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Abstract
Truth Discovery is an important problem arising in data analytics related fields such as data
mining, database, and big data. It concerns about finding the most trustworthy information
from a dataset acquired from a number of unreliable sources. Due to its importance, the problem
has been extensively studied in recent years and a number techniques have already been proposed.
However, all of them are of heuristic nature and do not have any quality guarantee. In this paper,
we formulate the problem as a high dimensional geometric optimization problem, called Entropy
based Geometric Variance. Relying on a number of novel geometric techniques (such as Log-
Partition and Modified Simplex Lemma), we further discover new insights to this problem. We
show, for the first time, that the truth discovery problem can be solved with guaranteed quality
of solution. Particularly, we show that it is possible to achieve a (1 + ε)-approximation within
nearly linear time under some reasonable assumptions. We expect that our algorithm will be
useful for other data related applications.
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1 Introduction

Truth discovery is an emerging topic in data analytics which has received a great deal of
attentions in recent years [3, 6, 11, 13, 12, 16, 18, 19]. Despite its extensive studies in the fields
of data mining, machine learning, database, and big data, it has yet to be seriously considered
by the theory community (to our best knowledge). The problem arises in scenarios where
data are acquired from multiple sources which may contain false or inconsistent information,
and the truth discovery problem is to find the most trustworthy information from these
sources. The problem finds many applications. For example, in online social networks, a
user’s information can be recorded by multiple websites which may not be always consistent;
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George Abraham Mahatma John Barack Franklin
Washington Lincoln Gandhi Kennedy Obama Roosevelt

Source 1 Virginia Illinois Delhi Texas Kenya Georgia
Source 2 Virginia Kentucky Porbandar Massachusetts Hawaii New York
Source 3 Maryland Kentucky Mumbai Massachusetts Kenya New York

Majority Voting Virginia Kentucky Delhi Massachusetts Kenya New York
Truth Discovery Virginia Kentucky Porbandar Massachusetts Hawaii New York

Figure 1 Three sources are providing the birthplaces of 6 politicians. For Mahatma Gandhi,
each source has an individual answer (i.e., a tie case), and majority voting can only randomly pick
one. More importantly, for Barack Obama, voting provides a totally wrong answer. However, truth
discovery tries to distinguish reliable and unreliable sources and thus provide the right answer. In
this example, the algorithm[6] finds that source 2 has a higher reliability than the other two.

thus it is desirable to find the most trustworthy information for each user. Similar problem
also occurs in other areas, such as in healthcare where medical records of a patient may be
acquired by multiple hospitals or laboratories.

The main challenge of truth discovery comes from its unsupervised nature, i.e., the level
of reliability of each source is unknown in advance. A straightforward way for solving the
problem is to take the average if the data are continuous or conduct majority voting if
the data are categorical. Such approaches are implicitly based on the assumption that all
sources are equally reliable. However, in many applications the level of reliability of each
source could be quite different which may make the yielded solution significantly different
from the truth, due to the neglect of “the wisdom of minority" [6, 11]. See the example in
Fig. 1 from [6]. Thus, estimating the reliability of each source should be taken into account
when building the optimization model for truth discovery. In general, the two components,
reliability estimation and truth finding, are tightly coupled and thus are expected to be
solved simultaneously, where the truth should be closer to the source with higher reliability,
and as a feedback, the source providing closer information should have a higher reliability.
Another challenge of truth discovery is how to handle the large number of unreliable sources
in the big data era. For example, in the case of monitoring human health, there may be tens
of thousands of wearable devices distributed among a population, and each device represents
a source which records various kinds of health data of a person for a possibly long period of
time (e.g., months or years).

1.1 Problem Formulation and Related Works

We first introduce the problem formulation of truth discovery used in the data mining
community, and then convert it to a new geometric optimization problem, called entropy
based geometric variance.

To model the truth discovery problem, the data from each source can be represented
as a (possibly high dimensional) vector, where each dimension corresponds to one attrib-
ute/property (e.g., age, income, or temperature). For categorical data, we can reduce them
to continuous data as follows [6]. Suppose that one attribute has t categories; then it can
be represented as a t-dimensional binary sub-vector, where each dimension indicates the
membership of one category. We can finally embed all these sub-vectors (corresponding to
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the categorical attributes) into one unified vector in higher dimensional space1. Furthermore,
we need a variable to represent the reliability of each source.

I Definition 1 (Truth Discovery[13, 6]). Let P = {p1, p2, · · · , pn} be a set of vectors in Rd
space with each pi representing the data from the i-th source (among a set of n sources).
The truth discovery problem is to find the truth vector p∗ ∈ Rd and the reliability (weight)
wi for each i-th source, such that the following objective function is minimized,

n∑
i=1

wi||p∗ − pi||2, s.t.

n∑
i=1

e−wi = 1. (1)

In the above optimization problem (1), both p∗ and the weights are variables. It is easy
to see that when each wi is fixed, p∗ is simply the weighted mean, i.e., 1∑n

i=1
wi

∑n
i=1 wipi.

This means that the higher the weight of pi, the closer it is to p∗, which is consistent with
the principle of truth discovery.

