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Abstract
We describe an O(nd) time algorithm for computing the exact probability that two d-dimensional
probabilistic point sets are linearly separable, for any fixed d ≥ 2. A probabilistic point in d-space
is the usual point, but with an associated (independent) probability of existence. We also show
that the d-dimensional separability problem is equivalent to a (d + 1)-dimensional convex hull
membership problem, which asks for the probability that a query point lies inside the convex hull
of n probabilistic points. Using this reduction, we improve the current best bound for the convex
hull membership by a factor of n [6]. In addition, our algorithms can handle “input degeneracies”
in which more than k + 1 points may lie on a k-dimensional subspace, thus resolving an open
problem in [6]. Finally, we prove lower bounds for the separability problem via a reduction
from the k-SUM problem, which shows in particular that our O(n2) algorithms for 2-dimensional
separability and 3-dimensional convex hull membership are nearly optimal.
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1 Introduction

Multi-dimensional point sets are a commonly used abstraction for modeling and analyzing
data in many domains. The ability to leverage familiar geometric concepts, such as nearest
neighbors, convex hulls, hyperplanes, or partitioning of the space, is both a powerful intuition-
builder and an important analysis tool. As a result, the design of useful data structures
and algorithms for representing, manipulating, and querying these kinds of data has been a
major research topic not only in computational geometry and theoretical computer science
but also many applied fields including databases, robotics, graphics and vision, data mining,
and machine learning.

Many newly emerging forms of multi-dimensional data, however, are “stochastic”: the
input set is not fixed, but instead is a probability distribution over a finite population. A
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38:2 Hyperplane Separability and Convexity of Probabilistic Point Sets

leading source of these forms of data is the area of machine learning, used to construct
data-driven models of complex phenomena in application domains ranging from medical
diagnosis and image analysis to financial forecasting, spam filtering, fraud detection, and
recommendation systems. These machine-learned models often take the form of a probability
distribution over some underlying population: for instance, the model may characterize users
based on multiple observable attributes and attempt to predict the likelihood that a user
will buy a new product, enjoy a movie, develop a disease, or respond to a new drug.

In these scenarios, the model can often be viewed as a multi-dimensional probabilistic
point set in which each point (user) has an associated probability of being included in the
sample. More formally, a probabilistic point is a tuple (p, π), consisting of a (geometric) point
p ∈ IRd and its associated probability π, with 0 < π ≤ 1. (We assume the point probabilities
are independent, but otherwise put no restrictions on either the values of these probabilities
or the positions of the points.) We are interested in computing geometric primitives over
probabilistic data models of this kind. For instance, how likely is a particular point to be a
vertex of the convex hull of the probabilistic input set? Or, how likely are two probabilistic
data sets to be linearly separable, namely, lie on opposite sides of some hyperplane? The
main computational difficulty here is that the answer seems to require consideration of an
exponential number of subsets: by the independence of point probabilities, the sample space
includes all possible subsets of the input. For instance, the probability that a point z lies on
the convex hull is a weighted sum over exponentially many possible subsets for which z lies
outside the subset’s convex hull. These “counting type problems” are typically #P -hard [31].
Indeed, many natural graph problems that are easily solved for deterministic graphs, such as
connectivity, reachability, minimum spanning tree, etc., become intractable in probabilistic
graphs [27], and in fact they remain intractable even for planar graphs [30] or geometric
graphs induced by points in the plane [20]. Our work explores to what extent the underlying
(low-dimensional) geometry can be leveraged to avoid this intractability.

Our contributions

The hyperplane separability problem for probabilistic point sets is the following. Given two
probabilistic points sets A and B in Rd with a total of n points, compute the probability that
a random sample of A can be separated from a random sample of B by a hyperplane. One
can interpret this quantity as the expectation of A and B’s linear separability. (Throughout
the paper, we use hyperplane separability interchangeably with linear separability.) Because
separability by any fixed degree polynomial is reducible to hyperplane separability, using
well-known linearization techniques, our approach can be used to determine separability by
non-linear functions such as balls or ellipsoids as well.

The convex hull membership problem asks for the probability that a query point p
lies inside the convex hull of a random sample of a probabilistic point set A. This is the
complement of the probability that p is an extreme point (convex hull vertex) of A ∪ {p}.
Finally, the halfspace intersection problem asks for the probability that a set of d-dimensional
halfspaces, each appearing with an independent probability, has a non-empty common
intersection.

Throughout, we focus on problems in dimensions d ≥ 2; their 1-dimensional counterparts
are easily solved in O(n logn) time. Our main results can be summarized as follows.
1. We present an O(nd) time and O(n) space algorithm for computing the hyperplane

separability of two d-dimensional probabilistic point sets with a total of n points. The
same bound also holds for the oriented version of separability, in which the halfspace
containing one of the sets, say A, is prespecified.
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2. We prove that the d-dimensional separability problem is at least as hard as the (d+ 1)-
SUM problem [9, 16, 17, 18], which implies that our O(n2) bound for d = 2 is nearly
tight. (The 3-SUM problem is conjectured to require Ω(n2−o(1)) time [22].) When the
dimension d is non-constant, we show that the problem is #P -hard.

3. We show that the convex hull membership problem in d-space has a linear-time reduction
to a hyperplane separability problem in dimension (d− 1), and therefore can be solved in
time O(nd−1), for d ≥ 3, improving the previous best bound of Agarwal et al. [6] by a
factor of n. Our lower bound for separability implies that this bound is nearly tight for
d = 3.

