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—— Abstract

Given a set of geometric objects each associated with a time value, we wish to determine whether
a given property is true for a subset of those objects whose time values fall within a query time
window. We call such problems time-windowed decision problems, and they have been the subject
of much recent attention, for instance studied by Bokal, Cabello, and Eppstein [SoCG 2015]. In
this paper, we present new approaches to this class of problems that are conceptually simpler
than Bokal et al.’s, and also lead to faster algorithms. For instance, we present algorithms
for preprocessing for the time-windowed 2D diameter decision problem in O(nlogn) time and
the time-windowed 2D convex hull area decision problem in O(na(n)logn) time (where « is
the inverse Ackermann function), improving Bokal et al.’s O(nlog®n) and O(nlognloglogn)
solutions respectively.

Our first approach is to reduce time-windowed decision problems to a generalized range
successor problem, which we solve using a novel way to search range trees. Our other approach
is to use dynamic data structures directly, taking advantage of a new observation that the total
number of combinatorial changes to a planar convex hull is near linear for any FIFO update
sequence, in which deletions occur in the same order as insertions. We also apply these approaches
to obtain the first O(n polylogn) algorithms for the time-windowed 3D diameter decision and 2D
orthogonal segment intersection detection problems.
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1 Introduction

Time-windowed geometric problems have been the subject of many recent papers and are
motivated by timestamped social network data and Geographic Information System (GIS)
data, the latter of which may consist not only of longitude, latitude, and altitude coordinates
but also time. A 2014 paper by Bannister et al. [4] examined time-windowed versions of
convex hull, approximate spherical range searching, and approximate nearest neighbor queries.
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At SoCG 2015, Bokal et al. [5] presented more results on a variety of other time-windowed
problems. In the same year, Chan and Pratt [12] studied the time-windowed closest pair
problem.

Let S be a set of n objects, where each object s € S is associated with a time value ¢(s).
In this paper, we consider problems for which the answer is a Boolean value: given a query
interval of time [t1, o] called a time window, does the subset of S whose time values are
within the query window have property P or not? We call these time-windowed decision
problems. For brevity, we say objects whose time values are within the query window are
themselves within the query window.

Without loss of generality, we assume that time values are given as integers from 1 to n,
for otherwise we can replace time values with their rank during preprocessing. The query
time only increases by O(1) predecessor searches on the query time values.

In this and the previous paper [5], we focus only on hereditary properties, meaning if a
set S has P then any superset S’ O S also has it.! Examples of hereditary properties include:
the set of points has greater than unit diameter, or the convex hull of a set of points has
greater than unit area.

As observed by Bokal et al., it suffices to find for each start time ¢ the maximal end-time
t’ such that all objects within the window [¢,#'] have P. Afterwards, we can easily obtain
a data structure with O(n) words of space and O(1) query time.? We do so by storing the
resulting ¢’ in a table indexed by start time ¢ (recall that time values have been initially
reduced to integers from 1 to n). A query for a time window [t1, 2] is answered by looking
up the ¢ in the table for start time ¢;, and checking if t5 < t'.

For this reason, Bokal et al. refer to time-windowed decision problems as the problem of
finding maximal contiguous subsequences with hereditary properties.

Since answering a query after preprocessing is trivial, for the rest of the paper we focus
only on bounding the preprocessing time.

1.1 Previous results

Recently, Bokal et al. [5] presented an approach to time-windowed decision problems. They

achieve the following geometric results:

1. 2D diameter decision: Given a set of n time-labeled points in R2, determine if there exist
two points greater than unit distance apart, whose time values are within a query time
window. Their approach obtains O(n log? n) preprocessing time.

2. 2D convex hull area decision: Given a set of n time-labeled points in R2?, determine
whether the convex hull of points within a query time window has greater than unit area.
Their approach obtains O(nlognloglogn) preprocessing time.

3. 2D monotone paths: Given a set of n points in R?, determine if the points within a
query time window form a monotone path in some (subpath-dependent) direction. Their
approach obtains O(n) preprocessing time.