Weight normalization function. In the above optimization problem, equation
∑n
i=1 e

−wi =
1 is used to normalize the source weights. This way of normalization was initially introduced
in [13] (with no justification) and has demonstrated experimentally its superior performance.
To understand the rationale behind this, below we give a theoretical justification. Firstly, we
notice that some straightforward ways, such as

∑n
i=1 w

p
i = 1 for some p > 0, are inappropriate

for weight normalization [13], since otherwise, p∗ can trivially choose any pl as its solution
and set wl = 1 and wi = 0 for all i 6= l (in this way the objective value will always be equal
to the smallest possible value 0). By using equation

∑n
i=1 e

−wi = 1, we can easily avoid this
issue. Secondly, this exponential normalization function ensures that the resulting solution
minimizes the entropy, which implies that the solution contains more information from
the input according to Shannon’s information theory [17]. To see this, we first borrow the
following lemma from [13], which can be shown by using the Lagrange multipliers method.

I Lemma 2 ([13]). If the truth vector p∗ is fixed, the following value for each weight wl
minimizes the the objective function (1),

wl = log(
∑n
i=1 ||p∗ − pi||2

||p∗ − pl||2
). (2)

Let S denote the total squared distance to p∗ (i.e., S =
∑n
i=1 ||p∗ − pi||2), and fl denote

the contribution of each pl to S (i.e., fl = ||p∗−pl||2
S ). Then the induced entropy is

H = −
n∑
l=1

fl log fl = −
n∑
l=1

||p∗ − pl||2

S
log ||p

∗ − pl||2

S
= 1
S

n∑
l=1

||p∗ − pl||2 log S

||p∗ − pl||2
. (3)

Below, we define the Entropy based Geometric Variance.

I Definition 3. Given a set of points P and a point p∗ in Rd, the entropy base geometric
variance induced by p∗ is H × S, where H and S are respectively the entropy and variance
defined in the above discussion.

From Lemma 2 and the formula (3), we know that the objective function (1) is equal to the
multiplication of S and H, i.e., the entropy based geometric variance.

1 Note that this representation for categorical data may cause fractional memberships in the final solution,
which is often acceptable in practice (e.g., we may claim that one object belongs to class 1, 2, and 3
with probabilities of 70%, 20%, and 10%, respectively).
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I Theorem 4. The optimization problem (1) is equivalent to finding a point p∗ to minimize
the entropy based geometric variance.

Generally speaking, S represents the total variance from the sources to the truth vector,
and the entropy H indicates how disorder the system is, where the higher the entropy, the
greater disorder the system is. Since we minimize both of them, this implicitly explains the
better performance of using the exponential normalization function in Definition 1.

Non-convexity. As shown in [13], when the truth vector or the weights are fixed, the
optimization problem (1) is convex. However, when both of them are variables, the problem
is non-convex in general. To see this, consider the following simple example. Suppose n = 2.
Then the objective value is 0 when p∗ coincides with either p1 or p2, according to Lemma 2
(note limx→0 x log(1/x) = 0). This means that it is possible to have multiple isolated local
or global optimal solutions for truth discovery, implying that truth discovery is non-convex.

Existing Approaches. To the best of our knowledge, all existing methods for truth dis-
covery are based on some heuristic ideas, which achieve only a local optimal solution and
have no quality guarantee on global optimality. A commonly used strategy is alternating
minimization [13, 12, 15], which alternatively fixes either the weights or the truth vector,
and optimizes the other. The optimization problem becomes convex when one of the two
types of variables is fixed. This means that such approaches are guaranteed to converge to
some local optima. Other approaches [19] follow similar ideas. The reader is referred to a
recent survey [6] for a comprehensive introduction to these approaches.

1.2 Preliminaries and Our Main Results
Different from existing approaches, our goal is to achieve a quality guaranteed solution for
the truth discovery problem. In practice, we can assume that the number of sources n and
the size of the data in each source d are both large. As a starting point, the following theorem
suggests that it is easy to generate a 2-approximation in quadratic time (due to space limit,
we omit some of the proofs in our paper).

I Theorem 5. If one tries every point in {pi | 1 ≤ i ≤ n} as a candidate for the truth vector,
at least one yields a 2-approximation for the objective function in (1), and the total running
time is O(n2d).

Theorem 5 implies that any further improvement needs to decrease either the approximation
ratio or the running time. In this paper, we aim to achieve a (1 + ε)-approximation for truth
discovery and also keep the time complexity as low as possible.

For ease of discussion, we use the following notations throughout the rest of this paper.
Let Lmin = min{||pi − pi′ || | 1 ≤ i 6= i′ ≤ n}, Lmax = max{||pi − pi′ || | 1 ≤ i 6= i′ ≤ n},
and the spread ratio ∆ = Lmax

Lmin
. To achieve a (1 + ε)-approximation for the truth discovery

problem for any given small value 1 > ε > 0, we consider the following two cases.
Case 1. min1≤i≤n ||p∗ − pi|| ≤ ε

√
S

4
√
n∆ , i.e., some pi locates very close to p∗.

Case 2. min1≤i≤n ||p∗ − pi|| > ε
√
S

4
√
n∆ , i.e., no pi locates very close to p∗.

In following sections, we will present efficient algorithms to solve the two cases separately.
For case 1, we show that the nearest point pi to p∗ is actually a (1 + ε)-approximation in
Section 2. For case 2, we first give a simple linear time algorithm with large approximation
ratio in Section 3, based on an analysis on the distribution of the weights; then in Section 4,
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we reveal several new insights to the weights by using a novel Log-Partition technique, and
perform a sequence of geometric operations to obtain a (1 + ε)-approximation. The time
complexity depends on ∆. Finally, in Section 5 we show that when ∆ is not too large, the
time complexity for both cases can be improved to nearly linear (O(nd× poly(logn))); also
through dimension reduction, the complexity can be further improved to linear (O(nd)).
Note that spread ratio is commonly used as a parameter in many geometric algorithms and
appears in the time complexity (such as [8]); it is usually not very large [4], especially in
high dimensional space.