4. We show that the non-empty intersection problem for n probabilistic halfspaces in d

dimensions can be solved in time O(nd). Equivalently, we compute the exact probability
that a random sample from a set of n probabilistic linear constraints with d variables has
a feasible solution.

5. Finally, our algorithms can cope with input degeneracies. Thus, for the convex hull
membership problem, our result simultaneously improves the previous best running
time [6] as well as eliminates the assumption of general position.

Related work

The topic of algorithms for probabilistic (uncertain) data is a subject of extensive and
ongoing research in many areas of computer science including databases, data mining,
machine learning, combinatorial optimization, theory, and computational geometry [7, 8, 19].
We will only briefly survey the results that are directly related to our work and deal
with multi-dimensional point data. Within computational geometry and databases, a
number of papers address nearest neighbor searching, indexing and skyline queries under the
locational uncertainty model in which the position of each data point is given as a probability
distribution [1, 2, 3, 4, 5, 10, 23, 26], as well as separability by a line in the plane [13].

The uncertainty model we consider, in which each point’s position is known but its
existence is probabilistic, has also been studied in a number of papers recently. The problem
of computing the expected length of the Euclidean minimum spanning tree (MST) of n
probabilistic points is considered in [20], and shown to be #P -hard even in two dimensions.
The closest pair problem and nearest neighbor searching for probabilistic points are considered
in [21]. Suri, Verbeek, and Yıldız [29] consider the problem of computing the most likely
convex hull of a probabilistic point set, give a polynomial-time algorithm for dimension d = 2,
but show NP-hardness for d ≥ 3. The complexity of the most likely Voronoi diagram of
probabilistic points has been explored by Suri and Verbeek [28], and also by Li et al. [24]. In
the work most closely related to ours, Agarwal et al. [6] consider a number of problems related
to probabilistic convex hulls, including the convex hull membership probability. Their main
result is an O(nd)-time algorithm for computing the probability of convex hull membership,
but it only works for points satisfying the following non-degeneracy condition: the projection
of no k+1 points on a subspace spanned by any k coordinates may lie on a (k−1)-dimensional
hyperplane, for any 2 ≤ k ≤ d. Our new algorithm improves the running time by a factor of
n as well as eliminates the need for non-degeneracy assumptions.

2 Separability of Probabilistic Point Sets

2.1 Preliminaries
A probabilistic point is a tuple (p, π), consisting of a (geometric) point p ∈ IRd and its
associated probability π, with 0 < π ≤ 1. For notational convenience, we denote a set of

SoCG 2016
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probabilistic points as P = {p1, p2, . . . , pn} with an implicit understanding that π(pi) is the
probability associated with pi. We assume that the point probabilities are independent but
otherwise place no restrictions on either the values of these probabilities or the positions of
the points. We are interested in computing how often certain geometric properties occur for
sets of probabilistic points. This requires reasoning about random samples in which each
point p is drawn according to its probability π(p). In particular, a fixed subset A ⊆ P occurs
as a random sample with probability

Pr
[
A
]

=
∏
p∈A

π(p) ·
∏
p/∈A

(1− π(p)).

The central problem of our paper is to compute the probability that two probabilistic
point sets A and B are linearly separable. We say that two sample sets A ⊆ A and B ⊆ B
are linearly separable if there exists a hyperplane H for which A and B lie in different (open)
halfspaces of H. The open halfspace separation means that no point of A ∪ B lies on H,
thus enforcing a strict separation. When there is no loss of generality, we assume that A
lies above H, namely in the positive halfspace, and B lies below H. For ease of reference, we
define an indicator function σ(A,B) for linear separability:

σ(A,B) =
{

1 if A,B are linearly separable
0 otherwise.

We assume σ(∅, ∅) = 1 to handle the trivial case. Given two probabilistic point sets A and
B, their separation probability is the joint sum over all samples:

Pr
[
σ(A,B)

]
=

∑
A⊆A,B⊆B

Pr
[
A
]
·Pr

[
B
]
· σ(A,B)

This is also the expectation of the random variable σ(A,B). Because each sample pair is
deterministic, we can decide its linear separability in O(n) time using fixed-dimensional
linear programming algorithms of Megiddo or Clarkson [11, 25]. We can, therefore, estimate
Pr
[
σ(A,B)

]
in polynomial time by drawing many samples A,B and returning the fraction

of separable samples, but we are interested in the complexity of computing this quantity
exactly. We begin our discussion by describing a reduction to a special kind of separability.

2.2 Reduction to Anchored Separability
A natural idea is to compute the sum Pr

[
σ(A,B)

]
by considering the O(nd) combinatorially

distinct separating hyperplanes induced by the points of A ∪ B. However, two point sets
may be separable by many different hyperplanes, so we need to ensure that the probability
is assigned to a unique canonical hyperplane.1 Our main insight is the following: if we
introduce an extra point z into the input, then the canonical hyperplane can be defined
uniquely (and computed efficiently) with respect to z: in particular, we prove that the
separating hyperplane at maximum distance from z is a canonical one. We call this artificially
added point z the anchor point.

How does the true separation probability, namely Pr
[
σ(A,B)

]
, relate to this anchored

separability that includes an artificially added point anchor? It turns out the former can be
calculated from two instances of the latter and one lower dimensional instance of the former.