They also show that their approach works for graph planarity. Given a graph whose edge
set contains n time-labeled edges, determine if the subgraph on the edges within a query
time window is planar. Their approach obtains O(nlogn) preprocessing time.

! The definition in [5] considers subsets instead of supersets, but is equivalent after complementation.
2 In fact, Chan and Pratt [12] show that we can reduce space to O(n) bits while maintaining O(1) query
time, by using succinct rank/select data structures [23].
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Chan and Pratt [12] studied the time-windowed closest pair decision problem, in which
we are given a set of n time-labeled points in R and we wish to determine whether there
exist two points at most unit distance apart. They solve the problem in O(n) time using
grids. They also consider the exact version of the problem, which is to find the closest pair of
points within the time window. They solve this problem in O(nlognloglogn) preprocessing
time and O(loglogn) query time with O(nlogn) words of space. Their techniques relied on
geometric properties of the closest pair such that they could not be trivially modified to
solve the time-windowed diameter problem.

1.2 New results

We achieve the following results:

1. 2D and 3D diameter decision: We improve Bokal et al.’s preprocessing time bound
in 2D from O(n log? n) to O(nlogn). Thus, we obtain the first optimal algorithm for
the problem in the algebraic decision-tree model [26]. Furthermore, we obtain the first
nontrivial result in 3D with O(n log? n) preprocessing time. See Section 2 for details.

2. 2D orthogonal segment intersection detection: Given a set of n orthogonal (horizontal
or vertical) time-labeled line segments in R?, we want to determine if there are any
intersections between segments whose time values are within a query time window. We
give the first nontrivial result for this problem, obtaining O(n lognloglogn) preprocessing
time. See Section 2 for details.

3. 2D convex hull area decision: We improve Bokal et al.’s preprocessing time bound from
O(nlognloglogn) to O(na(n)logn) (where « is the inverse Ackermann function). See
Section 3 for details.

4. 2D width decision: Given a set of n time-labeled points in R?, we want to determine
whether the points within a query time window have greater than unit width. We give
the first nontrivial result for this problem, obtaining O(n 1og8 n) preprocessing time. See
Section 3 for details. Previously, a naive approach using Chan’s dynamic data structure [8]

3/2

would give a worse O(n polylog n) time bound.

1.3 Techniques

Bokal et al.’s main approach computes the upper triangle of a binary n x n matrix where
entry i, 7 has value 1 if and only if the set of objects within the window [7, j] has P. The first

step is to greedily decompose the upper triangle into disjoint rectangles along the diagonal.

The second step is to compute the values within each rectangle. First they compute the
maximal end-time for the row which divides height of the rectangle in half. This splits the
rectangle into 4 sub-rectangles, above and below the median row and left and right of its
maximal end-time. The entries in the top-right have value 0, the entries in the bottom-left
have value 1, and they recurse on top-left and bottom-right. Efficiency comes from the
using a bounded-size sketch of uncomputed regions during recursion. A sketch is similar to
a coreset in that it approximates a subset of objects, and its exact nature depends on the
problem. Their results for both the 2D diameter and the 2D convex area decision problem
are obtained via this approach.

Our first approach, which we discuss in Section 2, is much more direct: we simply reduce
the problem to a range successor search problem. This (static) data structure problem can
be solved by standard range searching techniques, and if we are not too concerned with
extra logarithmic factors, we immediately obtain efficient solutions to the diameter decision
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problem in 2D and 3D, as well as orthogonal line segment intersection detection. To further
improve the logarithmic factors, we come up with a more clever way to traverse a range tree.

Our second approach, which we discuss in Section 3, simply adds the objects in sequence
to a dynamic data structure until P is true for the objects in the structure, then removes
from the beginning until P is not true, then repeats. Bokal et al. [5] have already suggested
this naive use of dynamic data structures as a natural solution to the problem, but dismissed
it as inefficient. We show that it is actually efficient in the case of the 2D convex hull area
and width decision problems! We do so by a new bound on the combinatorial complexity
of the structural changes to the convex hull under a certain sequence of updates in which
the order of insertions is the same as the order of deletions. We call these FIFO update
sequences. With this combinatorial bound (which may be of independent interest) it is
straightforward to solve the time-windowed 2D width decision problem in O(n polylogn)
time using Eppstein’s dynamic width data structure [18], and with a more careful analysis,
we can solve time-windowed 2D convex hull area decision problem in O(na(n)logn) time
using hull trees [24].