We introduce the following two folklore lemmas [2, 10] which are repeatedly used in
our analysis. Let Q = {qi | 1 ≤ i ≤ n} be a set of n points in Rd with each qi associated
with a weight wi ≥ 0, W =

∑n
i=1 wi, and m(Q) be the weighted mean of Q i.e., m(Q) =∑n

i=1 wiqi/W .

I Lemma 6. For an arbitrary point q,
∑n
i=1 wi||q−qi||2 = W ||q−m(Q)||2+

∑n
i=1 wi||m(Q)−

qi||2.

I Lemma 7. Let Q1 be a subset of Q with a total weight of αW for some 0 < α ≤ 1.
Let m(Q1) be the weighted mean point of Q1. Then ||m(Q1) − m(Q)|| ≤

√
1−α
α δ, where

δ2 = 1
W

∑n
i=1 wi||qi −m(Q)||2.

2 A (1 + ε)-Approximation for Case 1

In this section, we consider case 1. Without loss of generality, we assume that ||p∗ − pi0 || ≤
ε
√
S

4
√
n∆ , i.e., pi0 is the point very close to p∗. Then, we have:

I Lemma 8. For any i 6= i0, ||p∗ − pi|| ≥ (1− ε
4 )||pi0 − pi||.

Proof. Since p∗ is the weighted mean
∑n

i=1
wipi∑n

i=1
wi

, we know that for any 1 ≤ l ≤ n,

||p∗ − pl|| = ||
∑n
i=1 wipi∑n
i=1 wi

− pl|| ≤
n∑
i=1

( wi∑n
i=1 wi

)||pi − pl|| ≤ Lmax. (4)

Thus, we have S ≤ nL2
max, and consequently

||p∗ − pi0 || ≤
ε
√
S

4
√
n∆
≤ ε

4
Lmax

∆ = ε

4Lmin. (5)

Furthermore, due to triangle inequality, we have

||p∗ − pi|| ≥ ||pi0 − pi|| − ||p∗ − pi0 || ≥ ||pi0 − pi|| −
ε

4Lmin ≥ (1− ε

4)||pi0 − pi|| (6)

for any i 6= i0. J

Now we can obtain a (1 + ε)-approximation for case 1.

I Theorem 9. For case 1, if one tries every point in {pi | 1 ≤ i ≤ n} as a candidate for the
truth vector, at least one yields a (1 + ε)-approximation for the objective function in (1), and
the total time complexity is O(n2d).

SoCG 2016
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Proof. We prove this theorem by showing how large the objective value will increase if p∗ is
moved to pi0 . Firstly, we suppose that the weights are fixed temporarily. Then, by Lemma 8
and the fact that 0 < ε < 1, we have

||pi0 − pi||2

||p∗ − pi||2
≤ 1

(1− ε/4)2 ≤ 1 + ε (7)

for any i. This means that the objective value is increased by a factor no more than 1 + ε.
Once p∗ is moved to pi0 , we can further update the weights according to Lemma 2, and the
objective value will not increase. Note that the contribution of pi0 to the objective value will
become 0 since limx→0 x log S

x = 0.
Since we need to try every point to find out pi0 (as the candidate for the truth vector)

and each point takes O(nd) time to evaluate the objective function, the total time complexity
is thus O(n2d). J

3 A Simple Linear Time Algorithm for Case 2

In this section, we present a simple linear time approximation algorithm for case 2. Although
the approximation ratio is relatively large (O(log n∆

ε )), the idea used in the algorithm sheds
some lights on how to find a more refined solution, e.g., (1 + ε)-approximation in Section 4.
Additionally, we believe that this simple linear time algorithm is also of some independent
interest.

We first estimate the range for the weights. Lemmas 10 and 11 provides the upper and
lower bounds for each wi, and Lemma 12 shows a lower bound on their summation.

I Lemma 10. For case 2, each weight wi ≤ 2 log n∆
ε .

Lemma 10 can be easily obtained from the assumption min1≤i≤n ||p∗ − pi|| > ε
√
S

4
√
n∆ and

Lemma 2. Note that we assume n ≥ 16 here; otherwise, we just need to increase the front
constant “2" (of 2 log n∆

ε ) a little bit.

I Lemma 11. For any constant 2 > c > 1, at least one of the following two events
happens:
1. min1≤i≤n wi ≥ log c;
2. all weights except one are at least log c

c−1 .

Proof. Suppose that the first event does not happen, i.e., min1≤i≤n wi < log c. Then,
by Lemma 2 we know that there exists a pl such that ||p∗−pl||2∑n

i=1
||p∗−pi||2

> 1
c . Since 1

c >
1
2 ,

there is at most one such pl, and each of the other points should have a weight at least
log 1

1−1/c = log c
c−1 , i.e., the second event happens. Thus the lemma is true. J

I Lemma 12. The sum of the weights
∑n
i=1 wi ≥ n logn.

