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Abstract
We describe an algorithm for solving an important geometric problem arising in computer-aided
manufacturing. When machining a pocket in a solid piece of material such as steel using a rough
tool in a milling machine, sharp convex corners of the pocket cannot be done properly, but have
to be left for finer tools that are more expensive to use. We want to determine a tool path that
maximizes the use of the rough tool. Mathematically, this boils down to the following problem.
Given a simply-connected set of points P in the plane such that the boundary ∂P is a curvilinear
polygon consisting of n line segments and circular arcs of arbitrary radii, compute the maximum
subset Q ⊆ P consisting of simply-connected sets where the boundary of each set is a curve with
bounded convex curvature. A closed curve has bounded convex curvature if, when traversed in
counterclockwise direction, it turns to the left with curvature at most 1. There is no bound on
the curvature where it turns to the right. The difference in the requirement to left- and right-
curvature is a natural consequence of different conditions when machining convex and concave
areas of the pocket. We devise an algorithm to compute the unique maximum such set Q. The
algorithm runs in O(n logn) time and uses O(n) space.

For the correctness of our algorithm, we prove a new generalization of the Pestov-Ionin
Theorem. This is needed to show that the output Q of our algorithm is indeed maximum in the
sense that if Q′ is any subset of P with a boundary of bounded convex curvature, then Q′ ⊆ Q.
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1 Introduction

The motivation for our work comes from the generation of toolpaths for pocket machining.
Pocket machining is the process of cutting some specified pocket in a piece of material –
in our case most likely a piece of metal – using a milling machine. We first describe the
clean mathematical problem that we solve and afterwards explain how it relates to pocket
machining.
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Consider a simply-connected closed subset of the plane and the weakly simple, closed
curve around its boundary which we traverse in counter-clockwise direction. We say that
the curve is convex where it turns left and concave where it turns right. We say it has
bounded convex curvature if it turns left with curvature at most 1. There is no bound on
the right-curvature, and we may even have sharp concave corners. We say that a set in the
plane has bounded convex curvature if all the connected components are simply-connected
and the weakly simple, closed curve around the boundary of each connected component has
bounded convex curvature. Similarly, we say that a closed curve has bounded curvature in
general if it turns to the left and to the right with curvature at most 1.

A nice composition property of sets of bounded convex curvature is that if we take two
such sets Q1 and Q2, unite them, and fill out any holes, then the resulting set, denoted
Q1 ]Q2, has bounded convex curvature. See Figure 1, where the boundary of Q1 ]Q2 is
the thick curve. This composition property does not hold if we demand that the curvature is
bounded in general.

The input to our problem is a simply-connected closed set of points P in the plane such
that the boundary ∂P is a curvilinear polygon consisting of n line segments and circular
arcs of arbitrary radii. We present an algorithm that in O(n logn) time finds the unique
maximum subset Q ⊆ P of bounded convex curvature, that is, Q contains any other Q′ ⊆ P
of bounded convex curvature. See Figure 2 for an example.

We note that the uniqueness of a maximal subset Q of bounded convex curvature follows
from the composition property; for if there was another Q′ ⊆ P of bounded convex curvature
that was not contained in Q, then Q ]Q′ would also be contained in P and have bounded
convex curvature, contradicting the maximality of Q.

The boundary of Q will be a curvilinear polygon consisting of O(n) line segments and
circular arcs. A very useful property of the boundary of Q is that all concave arcs and vertices
are also on the boundary of P . Indeed, it is easy to verify that if there is a concave arc or
vertex on the boundary of Q which is not on the boundary of P , then Q is not maximal. A
similar reasoning implies that if the boundary of P is a simple curve, then so is the boundary
of Q.