2 Generalized range successor approach

In this section, we focus on time-windowed decision problems for properties that deal with
pairs. More precisely, given a symmetric relation R = .S x S, we consider the property P
that there exist p,q € S such that (p,q) € R. We call such properties pairwise interaction
properties. If (p,q) € R, we say that p interacts with q; we also say that p is in q’s range.

Examples of such problems include: diameter decision, for which two points interact
if they are further apart than unit distance; segment intersection detection, in which two
segments interact with each other if they intersect; and closest pair decision, in which two
points interact if they are nearer than unit distance. Note that such properties are hereditary.

Our approach is to reduce the time-windowed problem to the following data structure
problem:

» Definition 1. Let each object s € S have weight w(s). In the generalized range successor
problem, we want to preprocess S to find the successor of a query object ¢ among the objects
in ¢’s range, that is, the object p € S that interacts with ¢ with the smallest w(p) > w(q).

The above is a generalization of the original 1D range successor problem where the objects
are points in 1D and the objects’ ranges are intervals; for example, see [30] for the latest
results.

To see how the above data structure problem can be used to solve the time-windowed
pairwise interaction problem, we simply find the successor pg, of every g € S in the generalized
range successor problem with weights equal to time values.

» Observation 2. A query window [t1,ts] contains an interacting pair if and only if [t1, 2]
contains [t(q),t(pq)] for some g € S.

Proof. The “if” direction is trivial. For the “only if” direction, let p,q be an interacting pair
in [t1,t2] and assume that ¢(q) < t(p) without loss of generality. Then t(g) < t(pq) < t(p) by
definition of the successor p,, and the claim follows. |

Thus, the answer to a query window [t1,t3] is yes if and only if the point (¢1,—t2) is
dominated by some point (¢(p), —t(pq)). The time-windowed problem can then be solved
by precomputing the mazima [26] of the 2D point set {(t(p), —t(pq)) | ¢ € S}, which takes
linear time by a standard plane sweep after pre-sorting (recall that time values have been
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Figure 1 A range tree showing the path followed by a query for an interval [¢, 7] which splits at
vs, and the subtrees in bold which fall within the query range between leaves v, and v,.

initially reduced to integers in {1,...,n} and can be trivially sorted in linear time). The
running time is then dominated by the cost of computing the successors p, for all g € S. If
we can solve the generalized range successor problem in P(n) preprocessing time and Q(n)
query time, we can solve the corresponding time-windowed problem in O(P(n) + nQ(n))
preprocessing time.

In the rest of this section, we can thus focus on solving the generalized range successor
problem.

One approach is to first consider the decision version of the problem: deciding whether
there exists an object p that lies in ¢’s range and has weight w(p) in the interval [¢,r] for
¢ =w(q) and a given value r. This problem can be solved using standard multi-level data
structuring techniques: The primary structure is a 1D range tree [26] on the weights (i.e.,
time values). See Figure 1. This naturally decomposes any interval [¢,r] of weights into
O(logn) canonical subtrees by performing a binary search for both ¢ and r until we reach
their lowest common ancestor node vs at which the search splits. The search continues
leftward and rightward to leaves v, and v, with values £ and r respectively. Every right
subtree on the path from v, to vy, and every left subtree on the path from v to v, are within
the interval [¢,7]. At each node v, we store the subset S, of all objects within its interval
in a secondary structure for the original range searching problem—deciding whether there
exists an object in 5, that lies in a query object ¢’s range. A query for the decision problem
can then be answered by making O(logn) queries to the secondary structures. This increases
the query time by a logarithmic factor.

Finally, we can reduce the generalized range successor problem to its decision problem by
a binary search over all time values . This increases the query time by a second logarithmic
factor.

2.1 Avoiding binary search

In this subsection, we describe a still better algorithm that solves the generalized range
successor problem without going through the decision problem, thereby removing one of the
extra logarithmic factors caused by the binary search.