Proof. From Lemma 2, we know that
∑n
i=1 wi =

∑n
i=1 log S

||p∗−pi||2 . It is easy to see that
the function f(x) = log S

x is convex, since f ′′(x) = 1
x2 > 0. By Jensen’s inequality, we have

n∑
i=1

log S

||p∗ − pi||2
≥ n log S∑n

i=1 ||p∗ − pi||2/n
= n logn. (8)

This completes the proof. J
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p∗p∗ plpl

pipi

Figure 2 pl and pi are connected by dashed
lines to their respective farthest and second
farthest points; the blue point is p∗.

o1o1

o2o2

o3o3

o4o4

q1q1

q2q2

q3q3

q4q4ττ

m(Q)m(Q)

Figure 3 An illustration for Lemma 18 with
k = 4; each oj has a bounded distance to qj ,
the corresponding exact weighted mean of Qj ,
and the distance between τ and m(Q) is also
bounded.

Algorithm 1 Linear time algorithm for case 2
Input: P = {pi, | 1 ≤ i ≤ n} ⊂ Rd
1. Compute the mean of P , and denote it as p∗1.
2. Arbitrarily pick one point from P and compute the ratio of the largest and second

largest distances from other points to it,
a. remove the selected point from P if the ratio is smaller than 1.618;
b. or remove the farthest point to it otherwise.

3. Compute the mean of the remaining points, and denote it as p∗2.
4. Take the one from {p∗1, p∗2} with a smaller objective value as the truth vector.

Before introducing the algorithm, we first find a proper value for c in Lemma 11. For
this purpose, we consider the second event in Lemma 11. If this event happens, we know
that there exists one point, say pl, with weight less than log c, and all other weights are at
least log c

c−1 . This implies that

||p∗ − pl||2 >
1
c
S; and ||p∗ − pi||2 < (1− 1

c
)S ∀i 6= l. (9)

This means that pl is farther away from p∗ than all other points, and the smaller c, the larger
difference is. To differentiate pl from others, we consider the ratio of the largest over
the second largest distances from other points to pl (see Fig. 2), which is smaller
than

(
√

1
c

+
√

1− 1
c

)/(
√

1
c
−

√
1− 1

c
) (10)

due to triangle inequality and the fact that when x > y > 0, the function f(x, y) = x+y
x−y is

decreasing on x and increasing on y. Similarly, the ratio for any other pi for i 6= l is bigger
than

(
√

1
c
−

√
1− 1

c
)/(2

√
1− 1

c
). (11)

From the above two inequalities, we know that in order to make (11) larger than (10), we
need to have c < 10− 4

√
5 ≈ 1.056, and (11) = (10) ≈ 1.618 if c = 10− 4

√
5. Consequently,

we have the following lemma.

I Lemma 13. It is possible to find the point pl with the smallest weight in O(nd) time, if
the second event in Lemma 11 happens with 1 < c < 10− 4

√
5.

SoCG 2016
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Proof. To prove this lemma, we can arbitrarily pick one point from the input and compute
the ratio of the largest over the second largest distances from other points to it. From the
above analysis, we know that if the ratio is smaller than 1.618, this point is pl; otherwise
the farthest point to it is pl. Obviously, the total time of the above procedure is linear, i.e.,
O(nd). J

Now we are ready to present our algorithm (see Algorithm 1).

I Theorem 14. Algorithm 1 yields a (2 log n∆
ε / log c)-approximation for case 2, where

c ≈ 1.056 and the time complexity is O(nd). In short, the approximation ratio is O(log n
ε ) if

∆ is a polynomial of n, or O(log ∆
ε ) otherwise.

Proof. To prove this theorem, we consider the two events in Lemma 11 separately.
If the first event happens, we have wi ≥ log c for any i. Since p∗1 is the mean of P , we

have
∑n
i=1 ||p∗1 − pi||2 ≤

∑n
i=1 ||p∗ − pi||2. Consequently, if we fix the weights and move p∗

to p∗1 (note that we can use Lemma 2 to update the weights and further reduce the objective
value), the objective value of (1) will be

n∑
i=1

wi||p∗1 − pi||2 ≤ 2 log n∆
ε

n∑
i=1
||p∗1 − pi||2

≤ 2 log n∆
ε

n∑
i=1
||p∗ − pi||2

≤ 2 log n∆
ε

n∑
i=1

wi
log c ||p

∗ − pi||2 = (2 log n∆
ε
/ log c)

n∑
i=1

wi||p∗ − pi||2(12)

based on Lemma 10 & 11, which implies that p∗1 is a (2 log n∆
ε / log c)-approximation.

Now we consider the second event. Let pl denote the point removed in step 2(a) or
2(b). From the proof of Lemma 13, we know that pl has the smallest weight. Let p̃∗ be the
weighted mean of P \ {pl}. Suppose that the total weight of P \ {pl} is α

∑n
i=1 wi, then from

Lemma 12 and the fact that wl ≤ log c < 1, we have α > n logn−1
n logn . As a consequence, by

Lemma 7 we have

||p̃∗ − p∗||2 < 1
n logn− 1

∑n
i=1 wi||p∗ − pi||2∑n

i=1 wi
. (13)

Then applying Lemma 6 in Section 1.2, we get
n∑
i=1

wi||p̃∗ − pi||2 ≤
n logn

n logn− 1

n∑
i=1

wi||p∗ − pi||2. (14)

(14) indicates that p̃∗ can replace p∗ without causing much increase on the objective value.
If we continue to move p̃∗ to p∗2, the objective value becomes

n∑
i=1

wi||p∗2 − pi||2 =
∑
i 6=l

wi||p∗2 − pi||2 + wl||p∗2 − pl||2. (15)

For the first term in the right hand side of (15), by a similar calculation to (12), we know
that

∑
i 6=l wi||p∗2 − pi||2 < (2 log n∆

ε / log c
c−1 )

