face in constant time. How to maintain it under insertion of a new site
s will be stated in a complete version later. We remark that the time to update the data
structures is log r times the number of destroyed and newly created trapezoids.

5 Analysis

The time to insert a new site is proportional to the total conflict size of destroyed and newly
created trapezoids plus logn times their number. However, not all the created trapezoids
belong to an active face, so it is not sufficient to analyze active faces in AFr.

While all essential faces (i. e., those dominating an order-k face) are active, the converse
does not hold. But we are able to prove a slightly weaker fact.

I Definition 12. For a subset R of S of size r, let M(R) denote the collection of faces in
VF(R) each of which dominates a face of Vk′(S), where k − 6cnr log r ≤ k′ ≤ k + 6cnr log r.

We are proving that with high probability M(Rr+1) contains all faces created during the
insertion of site sr+1, both active ones and inactive ones that were discarded.

Since VF(Rr)O has O(r3) trapezoids, the time to insert the (r + 1)st site is trivially
O(nr3). Therefore, if the probability forM(R) to have the above property is high enough, say
1−O(r−5), the insertion time, provided thatM(R) fails to have it, is O(nr3)∗O(r−5) = O( nr2 ).
Since

∑n
r=10 O( nr2 ) is only O(n), the analysis of the positive case will dominate the overall

expectation.
To this end, we define a kind of ε-nets for ε = c 1

r log r as follows.

I Definition 13. For a subset R of S of size r and for a constant c ≥ 22, R is an ε-net if
1. For each trapezoid 4 ∈ VFO(R), w(4) ≤ cnr log r,
2. and for each face F ∈ VF(R) where F ⊆ VFj(Q,R) and for any two points x, x′ ∈ F

where x ∈ FVR(q,Q) ∩VR(p,R \Q) and x′ ∈ FVR(q′, Q) ∩VR(p′, R \Q),

max{|lq(x)− lq′(x′)|, |lp(x)− lp′(x′)|, lp(x)− lq(x)} ≤ cn
r

log r.
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I Lemma 14. If Rr is an ε-net, then M(Rr+1) contains all the created faces due to the
insertion of sr+1.

Proof. Consider a face F of AF(Rr) in conflict with sr+1. It is sufficient to prove that all
faces generated from F due to the insertion of sr+1 belong to M(Rr+1). Let F belong to
VRj(Q,Rr). We will prove that each face C of F− belongs toM(Rr+1), and it is symmetric for
each face of F+. (Recall that F− = F∩VRj(Q,Rr+1) and F+ = F∩VRj+1(Q∪{sr+1}, Rr+1).)
Take a point x ∈ C where x ∈ VR(sr+1, Rr+1 \Q) and x ∈ FVR(q,Q). Since C ⊆ F , we also
let x belong to VR(p,Rr \Q). In other words, x ∈ D(sr+1, p), so lq(x) < lsr+1(x) < lp(x).

Since F is active, there exists a trapezoid4 ∈ F̂O such that there exists a point y ∈ 4 with
ld(4)(y)− w(4) ≤ k. Since Rr is an ε-net, w(4) ≤ cnr log r and lq(x)− ld(4)(y) ≤ cnr log r,
we have lq(x) ≤ k + 2cnr log r. Similarly, we can derive lp(x) ≥ k − 2cnr log r. Since
lp(x)− lq(x) ≤ cnr log r (by the definiton of an ε-net), we have

k − 3cn
r

log r ≤ lq(x) < lp(x) ≤ k + 3cn
r

log r.

Finally, since lq(x) < lsr+1(x) < lp(x) and 2 n
r+1 log(r + 1) ≥ n

r log r, we have

k − 6 n

r + 1 log(r + 1) ≤ lq(x) < lsr+1(x) < lp(x) ≤ k + 6 n

r + 1 log(r + 1),

implying that C dominates a face of Vk′(S) where k−6c n
r+1 log(r+1) ≤ k′ ≤ k+6c n

r+1 log(r+
1) (see Lemma 3) and thus belongs to M(Rr+1). J

Using general ideas by Clarkson and Shor [13] and Haussler and Welzl [15], we analyze
the probability of an ε-net as follows.

I Lemma 15. With probability 1−O( 1
r5 ), a random sample R of S of size r is an ε-net.