We first find the leaf node v storing ¢ in O(logn) time. To answer a successor query for g,
we proceed in two phases. (See Figure 2.)

In the first (i.e., “up”) phase, we walk upward from v towards the root. Each time our
search follows a parent pointer from a left child, we query the secondary structure at the
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Figure 2 A search path finding the successor p of a point ¢ is shown in bold. The search is
divided into an “up” phase followed by a “down” phase.

right child to see if there exists an object stored at the right child that is in ¢’s range. If
no, we continue upward. If yes, the answer is in the subtree at the right child and we
proceed to the second phase starting at this node.

In the second (i.e., “down”) phase, we walk downward from the current node to a leaf.
Each time our search descends from a node, we query the secondary structure at the left
child to see if there exists an object stored at the left child that is in ¢’s range. If no, the
answer is in the right subtree and we descend right. Otherwise, we descend left.

This algorithm makes O(logn) queries in the secondary structures. We next apply this
algorithm to specific time-windowed pairwise interaction problems.

2.2 2D diameter decision

For the application to 2D diameter decision, our set of objects S is composed of points in
R2, and p, q interact if and only if d(p,q) > 1. In other words, ¢’s range is the complement
of a unit disk.

The secondary structure at a node v needs to handle the following type of query: decide
whether a query point ¢ has greater than unit distance from some point in S, that is,
decide whether ¢ lies outside the intersection D, of all unit disks centered at the points of
Sy (see Figure 3). We store the unit-disk intersection D,,, along with the sorted list of the
x-coordinates of the vertices of D,,.

Since we can merge two unit-disk intersections in linear time (similar to how we can
merge two planar convex hulls in linear time), we can build the secondary structures at all
nodes of the range tree bottom-up in P(n) = O(nlogn) time.

Given point g, a query in the secondary structure at node v reduces to binary search
for the z-coordinate of ¢ in the list X, and takes O(logn) time. Since the algorithm in
Section 2.1 requires O(logn) queries in the secondary structures, the overall query time is
Q(n) = O(log2 n).

We can use fractional cascading to speed up the algorithm further [15, 16]. Since the
technique is well known, we give just a quick sketch. Recall that the algorithm in Section 2.1
is divided into two phases.

For the “up” phase, we first move the list X, of each right child v to its parent. We pass
a fraction of the elements of the list at each node to the lists at both children during
preprocessing. This way, we can determine where the z-coordinate of ¢ is in the list of
the parent from where it is in the list of the child in O(1) time. We can then answer all
O(logn) queries in the secondary structures during the “up” phase in O(logn) overall
time, after an initial binary search at the leaf in O(logn) time.
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Figure 3 The boundaries of unit disks centered at four points in R%. The boundary of the
unit-disk intersection is shown in bold.

For the “down” phase, we pass a fraction of the elements of the list at each node to the list
at its parent during preprocessing. This way, we can determine where the z-coordinate
of ¢ is in the list of a child from where it is in the list of its parent in O(1) time. We can
then answer all O(logn) queries in the secondary structures during the “down” phase in
O(logn) overall time, after an initial binary search in O(logn) time.

We conclude that a generalized range successor query in this setting can be answered in
Q(n) = O(logn) time. This gives us the following result.

» Theorem 3. We can preprocess for the time-windowed 2D diameter decision problem in
O(nlogn) time.

2.3 3D diameter decision

In 3D, a query in the secondary structure at node v becomes deciding whether the query
point ¢ lies outside the intersection D, of unit balls centered at the points of .S,,. In 3D, the
unit-ball intersection D, still has linear combinatorial complexity and can be constructed
in O(]Sy|log|Sy|) time by Clarkson and Shor’s randomized algorithm [17] or Amato et al.’s
deterministic algorithm [3]. We store the xy-projection of the upper and lower boundary of
D, in a planar point location structure [26]. We can build the secondary structures at all

nodes of the range tree in O(nlogn) time per level, and thus P(n) = O(n log? n) total time.