∑
i 6=l wi||p̃∗ − pi||2. For the second term in

the right hand side of (15), by an estimation similar to (10), we have ||p
∗
2−pl||

||p̃∗−pl|| ≤ (
√

1
c +√

1− 1
c )/(

√
1
c −

√
1− 1

c ) ≈ 1.618. (Note that both p∗2 and p̃∗ are a convex combination of
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P \ pl). Putting (14) and (15) together, we know that p∗2 is a solution with approximation
ratio

n logn
n logn− 1 ×max{2 log n∆

ε
/ log c

c− 1 , 1.618} ≤ 2 log n∆
ε
/ log c. (16)

Finally, it is easy to know that the time complexity is O(nd). J

4 A (1 + ε)-Approximation for Case 2

In this section, we present a (1 + ε)-approximation for case 2. In Theorem 14, we consider
only two groups of the points, i.e., the point with the smallest weight and all others. In this
section we show that by further partitioning the input points into more groups, it is possible
to obtain a much better solution.

I Definition 15 (Log-Partition). In case 2, let pl and pl′ be the points with the smallest and
the second smallest weights, respectively. Then the log-partition is to divide the points in
{pi | 1 ≤ i ≤ n} into k = dlog1+β

2 log(n∆/ε)
wl′

e+ 1 (where β is a small positive number that
will be determined later) groups as follows:
G1 = {pl}.
Gj = {pi | (1 + β)j−2wl′ ≤ wi < (1 + β)j−1wl′} for j ≥ 2.

Note that we cannot explicitly obtain the log-partition since we do not know the weights
in advance. We can only assume that such a partition exists, which will be useful in the
following analysis.

From Lemmas 10 and 11 and the fact that log(1 + β) ≈ β when β is a small positive
number, we can easily have the following lemma.

I Lemma 16. In the log-partition, k = O( 1
β log log n∆

ε ).

In each Gj , their weight difference is no more than a factor of (1 + β); as a consequence,
their weighted mean and weighted standard deviation are very close to their mean and
standard deviation respectively. In the remaining parts, we denote the mean and weighted
mean of each Gj by m̂j and mj , the standard deviation and weighted standard deviation by
δ̂j and δj , 2 respectively.

I Lemma 17. For each Gj in the log-partition, ||m̂j − mj || ≤ β
√

1 + βδj, and δj ∈
[ 1√

1+β
δ̂j ,
√

1 + βδ̂j ].

Using Lemma 17, we can obtain a (1 + ε)-approximation algorithm for case 2. Below is
the sketch of our idea.

Synopsis. The essential task of truth discovery is to find the weighted mean without knowing
the weights in advance. Using log-partition, we can first divide the input points implicitly
into k groups, and Lemma 17 enables us to ignore the weights inside each group. Then by
applying random sampling techniques, we can estimate the weighed mean of each group, and
find the weighted mean of the whole input using simplex lemma. We elaborate our ideas in
the following subsections.

2 δ̂j =
√

1
|Gj |

∑
pi∈Gj

||pi − m̂j ||2 and δj =
√

1∑
pi∈Gj

wi

∑
pi∈Gj

wi||pi −mj ||2.

SoCG 2016
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4.1 Modified Simplex Lemma
In [2], Ding and Xu introduced a simplex lemma for solving a large class of constrained
clustering problems in high dimensional space. In this subsection, we show that despite
developed for a different purpose, the simplex lemma is still applicable to our truth discovery
problem.

I Lemma 18 (Simplex Lemma [2]). Given an unknown weighted point-set Q ⊂ Rd, which
is implicitly divided into k mutually exclusive groups {Qj | 1 ≤ j ≤ k}, and k points
{oj | 1 ≤ j ≤ k} satisfying the condition that for each j, the distance between oj and the
weighted mean of the unknown Qj is no more than a fixed value L ≥ 0, it is possible to
construct a grid of size ((8k/ε)k) inside the simplex determined by {oj | 1 ≤ j ≤ k} such that
at least one grid point τ satisfies the following inequality.

||τ −m(Q)|| ≤
√
εδ(Q) + (1 + ε)L, (17)

where m(Q) and δ(Q) are the weighted mean and standard deviation of Q, respectively.

Simplex lemma shows that it is possible to find an approximate weighted mean of an
unknown point-set. The only known information is the approximate weighted mean of each
unknown subset. L is a slack parameter to control the error bound in (17). See Fig. 3. Also,
a nice feature of the simplex lemma is that it needs to consider only a low dimensional
subspace determined by the simplex (k � d), and thus can be applied to problems in high
dimensional space.

It is easy to see that the simplex lemma is immediately applicable to the truth discovery
problem for finding the weighted mean, if we are able to obtain the weighted mean (or only
the mean due to Lemma 17) of each Gj . The difficulty is that since some Gj could be quite
small in its cardinality, it is extremely challenging to estimate the mean by using random
sampling techniques. The following modified simplex lemma shows that it is actually possible
to ignore such small-size groups.