We now describe different contexts in which this problem appears naturally. The general
problem is that we are given an area S of the plane whose boundary is represented as a
curvilinear polygon. There is a thin layer of material in S close to the boundary ∂S of S.
The goal is to remove that layer without removing anything from outside S. We are given a
rough tool, and we want to remove as much as possible of the thin layer, leaving as little
as possible for finer tools that are more expensive to use. The output is a toolpath for the
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Figure 3 A pocket bounded by ∂S. To the left is shown the boundary ∂P of the inwards offset
of S by r. To the right is shown the boundary ∂Q of the maximum subset with bounded convex
curvature of P . The dotted arcs in the corners show the boundary of the material in S that cannot
be removed by D using the two toolpaths.

rough tool consisting of one or more curvilinear polygons. The tool is a disk D of radius r,
where r is bigger than the width of the layer we wish to remove. The toolpath is the path
which the center of D is following and the material cut away is the area swept by D as its
center follows the toolpath. The reason that we only have to handle a thin layer close to
the boundary of S is because the area farther from the boundary is removed beforehand by
tools that are less precise since they do not get close to the boundary. Thus we may assume
that the material at all points at some distance δ ≤ r from the boundary have been removed.
Some of the points closer to the boundary may also have been removed, but this only makes
it easier for our tool to move. With this in mind, when the tool follows a weakly simple
closed curve, we think of it as removing the interior of the curve plus every point at distance
at most r to the curve.

Let P be the inwards offset of S by r, that is, P is the subset of S of points with distance
at least r to the pocket boundary ∂S. See Figure 3. P is the set of all allowed positions of
the center of D. If we had complete control over the tool, then we would be able to remove
the material in all of P and at all points with distance at most r from P by letting the tool
center traverse the boundary ∂P . However, there are restrictions on what tool paths we can
follow, e.g., we cannot count on following a toolpath with sharp corners in a precise way.

We are now ready to describe the first application where we want to compute the maximum
subset of bounded convex curvature. Assume that the tool can only follow a path which has
bounded curvature in general. Assume furthermore that the tool can turn at least as sharply
as its own boundary, that is, r ≥ 1.

Using our algorithm for bounded convex curvature, we are able to identify the maximum
area that can be removed by the tool such that the toolpath has bounded curvature in general.
First we compute the above set P which is the inwards offset of S by r. The boundary ∂P
can be computed from the Voronoi diagram of ∂S [7]. Clearly the toolpath has to stay inside
P . We now note that every concave part of ∂P has curvature at most 1/r ≤ 1. Next we
use our algorithm to find the maximum subset Q ⊆ P of bounded convex curvature, see
Figure 3. The area cut away as D follows ∂Q is the unique maximum subset that can be
cut out of S using a tool with radius r ≥ 1 and such that the toolpath has bounded convex
curvature. However, all concave arcs and vertices on ∂Q stem from P which has concave
curvature at most 1/r ≤ 1. It follows that using the toolpath ∂Q, we cut out the maximum
subset of S under the condition that the toolpath has bounded curvature in general. This
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also implies that we remove the maximum subset of the thin layer of material close to the
pocket boundary ∂S.

In the above example, the set P had bounded concave curvature. In particular, all
concave arcs on ∂P have radius at least r, and for each concave arc A on ∂P of radius r and
center v, there is an associated concave vertex v of ∂S. Let a and b be the first and last
point on A. When the tool follows A, the corner v will be on the tool boundary ∂D, and
the slightest imprecision will blunt the corner v. A recommended alternative [10] is that we
substitute A with two line segments aw and wb tangential to A at a and b, respectively, thus
creating a sharp concave corner w on the toolpath, see Figure 4. Using this technique, the
corner v will be cut much sharper and more precise. One can think of various variations of
this technique, since we can “casually” stop and turn the tool at any point on its way to
w because the remaining toolpath already ensures that all material will be cut away. This
shows that we cannot in general assume that there is any bound on the concave curvature
of the input toolpath. We also note the asymmetry with convex corners and arcs, where
overshooting a convex corner implies an illegal cut through the boundary of S.