(Unlike in 2D, it is not clear if we could speed up the building time by linear-time merging.)
Given point ¢, a query in a secondary structure reduces to planar point location for the
ay-projection of ¢ and takes O(logn) time [26]. Since the algorithm in Section 2.1 requires

O(logn) queries in the secondary structures, the overall query time is Q(n) = O(log?n).

(Unlike in 2D, we cannot apply fractional cascading to speed up the algorithm.) This gives
us the following result.

» Theorem 4. We can preprocess for the time-windowed 3D diameter decision problem in
O(n log? n) time.

2.4 Orthogonal segment intersection detection

For the application to 2D orthogonal segment intersection detection, our set of objects S is
composed of vertical and horizontal line segments in R?, and p, ¢ interact if and only if they
intersect.

Without loss of generality, we assume that all z- and y-coordinates are given as integers
from 1 to O(n), for otherwise we can replace coordinate values with their rank during
preprocessing. The query time only increases by O(1) predecessor searches on the coordinate
values, costing no more than O(logn) time.
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Figure 4 A set of horizontal segments is shown in solid lines, with their vertical decomposition
shown in dotted lines. A query vertical segment is shown in bold, whose endpoints are in different
cells.

The secondary structure at a node v now needs to handle the following type of query:
decide whether a query segment ¢ intersects some segment in S,. Without loss of generality,
assume that ¢ is vertical and the segments in S, are horizontal. We store the vertical
decomposition VD, (also called the trapezoidal decomposition) in a planar point location
structure.

Since we can compute the vertical decomposition VD,, in O(]S,|loglog|S,|) time by a
standard plane sweep with van Emde Boas trees, we can build the secondary structures at
all nodes of the range tree in P(n) = O(nlognloglogn) time.

Given vertical segment ¢, a query in the secondary structure at node v requires testing
whether both endpoints of ¢ lie in the same cell in VD,,, which reduces to two planar point
location queries. Since the subdivision is orthogonal, we can apply Chan’s orthogonal point
location structure [10], which achieves O(loglogU) query time when coordinates are integers
from {1,...,U}—recall that coordinate values have been initially reduced to integers bounded
by U = O(n). Since the algorithm in Section 2.1 requires O(logn) queries in the secondary
structures, the overall query time is Q(n) = O(lognloglogn). This gives us the following
result.

» Theorem 5. We can preprocess for the time-windowed 2D orthogonal intersection detection
problem in O(nlognloglogn) time.

» Remark. An open problem is to remove the extra loglogn factor. Perhaps the techniques
from [11] for the 4D offline dominance searching problem may be relevant.

3 FIFO update sequence approach

In the previous section, we have presented an approach to building data structures to solve
time-windowed pairwise interaction problems, but the 2D width and the 2D convex hull
area decision problems, for instance, cannot be expressed in terms of a pairwise interaction
property.

As mentioned in the introduction, both problems are on hereditary properties. The
most obvious approach to solve a problem on a hereditary property is to use a dynamic
data structure directly, inserting each object in order until P is satisfied, then deleting each
object in the same order until P is no longer satisfied, and repeating. By storing for each
i € {1,...n} the largest j for which {s;,...,s;} satisfies P, we can answer queries for the
time-windowed problem. However, this approach does not seem to yield efficient solutions
in some settings. For example, for the 2D width decision problem, we would need a fully
dynamic data structure for 2D width decision, but the best result to date has near /n
update time [8]. Agarwal and Sharir [2] gave a dynamic data structure for 2D width decision
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with polylogarithmic update time but only for offline update sequences; their data structure
does not seem to work in our application when we do not know a priori in what order the
deletions are intermixed with the insertions.

Both the 2D width and 2D convex hull area problem are about the convex hull. There
exist sequences of n updates to the convex hull in the plane which cause O(n2) many
structural changes. For example, consider the case of inserting a point which causes O(n)
points to be no longer on the convex hull, then deleting and re-inserting the same point n
times. However, in our application points are deleted in the same order as they are inserted,
so this particular example cannot occur.

Restricted update sequences on the dynamic convex hull have been studied before. The
insertion-only case was studied by Preparata [25]. The deletion-only case was studied by
Chagzelle [14], and Hershberger and Suri [20]. Random update sequences were studied by
Mulmuley [22] and Schwarzkopf [27].