1 Dualizing the points to hyperplanes can simplify the enumeration of separating planes for the summation
but does not address the over-counting problem.
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Figure 2 Proof of Lemma 3.

We initially assume that the input points are in general position, namely, no k + 1 points
of A ∪ B are affinely dependent for k ≤ d, but revisit the degeneracy problem in Section 4.
Without loss of generality, we also assume that all points have positive dth coordinate, and
therefore lie above the hyperplane xd = 0. Let the anchor point z be a point that lies above
all the points of A∪B and is in general position with them. The probability of z is π(z) = 1,
so it is always included in the sample.

If A ⊆ A and B ⊆ B are two random samples and H a hyperplane separating them, then
clearly z lies either (i) on the same side as A, (ii) on the same side as B, or (iii) on the
hyperplane H. The cases (i) and (ii) are symmetric, and can be handled by including the
anchor point once in A and once in B, but unfortunately they are not disjoint: A and B
may admit separating hyperplanes with z lying on either side. Fortunately, the following
lemma shows that this duplication of probability is precisely accounted for by case (iii).
Finally, Lemma 3 shows that case (iii) itself is an instance of hyperplane separability in a
lower dimension.

I Lemma 1. Let z be the anchor point. Then there exist separating hyperplanes H1, H2 with
z lying on the same side of H1 as A but on the same side of H2 as B if and only if there is
another hyperplane H that passes through z and separates A from B.

Proof. In the forward direction, if either H1 or H2 passes through z, we are done, so let us
assume that neither contains z. Without loss of generality, assume that both hyperplanes
contain A on their positive side, and B on their negative side. Thus, we have A ⊂ H+

1 ∩H
+
2

and B ⊂ H−1 ∩H
−
2 . It follows that there are no points of A ∪B in the region of the space

Φ = IRd \
(
(H+

1 ∩H
+
2 ) ∪ (H−1 ∩H

−
2 )
)
. On the other hand, the anchor point z must lie in Φ

because it lies on different sides of H1 and H2. See Figure 1 for illustration.
If H1 and H2 are parallel, then a hyperplane passing through z and parallel to H1 is a

separator, and we are done. On the other hand, if H1 and H2 intersect in a (d−2)-dimensional
subspace, then we choose H as the hyperplane through z containing this subspace. This
hyperplane lies in Φ, contains H+

1 ∩ H
+
2 and H−1 ∩ H

−
2 on opposite sides, and thus is a

separating hyperplane for A and B.
To prove the reverse direction of the lemma statement, given a separating hyperplane

H passing through z, we simply move H parallel to itself slightly, once toward A and once
toward B. This completes the proof. J

Thus, event (iii) is precisely the intersection of events (i) and (ii). In the remainder of the
paper, for notational convenience, we use P + z for the probabilistic point set P ∪ {(z, 1)},
where z is the anchor point with associated probability π(z) = 1. Let Pr

[
σ(z,A,B)

]
denote

the probability that sets A and B are linearly separable by a hyperplane passing through the
anchor point z. Then, the preceding lemma gives the following result.

I Lemma 2. Given two probabilistic point sets A and B, we have the following equality:

Pr
[
σ(A,B)

]
= Pr

[
σ(A+ z,B)

]
+ Pr

[
σ(A,B + z)

]
−Pr

[
σ(z,A,B)

]
.

SoCG 2016
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Computing the probabilities Pr
[
σ(A+ z,B)

]
and Pr

[
σ(A,B + z)

]
requires solving two

instances of anchored separability, once with z included in A and once in B. This leaves the
last term Pr

[
σ(z,A,B)

]
, which as the following lemma shows can be reduced to an instance

of separability in dimension d− 1.
Consider any sample A ⊆ A and B ⊆ B. We centrally project all these points onto the

hyperplane xd = 0 from the anchor point z: that is, the image of a point p ∈ IRd is the point
p′ ∈ IRd−1 at which the line connecting z to p intersects the hyperplane xd = 0. Observe
that all points of A ∪ B have a well-defined projection because z lies above all of them.

I Lemma 3. Let A ⊆ A and B ⊆ B be two sample sets, and let A′, B′ be their projections
onto xd = 0 with respect to z. Then A and B are separable by a hyperplane passing through
z if and only if A′ and B′ are linearly separable in xd = 0.

Proof. First, suppose there is a hyperplane H passing through z that separates A and B.
We may assume that H is not parallel to xd = 0; otherwise, rotate the input slightly. The
intersection of H with xd = 0 is a hyperplane H ′ in the (d− 1)-dimensional subspace xd = 0.
See Figure 2. Clearly, the projection of each point p lies on the same side of H as does p.
Since H separates A from B, it follows that H ′ separates A′ from B′.

Conversely, suppose H ′ separates A′ from B′ in xd = 0. The hyperplane H spanned by
H ′ and z clearly separates A′ from B′ in IRd. Since each point p lies on the same side of H
as its projection, the point sets A and B are also separated by H. J

3 Computing Anchored Separability

We now describe our main technical result: efficiently computing the separation probability
of two probabilistic sets when one of the sets contains the anchor point z. Without loss of
generality, we explain how to compute Pr

[
σ(A+ z,B)

]
. We can restrict our search to the

O(nd) “combinatorially distinct” hyperplanes induced by the set of points A ∪ B. Indeed,
any free hyperplane can be translated and rotated until it passes through d distinct points
of the input, without changing the closed halfspace membership of any point. Conversely,
any hyperplane that contains A and B on opposite closed halfspaces and passes through at
most d points can be translated and rotated until the same separation is realized by open
halfspaces. (Recall that the input set of points, including the anchor z, is assumed to be in
general position. We discuss how to handle degeneracies in Section 4.)