We shall now provide a completely different explanation for the need for bounded convex
curvature. The point is that it is often preferable for the surface quality of the resulting part
that the tool moves with a constant speed. Recall that the tool is only removing a thin layer
close to the pocket boundary. The width of this layer is typically a deliberately chosen small
fraction of the tool radius r. When moving at constant speed, a convex turn implies a higher
engagement of the tool in the sense of the amount of material removed per time unit. In
concave turns the engagement is only decreased. A too high engagement could break the
tool, and therefore we must bound the convex curvature of the tool path.

These and other issues related to the machining of corners have been extensively studied
in the technical literature on pocket machining. See for instance the papers [5, 6, 9, 11, 14].
There are several previous papers suggesting methods to get bounded convex curvature, but
none of them guarantees an optimal solution like ours. One idea for how to handle convex
corners is to replace each of them by a convex circular arc as deep in the corner as possible.
This is suggested and studied in the papers [5, 9, 11]. However, in all the papers it is assumed
that every corner is formed by two line segments which are sufficiently long (relative to the
angle between them) that a tangential corner-rounding arc of sufficient size can be placed
inside the wedge they form. As can be seen in Figure 3, this is not always the case, and
rounding a toolpath can require more complicated modifications.

One heuristic used to obtain a non-trivial subset of bounded convex curvature is the
double offset method, where we offset P inwards by 1 and then offset the result outwards by
1 and use that as Q. This can be computed in O(n logn) time using Voronoi diagrams [13].
However, the method does not in general result in the maximum subset of bounded convex
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curvature. See for instance Figure 5, where P has bounded convex curvature and all material
in S will be machined using ∂P as the toolpath. ∂S is the thick solid curve and ∂P is the
thin solid curve. The innermost dotted curves are the boundary of the inwards offset of P by
1. The area of S between the thick dashed arcs will not be machined if the double offset
method is used.

In Section 2 we describe an algorithm that computes the maximum subset of bounded
convex curvature of P . In Section 3 we describe how to implement the algorithm so that it
uses O(n) space and runs in O(n logn) time. Many proofs and some definitions are omitted
due to limited space. We refer to the full version [1].

1.1 General notation and conventions
If M is a set of points in the plane, ∂M denotes the boundary of M and M denotes the
closure of M . Let γ be a simple curve and x and y two points on γ. Then γ[x, y] is the
portion of γ between x and y including x and y. Similarly, γ(x, y), γ[x, y), and γ(x, y] are
used in the obvious way when none or one of x, y is included. If γ is a closed curve, γ[x, y]
denotes the portion of γ from x to y in the counterclockwise direction. As before, round
parenthesis can be used to exclude one or both endpoints. If γ is not closed, the order of
x and y does not matter. We say that a point z ∈ γ is an inner point of γ if z is not an
endpoint of γ.

1.2 Mathematical foundation: The theorem of Pestov and Ionin
An oriented, simple curve γ is in the class L+ if γ turns to the left with curvature at most 1,
but γ is allowed to turn to the right arbitrarily sharply. There can be corners on γ where γ
is not differentiable, but in such corners γ has to turn to the right. These notions are defined
rigorously in [1]. Note that a portion of a closed curve with bounded convex curvature
traversed in counterclockwise direction is a curve in L+.

The correctness of the algorithm presented in this paper depends on the following
generalization of the Peston-Ionin Theorem. We refer to [1] for a proof.

I Theorem 1. Consider an open disk D of arbitrary radius and a curve γ in L+ from a to
b such that γ ∩D = {a, b}. Let R be the region bounded by ∂D[b, a] and γ. If R contains D,
then R contains an open unit disk U such that there exists a point c ∈ ∂U ∩ γ(a, b).

I Corollary 2. Every closed curve γ with bounded convex curvature contains an open unit-disk
in its interior.