We call an update sequence in which objects are inserted and deleted in the same order a
first-in-first-out (FIFO) update sequence, which to the best of our knowledge has not been
studied before. We prove a combinatorial lemma, stating that for such sequences the number
of structural changes to the convex hull is always near linear.

» Lemma 6. The number of structural changes to the upper hull of a set of points in R?
over n FIFO updates is at most O(nlogn).

The proof of this lemma uses an old observation by Tamir [29] for arbitrary update
sequences: although the number of edge creations or destructions in the convex hull could be

quadratic, it turns out that the number of distinct edges created or destroyed is near linear.

» Observation 7. There are O(nlogn) distinct edges created or destroyed in the upper hull
of a set of points in R? over an arbitrary sequence of n insertions or deletions.

Proof. Consider the vertical line at the median z-coordinate. At any time, there is just one
hull edge that crosses the vertical line (called the bridge), and thus the number of possible
bridges over time is O(n). Thus, the number of distinct edges that appear on the upper hull
over time satisfies the recurrence

E(n) = 2E(n/2)4+ O(n),
implying that E(n) = O(nlogn). <

Lemma 6 now follows immediately by combining the above observation with another
observation about FIFO update sequences:

» Observation 8. For a FIFO update sequence, once an edge uv has been removed from the
upper hull by the insertion of a point w, uv can never again be an edge of the upper hull.

Proof. Since w is above the line through uv, we know that uv cannot be an edge of the
upper hull while w is alive. But since w was inserted after v and v, by the FIFO property w
must be deleted after v and v, and therefore uv can never again be an upper hull edge. <«

3.1 2D width decision

We can immediately apply Lemma 6 to solve the time-windowed 2D width decision problem,
by using Eppstein’s dynamic 2D width data structure [18] as a black box. Eppstein’s
algorithm maintains the width in time O(k - f(n) - logn) where k is the number of structural
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changes to the convex hull, and f(n) is the time to solve the dynamic 3D convex hull problem
(more precisely, answer gift-wrapping queries and perform updates for a 3D point set). Note
that Eppstein used Agarwal and Matousek as a black box to solve the dynamic 3D convex
hull problem in O(n€) time [1], but this has since been improved by Chan to O(log’n)
expected time [9], and derandomized by Chan and Tsakalidis [13]. This proves the following
result.

» Theorem 9. We can preprocess for the time-windowed 2D width decision problem in
O(nlog®n) time.

3.2 2D convex hull area decision

For the time-windowed 2D convex hull area decision problem, we can now directly apply
known fully dynamic convex hull data structures [24, 7, 6], most of which can be modified
to maintain the area. For example, Brodal and Jacob’s (extremely complicated) data
structure [6] can maintain the convex hull and its area in O(k - log n) amortized time, where k
is the number of structural changes to the convex hull. This would imply an O(n log? n)—time
algorithm, which is worse than Bokal et al.’s result [5].

We show how to reduce this to O(na(n)logn) by directly adapting a simpler known
dynamic convex hull data structure, namely Overmars and van Leeuwen’s hull tree [24], and
carefully analyzing it for FIFO sequences.

» Lemma 10. We can maintain the convex hull and its area for a 2D set of n points under
FIFO updates in O(na(n)logn) total time.

Proof. It suffices to maintain the upper hull and the area above it inside a sufficiently large
bounding box, since we can similarly maintain the lower hull and the area below it, and
subtract the areas from the bounding box.

A hull tree is a binary tree whose root node stores the upper hull edge (called the bridge)
that crosses the median vertical line, and whose left and right subtrees are the hull trees on
all points left and right of the median, respectively. Here, we assume that the z-coordinates
of all n points are known in advance, which is true in our application (the assumption can
be removed by extra steps to balance the hull tree, for example, via tree rotations [24]). At
each node, we store the area above the upper hull. Pointer structures can be set up to let us
traverse the upper hull at any node of the tree [24, 21].