Given a hyperplane H, we can easily compute the probability that A + z lies in H+

and B lies in H−. The separation probabilities for different hyperplanes, however, are not
independent: a sample A ⊆ A, B ⊆ B may be separated by many different hyperplanes,
and the algorithm needs to “assign” each separable sample to a unique hyperplane. We
will assign a canonical separator for every pair (A + z,B) of separable samples and then
sum the probabilities over all possible canonical separators. Geometrically, our canonical
separator is the hyperplane that separates A + z from B and lies at maximum distance
from the anchor z. Before we formalize the definition of a canonical separator and prove its
uniqueness (cf. Section 3.2), we need the following important concept of a shadow cone.

3.1 The Shadow Cone
Given two points u, v ∈ IRd, let shadow(u, v) = {v+λ(v−u) | λ ≥ 0} be the ray originating
at v and directed along the line uv away from u. (If we place a light source at u, then this is
the shadow cast by the point v.) Let CH (P ) denote the convex hull of a point set P . Given
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C(A,B)

Figure 3 A shadow cone in two dimensions.

two sets of points A and B, with A ∩ B = ∅, we define their shadow cone C(A,B) as the
union of shadow(u, v) for all u ∈ CH (A) and v ∈ CH (B).

In other words, if we place light sources at all points of CH (A), then C(A,B) is the
shadow cast by the convex hull CH (B). (The shadow cone C(A,B) includes both umbra
and penumbra of the shadow.) In the trivial case of A = ∅, we define C(∅, B) to be the same
as CH (B). Figure 3 gives an illustration in two dimensions.

I Lemma 4. The shadow cone C(A,B) is a (possibly unbounded) convex polytope, and if
A and B are nonempty, C(A,B) is the convex hull of the union of shadow(u, v), for all
u ∈ A, v ∈ B.

Each face of C(A,B) is defined by a subset of (at most d) points in A ∪ B, and the
defining set always includes at least one point of B. When all the points defining the face
are in B, the face must be a (bounded) face of CH (B); otherwise, it is an unbounded face.
(See Figure 3.) We will use the following simple but important fact: if u is a point of A
and p ∈ CH (B), then shadow(u, p) is contained in C(A,B). We are now ready to state and
prove the important connection between the shadow cone and hyperplane separability of two
subsets A ⊆ A and B ⊆ B, with A ∩B = ∅.

I Lemma 5. A+ z and B can be separated by a hyperplane if and only if z 6∈ C(A,B).

Proof. First, suppose there is a separating hyperplane H with A+ z ⊂ H+ and B ⊂ H−.
Then, we must also have C(A,B) ⊂ H− because the shadow cone lies on the same side of H
as B. Since z ∈ H+ by assumption, this implies z 6∈ C(A,B).

For the converse, we assume z 6∈ C(A,B) and exhibit a separating hyperplane. Let
p ∈ C(A,B) be the point in the shadow cone with minimum distance to the anchor z. Then
the hyperplane H passing through p and orthogonal to the vector p− z necessarily has z and
the shadow cone on opposite sides, which follows from the convexity of C(A,B): if z ⊂ H+,
then C(A,B) is in the closure of the halfspace H−. See Figure 4a.

It still remains to show that we can achieve open half-space separability of the sets A+ z

and B. This depends crucially on the assumption of general position—indeed, if degeneracies
exist, z 6∈ C(A,B) is not sufficient to prove strict separability. First, observe that no point
of A can be in the open halfspace H−. If such a point u ∈ A were to exist, then the ray
shadow(u, p) would be contained in C(A,B), and there is a point on this ray that is closer
to z than p, contradicting the minimality of p. See Figure 4b.

Because H is a supporting hyperplane of the shadow cone, the intersection F = H ∩
C(A,B) is a face of C(A,B). Let I = A ∩H and J = B ∩H be the subsets of the sample
points defining F (at most d due to general position). Since F contains at least one point of
B, we have |J | ≥ 1 and, therefore, |I| < d. Because no point of J is contained in the affine
span of I by our non-degeneracy assumption, we can perform an infinitesimal rotation of H
around the subface determined by I in the direction of z, so that all points of J (and thus

SoCG 2016
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z
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C(A,B)

H+H−

(a) The separator H.
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H
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C(A,B)

shadow(u, p)

u
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(b) shadow(u, p) contains a point closer to z.

Figure 4 Illustration for the proof of Lemma 5.

B) lie in the open halfspace H−. We then can translate the hyperplane by an infinitesimal
amount away from z to ensure that all points of I (and thus A) lie in the open halfspace
H+. We now have a hyperplane whose open halfspaces separate the sample sets. J

3.2 Canonical Separating Hyperplanes
By Lemma 5, sets A+ z and B can be separated by a hyperplane if and only if z 6∈ C(A,B).
Since C(A,B) is a convex set, there is a unique nearest point p = np(z,C(A,B)) on the
boundary of C(A,B) with minimum distance to z. We define our canonical hyperplane
H(z,A,B) as the one that passes through p and is orthogonal to the vector p−z. Indeed, the
proof of Lemma 5 already argues that H(z,A,B) is a separating hyperplane in the sense that
with infinitesimal rotation and translation it achieves open half-space separation between
A+ z and B.