I Lemma 19 (Modified Simplex Lemma). Let Q, Qj , ε, δ, and k be defined as in Lemma 18,
and Γ = {j | w(Qj)

w(Q) ≥
ε
k}, where w(·) is the total weight of a point-set. Then it is possible to

construct a grid of size ((8k/ε)k) inside the simplex determined by {oj | j ∈ Γ} such that at
least one grid point τ satisfies the following

||τ −m(Q)|| ≤ 2
√

ε

1− εδ(Q) + (1 + ε)L. (18)

Proof. Let QΓ = ∪j∈ΓQj . Then by Lemma 18, we immediately have the following inequality.

||τ −m(QΓ)|| ≤
√
εδ(QΓ) + (1 + ε)L, (19)

where Q is simply replaced by QΓ. Now, we consider the differences between m(Q), δ(Q)
and m(QΓ), δ(QΓ), respectively. Similar to (13) in Theorem 14 for proving the distance
between p̃∗ and p∗, based on Lemma 7 we have

||m(QΓ)−m(Q)||2 ≤ w(Q \QΓ)
w(QΓ) δ2(Q) ≤ ε

1− εδ
2(Q), (20)

where the last inequality comes from the facts that w(Q \QΓ) ≤ k × ε
kw(Q) and w(QΓ) ≥

(1− ε)w(Q). Furthermore, since w(Q)δ2(Q) ≥ w(QΓ)δ2(QΓ), we have

δ2(QΓ) ≤ w(Q)
w(QΓ)δ

2(Q) ≤ 1
1− εδ

2(Q). (21)
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Plugging (20) and (21) into (19), we have

||τ −m(Q)|| ≤ ||τ −m(QΓ)||+ ||m(QΓ)−m(Q)||

≤
√
εδ(QΓ) + (1 + ε)L+

√
ε

1− εδ(Q)

≤
√
ε

1√
1− ε

δ(Q) + (1 + ε)L+
√

ε

1− εδ(Q)

= 2
√

ε

1− εδ(Q) + (1 + ε)L. (22)

This completes the proof. J

4.2 The Algorithm Using Modified Simplex Lemma
The following two lemmas are commonly used random sampling techniques in Euclidean
space. Lemma 20 shows that in order to estimate the mean of a point-set, one just needs
to take the mean of a randomly selected sample. Lemma 21 further shows how to sample
points in order to ensure that there are enough number of points in the sample from a hidden
subset.

I Lemma 20 ([5]). Let T be a set of n points in Rd space, T ′ be a randomly selected subset of
size t from T , and m̂(T ), m̂(T ′) be the mean points of T and T ′ respectively. With probability
1− η, ||m̂(T )− m̂(T ′)||2 < 1

ηt δ̂
2(T ), where δ̂2(T ) = 1

n

∑
s∈T ||s−m(T )||2 and 0 < η < 1.

I Lemma 21 ([2]). Let Ω be a set of elements, and T be a subset of Ω with |T ||Ω| = α for some

α ∈ (0, 1). If randomly select t log t
η

log(1+α) = O( tα log t
η ) elements from Ω, then with probability

at least 1− η, the sample contains t or more elements from T for 0 < η < 1 and t ∈ Z+.

By Lemma 19, we know that only those groups with large enough weight need to be
considered. The following lemma further shows that each of such groups contains a significant
fraction of the input points. This means that we can directly apply Lemmas 20 and 21 to
estimate their means.

I Lemma 22. In the log-partition for case 2, if a group Gj has a total weight no less than
ε
k

∑n
i=1 wi, it contains at least ε logn

2k log(n∆/ε)n points, i.e., |Gj |/|P | ≥ ε logn
2k log(n∆/ε) .

Proof. Let |Gj | and w(Gj) denote the number of points and the total weight in Gj , respectively.
From previous discussion (i.e., Lemmas 10 and 12), we know that

w(Gj) ≤ 2 log n∆
ε
|Gj |;

n∑
i=1

wi ≥ n logn. (23)

With the assumption w(Gj) ≥ ε
k

∑n
i=1 wi, we have |Gj | ≥ ( εk

∑n
i=1 wi)/(2 log n∆

ε ) ≥
ε logn

2k log(n∆/ε)n. J

Now we are ready to present our refined algorithm for truth discovery. Firstly, we use
Lemmas 21 and 22 to sample an enough number of points from each group with large enough
weight. Then, we apply Lemma 20 to obtain their approximate means. Finally, we use the
modified simplex lemma (i.e., Lemma 19) to obtain the desired (1 + ε)-approximation. See
Algorithm 2. Below, we analyze the correctness of the algorithm. For convenience, we denote
by δ(P ) the weighted standard deviation induced by p∗, i.e.,

√
1∑n

i=1
wi

∑n
i=1 wi||p∗ − pi||2.
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Algorithm 2 (1 + ε)-algorithm for case 2

Input: P = {pi, | 1 ≤ i ≤ n} ⊂ Rd, and α = ε3 logn
2(log log(n∆/ε))2 log(n∆/ε) .

1. Randomly take a sample N from the input with size 4k
αβ2 log 16k2

β2 .
2. Enumerate all the subsets having 4k/β2 points from N , compute their means, and put

them into a set U .
3. For any k′-tuple from U , where k′ is enumerated from {1, 2, · · · , k}, apply Lemma 19

to build a grid inside the simplex determined by the k′-tuple.
4. Try all the grid points, and output the one with the smallest objective value of (1) in

Definition 1.

A key step for analyzing the correctness of the algorithm is to determine the value
of β for log-partition. When applying the modified simplex lemma, we have to keep the
value of L to be roughly O(

√
εδ(P )), such that the obtained grid point τ can result in a

(1 +O(1)ε)-approximation solution by Lemma 6. Note that the value of L depends on two
factors, the distance between mj and m̂j (Lemma 17), and the error for estimating the
position of m̂j (Lemma 20). For simplicity, we only consider the first factor; the following
analysis will show that the first factor actually dominates the value of L. Firstly, when j ∈ Γ
(see Lemma 19), we have the upper bound of ||mj − m̂j ||,

β
√

1 + βδj < 2βδj ≤ 2β
√
k

ε
δ(P ) (24)

by Lemma 17. Meanwhile, we know that k = O( 1
β log log n∆

ε ) by Lemma 16. Thus, we need
to set

β = ε2

log log n∆
ε

(25)

to guarantee that L = O(
√
εδ(P )). As a consequence, we have

k = 1
ε2

(log log n∆
ε

)2. (26)

(26) together with Lemma 22 implies that |Gj |/|P | ≥ ε3 logn
2(log log(n∆/ε))2 log(n∆/ε) for each j ∈ Γ.