The following definitions will be helpful: Consider the upper hull at a tree node. When
we insert a point u which causes a polygonal chain vivs - - - v to disappear from the upper
hull, we say that u kills v;, and that (u,v;) forms a killing pair, for each i = 1,2,... k.
(For technical reasons, we allow ¢ = 1 and ¢ = k in the definition, counterintuitively.)
Symmetrically, if we delete a point u which causes a polygonal chain vivs - - - v, to appear
in the upper hull, we say that u revives v;, and that (u,v;) forms a revival pair, for each
i=1,2,...,k

Deletion. Consider the deletion of a point p at a node of the hull tree. Without loss of
generality, suppose that p is to the right of the median. We first recursively delete p in
the right subtree. Suppose that p was an endpoint of the bridge of the node. We need to
compute a new bridge. Overmars and van Leeuwen [24] originally proposed a binary search,
but we will use a linear search instead (inspired by the variants of hull trees by Chazelle [14]
and Hershberger and Suri [21] for deletion-only sequences). Specifically, let ¢y be the left
endpoint of the old bridge, and let 7y and r; be the predecessor and successor of p in the old
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Figure 5 Deletion of p causes the old bridge ({o,p) to change to the new bridge (¢*,r"), both
shown in bold. Computing the new bridge requires walking from ¢y to £* and ro to r*. If point p is
instead being inserted, computing the new bridge requires walking from £* to £y. Any pair (p,{)
with ¢ € vz, or pair (p,r) with r € g is a revival or killing pair at some node of the hull tree.

right upper hull respectively. (See Figure 5.) A simple rightward linear search from ¢y and rg
can find the new bridge (¢*,7*) in O(|yz| + |yr|) time, where 7, denotes the subchain from
£y to £* in the left upper hull, and vr denotes the subchain from ry to r* in the right upper
hull. (Note that £* must be right of £y, and r* must be right of r¢.) The change in area at
the current node can be computed in O(|yz| + |ygr|) time (it is the area of the polygon with
vertices £oyr£*r*p, plus the change in area at the right child, minus the area of the polygon
with vertices royrr*p).

To account for the O(|vyL|) cost, observe that for each ¢ € vz, (p,¢) is a revival pair for
the upper hull at the current node. We charge one unit to each such pair (p,£). Note that
each pair is charged at most once during the entire algorithm.

To account for the O(|yg|) cost, observe that for each r € yg, (p,r) is a revival pair for
the upper hull at the right child. We charge one unit to each such pair (p,r). If (p,r) is
charged, then r lies strictly below the upper hull at the current node and cannot be charged
again at an ancestor. Thus, each pair is charged at most once this way.

Insertion. Consider the insertion of a point p at a node of the hull tree. Without loss of
generality, suppose that p is to the right of the median. We first recursively insert p in the
right subtree. We need to compute the new bridge (if it changes). We can just mimick the
deletion algorithm in reverse. In fact, the details are a little simpler: a linear search from ¢*
can find £y, the left endpoint of the new bridge (see Figure 5) in O(|yr|) time. The change
in the area can again be computed in O(|yL|+ |yr|) time. We can account for the cost again
by charging, this time, to killing instead of revival pairs.

Total time. The total cost over all updates is proportional to the number of charges, which
is bounded by K(n), the worst-case number of distinct pairs (u,v) such that (u,v) is a
killing /revival pair for the upper hull of at least one node of the hull tree, over all sets of n
points. In the next subsection, we prove that K(n) = O(na(n)logn) (Lemma 13), which
would then imply an O(na(n)logn) time bound. <

» Theorem 11. We can preprocess for the time-windowed 2D convex hull area decision
problem in O(na(n)logn) time.
3.3 Bounding the number of killing/revival pairs

One ingredient is still missing: a proof that K(n) = O(na(n)logn). Naively we could bound
the number of killing/revival pairs by the number of structural changes to the upper hull at
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each node, and applying Lemma 6 would give us the recurrence K(n) = 2K (n/2)+0O(nlogn),
implying a weaker bound K (n) = O(n log? n)

We propose a different combinatorial argument to bound K (n). Our approach contains
a nice application of Davenport-Schinzel (DS) sequences [28]. Recall that a DS sequence
of order 3 is a sequence X of characters s, sa,... from an alphabet A such that no two
consecutive characters are the same and for any two characters a,b € A, the alternating
sequence a, b, a, b, a of length 5 does not appear as a subsequence anywhere in ¥, whether
contiguous or not. Hart and Sharir [19, 28] proved that an order-3 DS sequence over an
alphabet of size n has length at most O(na(n)).