Our main idea now is to turn the separation question around and instead of asking
“which hyperplane separates a particular sample pair A,B,” we ask “for which pairs of
samples A,B is H a canonical separator?” The latter formulation allows us to compute the
separation probability Pr

[
σ(A+ z,B)

]
by considering at most O(nd) possible hyperplanes.

The following lemmas encapsulate our definition of canonical separators.

I Lemma 6. Let C be a d-dimensional convex polyhedron and z a point not contained in C.
Then there is a unique point p ∈ C that minimizes the distance to z, and a unique face of C
whose relative interior contains p.

I Lemma 7. Let C be a d-dimensional convex polyhedron, z a point not contained in C,
and p the point of C at minimum distance from z. If p lies in the relative interior of the
face F of C, then the hyperplane H through p that is orthogonal to p− z contains F . This
hyperplane contains C in one of its closed halfspaces, and is the hyperplane farthest from z

with this property.

3.3 The Algorithm
Consider a random sample of input points A∪B such that A+z and B are linearly separable.
By Lemma 5, we know that z 6∈ C(A,B). Since C(A,B) is a convex polyhedron, there is
a unique face F with p = np(z,C(A,B)) in its relative interior, by Lemma 6. Finally, by
Lemma 7, F lies in the canonical hyperplane H(z,A,B), which is the hyperplane passing
through p and orthogonal to p− z.

We now consider the defining set of F , which consists of two subsets I ⊆ A and J ⊆ B,
with |I ∪ J | ≤ d and |J | ≥ 1. It follows from the definition of the shadow cone that
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F = C(I, J). If F is finite, then it is the convex hull of its vertices, all of which belong to B,
so I = ∅ and F = CH (J) = C(I, J). On the other hand, if F is unbounded, it is the convex
hull of its finite vertices and a constant number of shadow rays. If F has dimension k, general
position implies that its affine span includes exactly k+ 1 vertices of A∪B. F is the shadow
hull of these k + 1 vertices, which constitute sets I and J .

Since F is the face of smallest dimension in C(A,B) containing p in its relative interior,
we conclude that I∪J is the smallest subset of A∪B for which p lies in the relative interior of
C(I, J). Equivalently, I ∪J is the smallest subset of A∪B for which the canonical hyperplane
H(z, I, J) is the same as H(z,A,B). Note that these sets are unique since the input is in
general position.

This last property is the key to our algorithm: we simply enumerate all subsets I ⊆ A and
J ⊆ B, with |I ∪ J | ≤ d and |J | ≥ 1, and assign to the hyperplane H(z, I, J) the separation
probability of all those samples A ∪ B that are separable and for which H(z, I, J) is the
canonical separator H(z,A,B). In particular, let us define the following function for the
probability that the points defining the hyperplane H(z, I, J) are in the sample and none of
the remaining points of A ∪ B lies on its incorrect side.

Pr
[
H(z, I, J)

]
=

∏
u∈I∪J

π(u) ·
∏

u∈A∩H−

(1− π(u)) ·
∏

u∈B∩H+

(1− π(u)).

The first term in the product is the joint probability that all points of I ∪ J are in the
sample, while the second and third terms are the probabilities that none of the points of A
(resp. B) that lie in the negative halfspace (resp. positive halfspace) of H(z, I, J) are chosen.

Finally, to decide whether H(z, I, J) is the canonical hyperplane for a sample, we just
need to check if the point closest to z in C(I, J) lies in the relative interior of C(I, J). The
following algorithm AnchoredSep implements this construction.

Algorithm AnchoredSep:
Input: The point sets A+ z and B
Output: Their separation probability α = Pr

[
σ(A+ z,B)

]
α =

∏
u∈B(1− π(u)) ;

forall I ⊆ A, J ⊆ B where |I ∪ J | ≤ d, J 6= ∅ do
let p = np(z,C(I, J));
if p lies in the relative interior of C(I, J) then

α = α+ Pr
[
H(z, I, J)

]
;

return α;

I Theorem 8. AnchoredSep correctly computes the probability Pr
[
σ(A+ z,B)

]
.

Proof. The initial assignment α =
∏
u∈B(1− π(u)) accounts for the trivial case when none

of the points of B is present. The separation probability of any other outcome is associated
with the minimal defining set I ∪ J , and computed exactly once within the forall loop. J

3.4 Implementation in O(nd) Time and O(n) Space
A naïve implementation of Algorithm AnchoredSep runs in O(nd+1) time and O(n) space:
there are O(nd) subset pairs I ⊆ A, J ⊆ B with |I ∪ J | ≤ d, J 6= ∅, and evaluating
Pr
[
H(z, I, J)

]
for each one individually takes O(n) time. We show how to reduce the

average evaluation time to O(1) per subset pair, which reduces the overall running time to
O(nd). The main result of our paper can be stated as follows.
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I Theorem 9. Let A,B ⊆ IRd be two probabilistic sets of n points in general position, for
d ≥ 2. We can compute their probability of hyperplane separation Pr

[
σ(A,B)

]
in O(nd)

worst-case time and O(n) space.