By simple calculations and Lemmas 21, we know that with probability (1− 1
4k )k ≥ 1− 1/4 =

3/4 the sample N contains at least 4k/β2 points from each of such group Gj . From Lemma 20,
we know that with probability (1 − 1

4k )k ≥ 3/4, for each of such Gj the mean of the
corresponding 4k/β2 points has a distance no more than βδ̂j ≤ β

√
1 + βδj = O(

√
εδ(P )) to

its mean (the inequality comes from Lemma 17). In total, L is bounded by O(
√
εδ(P )), and

we have a (1 +O(1)ε)-approximation (by Lemma 6).
As for the running time, we note that k = 1

ε2 (log log n∆
ε )2. The total number of grid

points is

(|N |4k/β
2
)k(8k/ε)k = 2O( 1

ε8 (log logn∆)7). (27)

Since 1
ε8 (log logn∆)7 < σ logn∆ for any small positive σ if ε is fixed and n∆ is large enough,

the time complexity is O(2σ logn∆nd) = O((n∆)σnd).
From the above analysis, we have the following theorem.

I Theorem 23. With probability 9/16, Algorithm 2 outputs a (1 + ε)-approximation for
case 2, and the time complexity is O((n∆)σnd), where σ is a small positive number. In short,
the time complexity is O(n1+σd) if ∆ is a polynomial of n, or O(∆σnd) otherwise.



H. Ding, J. Gao, and J. Xu 34:13

5 Improving the Time Complexity

A common strategy adopted by the (1 + ε)-approximation algorithms in Section 2 and 4
for the two cases is to first identify a set of candidates for the truth vector, then compute
the objective value for each candidate, and finally output the candidate with the smallest
objective value. Since computing the objective value for each candidate costs O(nd) time,
the total time is thus O(z × nd), where z is the number of candidates (i.e., z = n for case
1 and z = (n∆)σ for case 2). In this section, we show that when the spread ratio ∆ is not
too large, the amortized time complexity for computing all the objective values of the
candidates can be reduced to sub-linear, and consequently the overall time complexity is
nearly linear.

Recall that Theorem 4 tells us that the objective value is equal to the entropy based
geometric variance S×H induced by p∗. In order to reduce the time complexity for computing
the objective value, below we show how to efficiently compute S and H, respectively.

I Lemma 24. The value of S for all the z candidates can be computed in a total of O((n+z)d)
time, i.e., O(ndz + d) amortized time complexity for each candidate.

Proof. Let m̂(P ) be the (unit weighted) mean of the point-set P , i.e., m̂(P ) = 1
n

∑n
i=1 pi.

Then in O(nd) time, we can compute the value of Ŝ =
∑n
i=1 ||m̂(P ) − pi||2. For each

candidate p∗, we know that its total variance S =
∑n
i=1 ||p∗ − pi||2 = n||p∗ − m̂(P )||2 + Ŝ

(by Lemma 6 in Section 1.2). Clearly, the variance of p∗ can be computed in O(d) time by
using the value of Ŝ. This implies that the total time for computing the value of S for all z
candidates is O(nd+ zd). J

From Lemma 24, we know that it is possible to compute the total variance S in an
amortized sub-linear time. Below we discuss how to efficiently compute the entropy H. The
following lemma comes from [7] for entropy estimation.

I Lemma 25 ([7]). Let F = {fi | 1 ≤ i ≤ n} be a discrete probabilistic distribution with the
entropy H =

∑n
i=1−fi log fi, and two parameters ε, δ ∈ (0, 1). There exists an algorithm

outputting a value H̃ ∈ [(1 − ε)H, (1 + ε)H] with probability 1 − δ, which makes at most
O( 1

ε2H logn log( 1
δ )) queries on F .

To estimate H, the algorithm presented in [7] does not read all the values in F . Instead,
it takes only a subset of O( 1

ε2H logn log( 1
δ )) samples (i.e., queries) from F . From the above

lemma, we know that if H is small, the number of needed queries could be quite large, and
consequently the time complexity could be high. To avoid this issue, we show in the following
lemma that H can actually be lower bounded in our problem if ∆ is not too large. Also note
that in our problem each query costs only O(d) time, since it can be computed by equation
fi = ||p∗−pi||2

S , where S is the total variance already obtained in Lemma 24.

I Lemma 26. If ∆ = Õ(
√
n) (= O(

√
n× poly(logn))), H ≥ 1

poly(logn) .

For simplicity, we let l2i = ||p∗ − pi||2. Then H =
∑n
i=1

l2i
S log S

l2
i
. Since we only need to

care about the ratio l2i
S , without loss of generality we can assume that mini<j ||pi − pj ||2 = 1

and maxi<j ||pi − pj ||2 = ∆2. Before proving Lemma 26, we first have the following lemma.