DS sequences occur often in computational geometry, such as in bounding the combinato-
rial complexity of the lower envelope of line segments. Surprisingly in our case, we do not
relate our problem to lower envelopes or other substructures in arrangements. Rather, we
relate directly to DS sequences.

It suffices to bound the number of killing pairs, since revival pairs are symmetric, by
reversing time. To this end, we first concentrate on a special kind of killing pairs: for the
upper hull at a fixed node of the hull tree, a bridge killing pair is a killing pair (u,v) where
u and v lie on opposite sides of the median vertical line.

» Lemma 12. For the upper hull at a fized node, the number of bridge killing pairs is at
most O(na(n)) for any FIFO update sequence.

Proof. By symmetry, it suffices to count killing pairs (u,v) where u is to the right and
v is to the left of the median vertical line. Take the sequence of all such killing pairs
(u1,v1), ..., (tn,vy) ordered by time, where in case of ties, simultaneous killings are ordered
in decreasing x-order of v;. Define the sequence X to be vy, ..., v,. We claim that ¥ cannot
have any alternating subsequence of length 5.

Assume that an alternating subsequence of killed points ..., a,...,b,...,a,...,b,....a,...
or ....,b,...,;a,...,b,...;a,...,b,... of length 5 occurs in ¥X. Without loss of generality,
assume that a is to the left of b. In either case, the subsequence ...,b,....a,...,b,...,a,...
of length 4 occurs in 3.

Consider the time in this length-4 subsequence when a is killed (baba) and let the vertex
which kills it be u (see Figure 6). At this time, b must exist, because it will be killed later;
furthermore, b is on or below the current upper hull, and so lies below the line segment au.
Now, fast forward to the time in the subsequence when b is next killed (baba). Note that this
must be at a different time, because if u kills a and b at the same time, b would be placed
before a in ¥ by our tie-breaking rule. At this new time, ¢ and u must both exist, because a
will be killed later again, and u was inserted after b and will be deleted after b by definition
of FIFO sequences. But b is below au and cannot appear on the upper hull and cannot be
killed at this time: a contradiction. This completes the proof of the claim.

The sequence ¥ may still have identical consecutive characters, but a repeated pair can
occur only “between” two different insertion events and there are at most n insertion events.
After removal of O(n) repeated characters, ¥ thus becomes a DS sequence of order 3 and by
the known upper bound has length at most O(na(n)) [28]. The lemma follows. <

» Lemma 13. The number of distinct killing/revival pairs over all nodes in the hull tree
satisfies K(n) = O(na(n)logn) for any FIFO update sequence.

Proof. By Lemma 12, there are O(na(n)) bridge killing pairs for the upper hull at the root
node. The remaining killing pairs are killing pairs at nodes of the left subtree and nodes of
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Figure 6 u kills a. The dotted line is the median vertical line and the dashed line was part of
the convex hull before u was inserted. The point b must be below the bold line segment au.

the right subtree. We thus obtain the recurrence
K(n) = 2K(n/2) + O(na(n)),
implying that K(n) = O(na(n)logn). <

» Remark. We leave open the possibility of removing the tiny «(n) factor in the combinatorial
bound on K (n). Alternatively, there is the possibility of reducing a(n) to log(a(n)) in the
running time of Lemma 10 and Theorem 11, by replacing linear search with fingered binary
search.

Another interesting question is whether Lemma 6’s O(nlogn) bound on the number of
structural changes to the 2D convex hull for FIFO update sequences can be improved. We
are not aware of any superlinear lower bound. (Concerning Lemma 7 for arbitrary update
sequences, there is an Q(na(n)) lower bound [29].)

Acknowledgements. We wish to thank Haim Kaplan and Micha Sharir for suggesting the

use of Tamir’s observation [29], which leads to an a(n) factor improvement to our earlier
version of Lemma 6.
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