Proof. We compute the separation probability for all subsets I, J with |I ∪ J | < d explicitly
by the naïve algorithm. This takes O(n) time for each of O(nd−1) subset pairs, for a total
time of O(nd). To handle subset pairs with |I ∪ J | = d, we process instances in linear-size
groups. Let A ∪ B = P = {p1, . . . , pn}. We group d-element subsets of P according to their
(d− 1)-subsets with smallest indices, as follows. For each (d− 1)-element subset P ⊆ P, let
pk be the element with maximum index. For each p ∈ P>k = {pk+1, . . . , pn}, we compute
Pr
[
H(z, I, J)

]
for I ∪ J = P ∪ {p}. As we show below, this can be done in O(n) time for

each (d− 1)-subset of P, for a total bound of O(nd).
The d − 1 points in P define a (d − 2)-dimensional subspace. The n − d + 1 points in

P = P \ P can be rotationally ordered around this subspace. For the moment, let us assume
this rotational order is known. If p0 is an arbitrary element of P , we compute Pr

[
H(z, I, J)

]
in O(n) time for I ∪J = P ∪{p0}. We then process the points of P in rotational order. Each
point p contributes a multiplicative factor to Pr

[
H(z, I, J)

]
: π(p) if p ∈ I ∪ J , (1 − π(p))

if p ∈ ((A ∩ H−) ∪ (B ∩ H+)), and 1 otherwise. When H rotates from one point p ∈ P
to the next, the multiplicative factors for those two points change, and we can update
Pr
[
H(z, I, J)

]
with two multiplications and two divisions. Whenever the conditions for

acceptance of I, J are met—J 6= ∅, H ∩ P>k 6= ∅, np(z,C(I, J)) is in the relative interior of
C(I, J)—then we add Pr

[
H(z, I, J)

]
to the separation probability.

If we compute the rotational order of the points in P by sorting, we spend O(n logn)
time per (d− 1)-subset of P, for a total running time of O(nd logn). To do better, we use
the ideas of duality [12] and topological sweep [14]. Duality is an order-preserving, invertible
mapping between points and hyperplanes in IRd. Each point p ∈ P dualizes to a hyperplane
p∗, and the hyperplane H spanning d points p1, . . . , pd dualizes to the point H∗ in dual space
that is the intersection of the d hyperplanes p∗1, . . . , p∗d. A subset P ⊆ P with |P | = d − 1
dualizes to a line `, and the rotational order of P (as defined above) around the (d − 1)-
dimensional subspace defined by P corresponds exactly to the order of intersections of the
dual hyperplanes p∗ (for p ∈ P ) with the dual line `.

Ordering intersections along a line is still a sorting problem, but we can reduce the time
by a logarithmic factor by considering arrangements of lines in two-dimensional planes. We
consider all subsets P ⊆ P with |P | = d − 2. Let pk be the maximum-index point in a
given P , and define P>k = {pk+1, . . . , pn}, as above. The intersection ∩p∈P p∗ is a dual
plane Q, and the intersection of Q with each p∗, for p ∈ P , is a line. We use topological
sweep [14] to visit the vertices of the arrangement of these n− d+ 2 lines in order along each
line. We initialize Pr

[
H(z, I, J)

]
at the first vertex of each line, then update it in constant

time per vertex during the sweep. At every vertex corresponding to two points in P>k, if
the acceptance criteria are met, we add the corresponding Pr

[
H(z, I, J)

]
to the separation

probability. Topological sweep takes linear space and O(n2) time for each of the O(nd−2)
subsets P ⊆ P with |P | = d− 2, so the total processing time is O(nd), and the total space is
O(n), for solving anchored separability. Since general separability is solved by two instances
of anchored separability and a (d− 1)-dimensional instance of general separability (that is
solved recursively), this establishes the main result of our paper. J

4 Handling Input Degeneracies

Our algorithm so far has relied on the assumption that the input points or hyperplanes are
in general (non-degenerate) position. That is, no (k + 2) points lie on a k-dimensional affine
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space, or no k + 1 hyperplanes meet in a (d− k)-dimensional subspace. These assumptions,
while convenient for theory, are rarely satisfied in practice. They are especially troublesome
in our analysis because of the need to define unique canonical sets. Indeed, when the input
is degenerate, the need to choose a single canonical subset is the reason why the convex hull
membership algorithm of [6] does not work—there is no efficient way to isolate witness faces.
In this section, we show how to handle inputs that are not in general position.

Let us consider computing the probability of anchored separability Pr
[
σ(A+ z,B)

]
when

the input sets are in a degenerate position. Our characterization of separable instances using
shadow cones, Lemma 5, fails in the presence of degeneracy. As a concrete example, consider
the case when B ⊆ B consists of a single point that lies in the convex hull of points A ⊆ A,
and all points of A ∪B lie on a hyperplane that does not contain z. Although z lies outside
C(A,B), we clearly cannot separate A+ z from B.

To address the problem of degenerate inputs, we apply a symbolic perturbation to the
points. Part of our solution is standard Simulation of Simplicity [15], but the more important
part is problem-specific. We convert degenerate non-separable samples into non-degenerate
samples that are still non-separable. We first choose the anchor z above all points in
P = A∪B and outside the affine span of every d-tuple of P . This can be done in O(nd) time.
For each point a ∈ A, we define a perturbed point a′ = a+ ε · (a− z), for an infinitesimal
ε > 0. This point lies on the line supporting az, but slightly farther from z than a. Similarly,
for each b ∈ B, define b′ = b+ ε · (z− b), a point contained in bz, but slightly closer to z than
b. Let A′,B′ be the sets of perturbed points corresponding to A and B.