By Lemma 15, we can derive the expected size of |M(R)O|. The number of trapezoids in
M(R)O is proportional to the number of vertices in M(R), so we analyze the latter. It is
sufficient to consider the case in which R is an ε-net since |M(R)| is trivially O(r3) and the
probability that R is not an ε-net is only O(r−5), leading to a product O(r−2). We mainly
prove that a vertex of M(R) is a vertex of Vm(S) where k−7cnr log r ≤ m ≤ k+7cnr log r+2.
If this claim holds, since Vm(S) has O(m(n − m)) vertices [3], the total complexity of
all candidates is proportional to the summation of m(n − m) for k − 7cnr log r ≤ m ≤
k + 7cnr log r + 2, leading to O(nr k(n− k) log r + n3

r2 log2 r). Since each vertex of VF(S) is a
vertex of VF(R) with probability O( r

3

n3 ), this implies that the expected number of vertices
in M(R) is O( r

2

n2 k(n− k) log r + r log2 r).
The intuitive idea for the claim is to consider a vertex v of a face F in M(R) and to let F

belong to VRj(Q,R) and v be an intersection between J(t, t′) and J(t, t′′). Since F is a face
ofM(R), there exists a point x ∈ F such that x ∈ FVR(q,Q) and lq(x) ≤ k+6cnr log r. Since
R is an ε-net, lt(v)− lq(x) ≤ cnr log r, implying that lt(v) ≤ k+ 7cnr log r. Symmetrically, we
have lt(v) ≥ k + 7cnr log r − 2. Since v is an order-(lt(v) + 2) vertex, we prove the claim and
conclude the following lemma.

I Lemma 16. E[|M(R)O|] = O( r
2

n2 k(n− k) log r + r log2 r).

Chazelle et al. [11] proposed an abstract framework for randomized incremental construc-
tion, and to adopt their result, we show that M(R) has some monotonicity property.

I Lemma 17. For all trapezoids 4 ∈MO(Rr), if D(4) ⊆ Rr−1, then 4 ∈MO(Rr−1).
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Proof. Let F be the face in M(Rr) that contains 4, i.e., 4 ∈ FO, and let F be a face
of VRj(Q,R). Since J(4) ∩ Rr = ∅ and D(4) ⊆ Rr−1, 4 must belong to some face in
VF(Rr−1), and we use F ′ to denote it. It is clear that F ′ ⊇ F . If sr ∈ Q, F ′ is a face of
VRj−1(Q\{sr}, Rr−1); otherwise, F ′ is a face of VRj(Q,Rr−1). In either case, F ′ dominates
F . Since F ∈MO(Rr), F dominates a face C of Vk′(S) where k−6cnr log r ≤ k′ ≤ k+6cnr log r,
and since F ′ dominates F , F ′ also dominates C. Since n

r−1 log(r − 1) > n
r log r (for r > 2),

k− 6c n
r−1 log(r− 1) ≤ k′ ≤ k+ 6c n

r−1 log(r− 1), and thus F ′ belongs to M(Rr−1), implying
that 4 ∈MO(Rr−1). J

Finally, we analyze the expected construction time. The whole idea is that if Rr is an
ε-net, we charge the insertion time of sr+1 through M(Rr); otherwise, we use O(r3n) to
bound the insertion time. The latter has been shown to be O(n) over the entire construction.
Let T be

⋃n
r=10 M

O(Rr). Since each destroyed trapezoid must be created before and
MO(Rr+1) contains all created trapezoids due to the insertion of sr+1 when Rr is an ε-net
(Lemma 14), the former case during the whole incremental construction is bounded by
O(

∑
4∈T logn + w(4)). By Lemma 17, we can adopt Chazelle et al.’s framework [11] to

prove that

E[|T |] =
n∑

r=10
O(1/r)E[|M(Rr)O|] and E[

∑
4∈T

w(4)] =
n∑

r=10
O(n/r2)E[|M(Rr)O|].

Since E[|M(Rr)O|] = O( r
2

n2 k(n− k) log r + r log2 r) (by Lemma 16),

E[
∑
4∈T

logn+ w(4))] = logn · E[|T |] + E[
∑
4∈T

w(4)] = O(k(n− k) log2 n+ n log3 n).

Since we can link all vertices of Vk(S) in O(k(n−k) logn) time [5], we conclude the following.

I Theorem 18. The expected time to compute Vk(S) is O(k(n− k) log2 n+ n log3 n).
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