The original theorem by Pestov and Ionin [12] was similar to Corollary 2, but γ was
assumed to have bounded curvature in general. Howard and Treibergs [8] proved Corollary 2
for closed curves γ with bounded convex curvature for a more restricted class of curves. Ahn
et al. [2] proved a theorem similar to Theorem 1, but assuming that γ has bounded curvature
in general. Hence, the version of the theorem presented here generalizes all previous versions
known to the authors of the present paper.

a

b
D

γ

U c
R

a

b

D R γ

Figure 6 Cases where Theorem 1 does and does not apply.
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2 Algorithm

2.1 Preliminaries
We assume that a simply-connected region P1 in the plane is given such that the boundary
∂P1 consists of a finite number of line segments and circular arcs of arbitrary radii. For ease
of presentation, we assume that ∂P1 is a simple curvilinear polygon, but our algorithm works
as long as ∂P1 is weakly simple. We can therefore without loss of generality assume that P1 is
an open set. We set P ← P1 and our algorithm keeps removing parts of P while maintaining
the invariant that P contains every subset of P1 of bounded convex curvature. In the end, P
itself has bounded convex curvature and it follows that P is the unique maximum subset of
P1 of bounded convex curvature.

The region P is always a collection of disjoint, open, simply-connected sets each of which
is bounded by a simple curvilinear polygon. P is represented by its boundary ∂P , which is
a collection of disjoint, closed, simple curves where no curve is contained in the interior of
another. The input P1 is defined by one such curve. The open region enclosed by each curve
is one connected component of P . ∂P is represented as a set of points known as the vertices
of ∂P and a set of line segments and circular arcs known as the arcs of ∂P . We think of
line segments as circular arcs with infinite radius and therefore in most cases use the word
arcs for both circular arcs and line segments. Depending on the context, we may consider a
vertex as a point or a set containing a single point. An object of ∂P is a vertex or an arc.
We use the convention that an arc includes its endpoints. Every two arcs of ∂P are disjoint
except possibly at the endpoints, and for each vertex there are two arcs having an endpoint
at that vertex. This way, the arcs form the closed curves bounding P . We always use n to
denote the number of vertices of the input ∂P1.

The boundary of each connected component of P is oriented in counterclockwise direction
and we say that a point moving on ∂P is moving forward (resp. backward) if it is following
(resp. not following) the orientation of the boundary. Similarly, we orient every arc following
the orientation of the boundary of the component containing it. We denote the endpoints
of an arc A as s(A) and t(A), so that a point moving forward along A moves from s(A) to
t(A). An arc which turns to the left when traversed in forward direction is called a convex
arc. A concave arc is defined analogously. Line segments are regarded as both concave and
convex arcs at the same time. A vertex v is convex if the interior angle of ∂P at v is strictly
less than π. If the angle is strictly more than π, v is concave.

Let A be an arc of ∂P and a ∈ A a point on A. Then nA(a) is the unit-normal of A at a
which points to the left relative to the orientation of A. We say that two arcs A and B are
tangential if t(A) = s(B) and nA(t(A)) = nB(s(B)). Note that A and B are tangential if
and only if the vertex t(A) is neither convex nor concave.

2.2 High-level description of the algorithm
A high-level description of the algorithm is given as Algorithm 1. The basic format is to
maintain a stack Σ of pointers to objects of ∂P causing the convex curvature condition on
∂P to be violated. An object σ ∈ Σ can be a convex vertex, a convex arc of radius less
than 1, or a special cut arc of radius 1, where one or both of the endpoints might be convex
vertices. In each iteration of the loop at line 3, we test if the object σ on the top of Σ is
still on ∂P (it might have been removed in another iteration) and if so, we eliminate it by
removing from P a subset V ⊆ P . The object σ appears on the boundary ∂V and not on the
boundary of P \ V . By performing a cut or simply a cut, we mean the process of removing V
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Algorithm 1: SubsetOfBoundedConvexCurvature(P )
1 Add all convex arcs of ∂P with a radius less than 1 to Σ.
2 Add all convex vertices of ∂P to Σ.
3 while Σ 6= ∅
4 Let σ be the topmost element on Σ and remove σ from Σ.
5 if σ ⊂ ∂P and σ is not a perfect cut arc
6 Cut away V from P and let Cj , j = 1, . . . , t, be the new cut arcs after the cut.
7 Add each new cut arc Cj to Σ.