I Lemma 10. Let A ⊆ A and B ⊆ B be two sample sets, and let A′, B′ be the corresponding
perturbed sets. Then A+ z and B are strictly separable by a hyperplane if and only if A′ + z

and B′ are. Furthermore, if some hyperplane H with z /∈ H is a non-strict separator of
A′ + z and B′ for some ε, then H is a strict separator for any ε0 < ε.

Proof. First, suppose A+z and B are strictly separable by a hyperplane H, with A+z ⊆ H+.
Let δ be the minimum distance between H and any point in A ∪ {z} ∪B, and let ∆ be the
maximum distance between z and any point in A ∪B. The choice of any ε < δ/∆ ensures
that A′ + z ⊆ H+ and B′ ⊆ H−. Conversely, if A′ + z ⊆ H+ and B′ ⊆ H−, then a fortiori
A+ z ⊆ H+ and B ⊆ H− because each a is closer to z than a′ and each b is farther from z

than b′ (and hence farther from H).
To prove the second part of the lemma, we simply note that if any point of A′ ∪B′ lies

on the separating hyperplane H, choosing any ε0 < ε moves the point off of H and into the
desired halfspace. This completes the proof. J

We apply Simulation of Simplicity [15] to the point sets A′ and B′, with the symbolic
perturbation of each point chosen to be of smaller order than the ε perturbation applied
to produce A′ and B′. Simulation of Simplicity breaks any remaining degeneracies in the
point set, so Lemma 5 holds and the algorithm of Section 3 works without modification.
By Lemma 10, every separable point set in the symbolically perturbed data corresponds to
a separable point set in the original data, and vice versa, so the Simulation of Simplicity
computation correctly solves the original problem.

I Theorem 11. Let A,B ⊆ IRd be two probabilistic sets of n points, possibly in degenerate
position, for d ≥ 2. We can compute Pr

[
σ(A,B)

]
, their probability of hyperplane separation,

in O(nd) worst-case time and O(n) space.
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5 Lower Bounds

In this section we argue that the running time of any algorithm that computes the probability
of hyperplane separability must have an exponential dependence on dimension d. For any
fixed d, we show that the separability problem is at least as hard as the k-SUM problem for
k = d+ 1. The proof of this result is interesting in that it uses Simulation of Simplicity [15],
a technique for removing geometric degeneracies, as a means to detect degeneracies. In
addition, we show that the problem is #P -hard when d = Ω(n).

The k-SUM problem is a generalization of 3-SUM, which is a classical hard problem
in computational geometry [9, 16, 17, 18]. The current conjectures state that the 3-SUM
problem requires time at least Ω(n2−o(1)) [17, 18, 22], and that the k-SUM problem, for
k > 3, has a lower bound of Ω(ndk/2e) under some models of computation [9, 16, 17, 18]. We
use the following variant of the k-SUM problem:

Problem k-SUM: Given k sets containing a total of n real numbers, grouped into
a single set Q and k − 1 sets R1, R2, . . . , Rk−1, determine whether there exist k − 1
elements ri ∈ Ri, one per set Ri, and an element q ∈ Q such that

∑k−1
i=1 ri = q.

I Theorem 12. The d-dimensional hyperplane separability problem is at least as hard as
(d+ 1)-SUM.

Proof. Let P be a regular (d − 1)-simplex, embedded in the hyperplane xd = 0 in IRd.
Let p1, p2, . . . , pd be the vertices of P , and let c be its barycenter. Given an instance
(Q,R1, R2, . . . , Rd) of (d+ 1)-SUM, we define d+ 1 sets of d-dimensional points, one for each
of the input sets, as follows. The sets Bi = {pi + (0, . . . , 0, r) | r ∈ Ri} correspond to the
input sets Ri, for i = 1, 2, . . . , d; let B = ∪iBi. The set A = {c + (0, . . . , 0, q/d) | q ∈ Q}
corresponds to the input set Q. Finally, add one extra point z to A that is higher than all
other points (to serve as anchor) and lies on the same line as all points of A. All points in
A∪B lie on d+ 1 parallel lines perpendicular to the hyperplane xd = 0. By construction, the
(d+ 1)-SUM instance has a TRUE value if and only if there exists a hyperplane H defined
by d vertices, one from each set Bi, and a vertex a ∈ A, where a 6= z, that lies in H.

We solve the separability problem twice, for two symbolically perturbed versions of A
and B. In particular, let v be the unit vector in direction xd. For a given real parameter
ε > 0, denote by A+ε the set {a+ εv | a ∈ A}; this is the result of slightly shifting the entire
set A in direction v. Define sets A−ε, B+ε, and B−ε analogously.

We assign every point in A∪B a probability of 1/2, except z, which is assigned probabil-
ity 1. We then compute the probability that A+ε is separable from B−ε by a non-vertical
hyperplane H. We use Simulation of Simplicity [15] to compute the result for an infinitesimal
perturbation value ε. An algorithm with running time T (n) on ordinary points will run in
time O(T (n)) on the symbolically perturbed points. Similarly, we compute the probability
of separability for A−ε and B+ε.