I Lemma 27. Except for the smallest value in {l2i | 1 ≤ i ≤ n}, all other values are between
1
4 and ∆2. Furthermore, S > 1

4∆2.
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xaxa xbxb xb + ηxb + ηxa − ηxa − η

Figure 4 The curve of g(x) with S = 10.

Proof of Lemma 26. Let h = min{S,∆2}, and g(x) = x
S log S

x for any x ∈ [1/4, h], which is
concave (as g′′(x) = − 1

Sx < 0). Considering two values 1/4 < xa ≤ xb < h, we know that

g(xa) + g(xb) > g(xa − η) + g(xb + η), (28)

where η = min{xa − 1/4, h− xb} (see Fig. 4), and the sum of xa − η and xb + η is always
xa + xb. This suggests that to find a lower bound of H for a fixed S, we can first identify
two values 1/4 < l2i1 ≤ l

2
i2
< h, and then decrease l2i1 and increase l2i2 in the same speed until

either l2i1 = 1/4 or l2i2 = h. After repeating the above operation at most n− 1 times, we have
at most one l2i ∈ (1/4, h), one smaller than 1/4 (recall Lemma 27), and all the others are
either 1/4 or h. Suppose that t of them have a value of 1/4 and n− 2− t of them have a
value of h in {l2i | 1 ≤ i ≤ n}, where 0 ≤ t ≤ n− 2. Then we have:

H ≥ t

4S log(4S) + (n− 2− t)h
S

log S
h

; (29)

(t+ 1)1
4 + (n− 2− t)h ≤ S ≤ (t+ 1)1

4 + (n− 1− t)h. (30)

If S ≤ 2∆2, we know that at most two items equal to h (i.e., n− 2− t ≤ 2). Consequently,
we know that the right hand side of (29) is at least t

4S log(4S) ≥ n−4
4S log(4S). Also notice

that S ∈ (∆2/4, 2∆2] in this case (where S > ∆2/4 comes from Lemma 27). Thus, we have

H ≥ n− 4
4S log(4S) ≥ n− 4

8∆2 log ∆2. (31)

To bound the right hand side of the above inequality, we can actually assume that ∆2 ≥ 2.
Otherwise, from Lemma 27 and some simple calculations, we know that H =

∑n
i=1

l2i
S log S

l2
i

=
Θ(logn). Thus, (31) becomes H ≥ n−4

8∆2 log 2 ≥ 1
poly(logn) and the lemma is true.

Now, we consider the case of S > 2∆2, which immediately implies that h = ∆2. Note
that t ∈ [0, n− 2]. From (29) and (30), we have

H ≥ t

(t+ 1) + 4(n− 1− t)∆2 log(4S) + 4(n− 2− t)∆2

(t+ 1) + 4(n− 1− t)∆2 log S

∆2

≥ ( t

(t+ 1) + 4(n− 1− t)∆2 + 4(n− 2− t)∆2

(t+ 1) + 4(n− 1− t)∆2 ) log 2

= t+ 4(n− 2− t)∆2

(t+ 1) + 4(n− 1− t)∆2 log 2

= t+ 4(n− 2− t)∆2

t+ 4(n− 2− t)∆2 + 1 + 4∆2 log 2 ≥ n− 2
n− 2 + 1 + 4∆2 log 2 ≥ 1

poly(logn) . (32)

The second inequality follows from S ≥ 2∆2.
This completes the proof of Lemma 26. J
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From previous discussion, we know that the time complexity can be improved to nearly
linear if ∆ = Õ(

√
n). We can take the union of the candidates in both case 1 and case 2

(i.e., min1≤i≤n ||p∗−pi|| ≤ ε
√
S

4
√
n∆ or min1≤i≤n ||p∗−pi|| > ε

√
S

4
√
n∆ ), and denote it as Z, where

|Z| = n+ (n∆)σ = O(n) since ∆ = Õ(
√
n). Note that in case 2, the candidates are obtained

by using random sampling which takes sub-linear time (see Section 4.2). Consequently,
finding such a set Z needs only O(|Z|d) = O(nd) time. By Lemmas 24, 253, and 26, we have
the following theorem.

I Theorem 28. Given an instance P of the truth discovery problem with ∆ = Õ(
√
n) and

two parameters ε, δ ∈ (0, 1), there exists an algorithm yielding an (1 + ε)-approximation with
success probability 9

16 (1− δ). The time complexity is Õ(nd), where the hiding constant in the
big-O notation depends on ε and δ.

In some real applications, the dimensionality d (which is the maximum size of the data
from each source) could be much larger than n. For this case, we can first apply the well
known JL-Lemma [9] to reduce the dimensionality from d to O( logn

ε2 ) and then run our
algorithm. Note that this can only slightly increase the objective value, since p∗ is the
weighted mean and consequently

n∑
i=1

wi||pi − p∗||2 = 1
2

∑n
i=1 wi

n∑
i=1

n∑
j=1

wiwj ||pi − pj ||2 (33)

where JL-Lemma based dimension reduction approximately preserves the pairwise distances.
For the running time, we know that a straightforward approach is just multiplying the data
matrix A ∈ Rd×n to the random projection matrix R ∈ RO( logn

ε2 )×d which costs O(nd logn/ε2)
time in total. We can also let R be a rescaled random sign matrix [1] and use the technique
in [14] to further reduce the time complexity to O(nd logn

ε2 log d ).

I Corollary 29. When d = Ω(nc) with some constant c > 0, the time complexity in The-
orem 28 can be improved to O(nd logn

ε2 log d +n×poly(logn)) = O(nd), where the hiding constant
depends on c, ε and δ.
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