8 return P

s(C)

σ

t(C)

∂K

Figure 7

from P . It is important to choose V such that V ∩Q = ∅ for every set Q ⊂ P1 of bounded
convex curvature. Theorem 1 will be used to prove this.

It is possible that a cut splits P into more components. The algorithm will then keep
working on each component separately. A cut can introduce new unit-radius cut arcs on ∂P ,
the endpoints of which can be convex vertices. Therefore, these new cut arcs are added to Σ
so that the new convex vertices are eventually removed. The algorithm terminates when Σ is
empty, which means that P has bounded convex curvature.

Let Pi be the set P in the beginning of iteration i = 1, 2, . . . of the loop at line 3 in
Algorithm 1. We shall prove that the algorithm terminates after k = O(n) iterations. Hence
we have P1 ⊇ P2 ⊇ · · · ⊇ Pk. The challenge is to define V in each iteration so that k = O(n),
P ← P \ V can be computed efficiently, and V ∩ Q = ∅ for every set Q ⊂ P1 of bounded
convex curvature.

2.3 Specifying a cut using an arc C
Let σ be an object from Σ that is to be eliminated in a certain iteration of Algorithm 1, and
let K be the connected component of P such that σ ⊂ ∂K. If we conclude that K does not
contain any non-empty set of bounded convex curvature, we set V = K, so that all of the
component K is removed from P . Otherwise, we specify V using a circular arc C of unit
radius. See Figure 7, where C is grey and V is the area enclosed by the thick closed curve.
Assume for now that we have defined C. Let s(C) and t(C) be the points where C starts
and ends in counterclockwise direction, respectively. The endpoints are included in C and
are points on ∂K. They will be defined so that σ ⊆ ∂K[s(C), t(C)]. It will follow from the
definition of C that there will be at most two vertices on ∂K(s(C), t(C)). For efficiency, the
algorithm may choose an arc C that intersects ∂K(s(C), t(C)).

The arc C divides K into open regions R1, . . . , Rr, which are the connected components
of K \ C. Assume without loss of generality that among all these regions, exactly the regions

SoCG 2016
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R1, . . . , Rs, s ≤ r, contain a part of ∂K(s(C), t(C)) on their boundary. We note that s = 1
if C does not intersect ∂K(s(C), t(C)), as is the case in Figure 7. Define V as the union⋃s

i=1 K ∩ Ri. Then K \ V is open and hence so is our new P ← P \ V. The arc C will be
carefully chosen so that V ∩Q = ∅ for every set Q ⊂ P1 of bounded convex curvature.

I Lemma 3. V is connected and for each i = 1, 2, . . ., the boundary ∂K of each connected
component K of Pi is a simple curvilinear polygon.

Consider the case where we remove a proper subset V from a connected component K of
Pi to obtain Pi+1. One or more arcs C1, . . . , Ct of ∂Pi+1 are subsets of C and not arcs of ∂Pi.
We denote the arcs C1, . . . , Ct as new cut arcs of ∂Pi+1. An arc of ∂Pi+1 which is a subset of
a new cut arc of ∂Pj , j ≤ i, is not a new cut arc of ∂Pi+1. An arc of ∂Pi+1 is a cut arc if it
is the subset of a new cut arc of ∂Pj for some j ≤ i+ 1. We say that a cut arc C of ∂P is
perfect if none of the endpoints of C are convex vertices.

I Lemma 4. Every cut arc of ∂P is convex.

2.4 The bisector curve ξ

A specific type of bisector curve, illustrated in Figure 8, turns out to be useful when describing
how to define the arc C specifying a cut and when proving the correctness of our algorithm.
The curve is somewhat related to the medial axis of ∂P . Before introducing the curve, we
need the concept of an osculating circle.

Let A be an arc of ∂P . A circle C osculates A at a ∈ A if the interior of C is disjoint
from A, C and A have the point a in common, and the center x of C is a point a+ nA(a) · c
where c ≥ 0. Recall that nA(a) is the unit-normal to A in a pointing to the left. If c = 0, C
is a single point. Note that a is the point on A closest to x. A special case happens when A
is an arc on C, in which case A is a convex arc and C osculates A at every point on A.