If there exists a hyperplane defined by d points of B that contains a point of A, then
the probability values returned by the two computations will differ—the (d + 1)-tuple is
strictly separable in (A+ε,B−ε) and strictly not separable in (A−ε,B+ε) (because z must
lie above the hyperplane). If no such hyperplane exists, then the probability values will be
equal, because the only sets A ⊆ A, B ⊆ B whose separation probabilities are affected by
the perturbation are those containing such a hyperplane.

By computing a separation probability twice, we solve an instance of (d+ 1)-SUM: the
(d + 1)-SUM instance is TRUE if and only if the two probabilities are not equal. Thus
d-dimensional probabilistic separability is at least as hard as (d+ 1)-SUM. J
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Figure 5 Projection from convex hull membership to separability.

The reduction from (d+1)-SUM to our problem is evidence that the algorithm of Section 3
is nearly optimal in two dimensions, and that an algorithm with running time no(d) is unlikely
for d > 2. Finally, we prove that the problem is #P -hard if d can be as large as Ω(n).

I Lemma 13. Computing Pr
[
σ(A,B)

]
is #P -hard if the dimension d is not a constant.

Proof. We reduce the #P -hard problem of counting independent sets in a graph [31] to the
separability problem. Consider an undirected graph G = (V,E) on the vertex set {1, 2, . . . , n}.
For each i, we construct an n-dimensional point ai as the unit vector along the ith axis. The
collection of points {a1, . . . , ai, . . . , an}, each with associated probability πi = 1/2, is our
point set A. Next, for each edge e = (i, j) ∈ E, we construct a point bij at the midpoint of
the line segment connecting ai and aj . The set of points bij , each with associated probability
1, is the set B. It is easy to see that there is a one-to-one correspondence between separable
subsets of A∪B and the independent sets of G. Each separable sample occurs precisely with
probability (1/2)n, and therefore we can count the number of independent sets using the
separation probability Pr

[
σ(A,B)

]
. J

6 Convexity, Halfspace Emptiness and Related Problems

Given the fundamental role of hyperplanes in geometry, it is not surprising that many other
problems can be reduced to hyperplane separability of points, possibly in a transformed
space. In the following, we discuss a few sample problems that can be solved by reducing
them to hyperplane separability of point sets.

Convex Hull Membership

Given a probabilistic set of points P, the convex hull membership probability of a query
point z is the probability that z lies in the convex hull of P. We write this as

Pr
[
z ∈ CH (P)

]
=

∑
P⊆P, z∈CH(P )

Pr
[
P
]
.

Without loss of generality, assume that the query point is z = (0, 0, . . . , 0, 1). We further
assume that none of the points of P has dth coordinate equal to 1, which is easily achieved
by a rotation of the space. As a result, none of the lines pz, for p ∈ P, is parallel to the
hyperplane xd = 0.

Given a point p ∈ P, we define its central projection as the point p′ at which the line pz
meets the plane xd = 0; see Figure 5. Let set A (resp. B) be the central projections of all
those points in P with xd > 1 (resp. with xd < 1), where each point inherits the associated
probability of its corresponding point in P . The sets A and B are sets of (d− 1)-dimensional
probabilistic points, with |A|+ |B| = n. We get the following relation.
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I Lemma 14. Pr
[
z ∈ CH (P)

]
= 1−Pr

[
σ(A,B)

]
.

Thus, convex hull membership in IRd is equivalent to point set separability in IRd−1, resulting
in the following bound.

I Theorem 15. Given a probabilistic set of n points P in general position in IRd, for any
fixed d ≥ 3, and a query point z in general position with P, we can compute the convex hull
membership probability Pr

[
z ∈ CH (P)

]
in time O(nd−1).

Our lower bounds imply that the time complexity is nearly optimal for d = 3, and that
the convex hull membership problem is also #P -hard when d = Ω(n).

Halfspace Emptiness and Linear Programming

Suppose we are given a set of n probabilistic halfspaces in IRd, defined by a set of hyperplanes
H, where each hyperplane H is associated with an independent probability π(H). What is the
probability that a random sample of these halfspaces has non-empty common intersection?
By using an order-preserving duality between points and hyperplanes, we can map this
problem to an instance of point set separability, obtaining the following result:

I Theorem 16. Given a set of n probabilistic halfspaces in IRd, we can compute the probability
that their common intersection is non-empty in time O(nd).

7 Concluding Remarks

We considered the problem of hyperplane separability for probabilistic point sets. Our main
result is that given two sets of n probabilistic points in IRd, we can compute in O(nd) time
the exact probability that their random samples are linearly separable. The same technique
and result lead to similar bounds for several other problems, including the probability that
a query point lies inside the convex hull of n probabilistic points, or the probability that
n probabilistic halfspaces have non-empty intersection. One of the interesting connections
we establish is the equivalence between d-dimensional hyperplane separability and (d+ 1)-
dimensional convex hull containment. Another useful feature of our approach is its ability to
handle degeneracies in input.

We also proved that the d-dimensional separability problem is at least as hard as the
(d+1)-SUM problem [9, 16, 17, 18], which implies that our O(n2) algorithms for 2-dimensional
separability or 3-dimensional convex hull membership are nearly optimal.

A number of open problems are suggested by our work. Our lower bounds suggest
that an exponential dependence on d is probably unavoidable for the exact computation of
separability, but better bounds may be possible for d > 2. In particular, can the hyperplane
separability problem be solved with running time Õ(nd(d+1)/2e), instead of O(nd)? Another
important direction is to explore algorithms that can compute the probability within a small
multiplicative factor.
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