I Observation 5. Let A be an arc of ∂P and x an arbitrary point. There exists at most
one circle C with center x that osculates A. If such a circle C exists, the radius of C is the
distance to the closest point a on A from x and C osculates A in a. If A is a convex arc,
then the radius of C is at most the radius of A.

We denote the bisector curve as ξ = ξ(A0, A1, x0). A0 and A1 are arcs of ∂P and x0 is
the point where ξ begins. ξ consists of at most three intervals to be defined below, each
of which is part of a conic section. Depending on x0, ξ might start in the second or third
interval. From the context where ξ is used, it will be clear in which interval ξ starts.
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Often, but not always, A0 and A1 are neighboring arcs and x0 is their common endpoint,
i.e., x0 = t(A0) = s(A1). In this case, x0 will be a convex vertex of ∂P (as in Figure 8) or
A0 and A1 are tangential. If A0 and A1 are tangential, one of A0 and A1 will be a cut arc.

For each point x ∈ ξ, we are going to define a circle Cx and points Π0(x) ∈ A0 ∩ Cx

and Π1(x) ∈ A1 ∩ Cx. The circle Cx has its center at x. The functions Π0 and Π1 are the
projections associated to ξ and Cx is the clearance circle associated to ξ at x.

Interval (1) consists of points x such that Cx osculates both A0 and A1 at points Π0(x)
and Π1(x), respectively. Interval (2) consists of points x where s(A0) = Π0(x) and Cx

osculates A1 at a point Π1(x) or t(A1) = Π1(x) and Cx osculates A0 at a point Π0(x).
Interval (3) consists of points x such that s(A0) = Π0(x) and t(A1) = Π1(x).

Assume that x0 is contained in interval (1). In the following, we think of x as a point
that traverses ξ from x0.

Interval (1): ξ consists of the points x such that there is a circle Cx with center x that
osculates A0 and A1 at points Π0(x) and Π1(x), respectively. Hence, this interval consists
of points x on ξ such that the distance to the closest points on A0 and A1 is the same. In
the general case, as x traverses ξ, Π0(x) moves continuously backward and Π1(x) moves
continuously forward. We eventually reach a point x1 where Cx1 contains s(A0) or t(A1), and
ξ continues with the interval defined in (2). A special case occurs if t(A0) = s(A1) and A0
and A1 are tangential. Then x moves in the direction nA0(t(A0)) until x is the center x1 of
A0 or A1. This happens since one of the arcs is a cut arc. Until x reaches x1, the projections
are constant, Π0(x) = Π1(x) = t(A0). If x1 is the center of A0, we define Π0(x1) = s(A0).
Similarly, if x1 is the center of A1, we define Π1(x1) = t(A1).

Interval (2): ξ has reached a point x1 such that Cx1 contains s(A0) or t(A1). If s(A0) =
t(A1), ξ stops here. Otherwise, if Cx1 contains both s(A0) and t(A1), interval (2) is
degenerate, x2 = x1, and ξ continues with the interval described in (3). Otherwise, assume
without loss of generality that Cx contains s(A0) and osculates A1. From here, ξ consists
of points x such that there is a circle Cx with center x that contains s(A0) = Π0(x) and
osculates A1 at a point Π1(x). When x moves along ξ, Π1(x) moves continuously forward.
At some point, we reach a point x2 where Cx2 contains s(A0) and t(A1), and ξ continues
with the interval defined in (3).

Interval (3): At the last point x2 of interval (2), Cx2 contains both of the points s(A0)
and t(A1). Now, ξ consists of the points x such that there is a circle Cx with center x
containing both Π0(x) = s(A0) and Π1(x) = t(A1), i.e., ξ follows a half-line. We define the
direction of the half-line to be the counterclockwise rotation by an angle of π/2 of the vector
t(A1)− s(A0).

When defining the arc C that specifies the cut we want to perform, we are often
searching for the first point x3 on ξ where Cx3 has radius 1. We shall then define
C = Cx3 [Π0(x3),Π1(x3)]. Yap [13] showed that each of the intervals (1)–(3) is a part
of a conic section. Using elementary geometry we can decide for each interval in O(1) time if
it contains a point x3 such that Cx3 has radius 1.

Note that when x0 = t(A0) = s(A1) and x0 is a convex vertex of ∂P , then a portion of ξ
beginning at x0 is a subset of the medial axis of ∂P . However, x3 (as defined above) need
not be on the medial axis and can even be outside P , also when C = Cx3 [Π0(x3),Π1(x3)]
becomes a perfect cut arc. See Figure 9 for an example.

SoCG 2016
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I Observation 6. If Ak is a convex arc, k = 0, 1, and x0 = t(A0) = s(A1), then for each
a ∈ Ak, there exists x ∈ ξ such that Cx osculates Ak at a, and by Observation 5, the radius
of Cx is at most the radius of Ak.

2.5 Defining the arc C specifying a cut
The objects in Σ are either (a) convex arcs of ∂P1 with a radius less than 1, (b) convex
vertices of ∂P1, or (c) cut arcs. Below, we describe how to define C when the object σ picked
by Algorithm 1 is of each of these types.

Case (a): σ is a convex arc with radius less than 1. Consider the curve ξ = ξ(σ, σ, x0),
where x0 is the center of σ, which begins in interval (3). Choose the first point x3 ∈ ξ such
that the associated clearance circle Cx3 has radius 1 and define C = Cx3 [Π0(x3),Π1(x3)] =
Cx3 [s(σ), t(σ)]. Said in another way, we define C to be the unit-radius arc counterclockwise
from s(σ) to t(σ) which spans an angle of less than π.

Case (b): σ is a convex vertex of ∂P . Let A0 be the arc of ∂P before σ and A1 the arc
after σ. Consider the curve ξ = ξ(A0, A1, x0), where x0 = σ. Find the first point x3 ∈ ξ
where Cx3 has a radius of 1. If such a point does not exist, we are in the case where
s(A0) = t(A1), and we let V be the complete component K of P where σ appears on the
boundary (in this case, the boundary of K only has two arcs, A0 and A1). Otherwise, we
define C = Cx3 [Π0(x3),Π1(x3)].

Case (c): σ is a cut arc B. We assume that one of the endpoints of B is a convex vertex,
since otherwise B is perfect and hence ignored by the algorithm. If one of the endpoints,
say s(B), is a concave vertex, then t(B) is a convex vertex, and we do as if σ = t(B) as
described in case (b). We now assume that none of the endpoints of B are concave vertices.
See Figure 10. Let A0 and A1 be the arcs preceding and succeeding B on ∂P , respectively.
Let ξ0 = ξ(A0, B, s(B)) and ξ1 = ξ(B,A1, t(B)). For each b ∈ B, follow the ray starting at
b with direction nB(b) and define dk(b) to be the distance from b to the first intersection
point with ξk, k = 0, 1. Since d0(s(B)) = 0 < d1(s(B)) and d1(t(B)) = 0 < d0(t(B)),
the continuity of ξk implies there must be an intersection point x0 between ξ0 and ξ1. By
Observation 6, we know that the distance from x0 to B is at most 1. We now consider the
curve ξ = ξ(A0, A1, x0) with associated projections Π0,Π1, and clearance circle Cx. The
clearance circle Cx0 of ξ at x0 is the same as for ξ0 and ξ1. If Cx0 osculates A0 and A1, ξ
begins in interval (1). If Cx0 osculates one of A0, A1 and contains an endpoint of the other,
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ξ begins in interval (2). Otherwise, Cx0 contains s(A0) and t(A1), and ξ begins in interval
(3). We find the first point x3 ∈ ξ where Cx3 has radius 1. If such a point does not exist, we
are in the case where s(A0) = t(A1), and we let V be the complete component K of P where
σ appears on the boundary. Otherwise, we define C = Cx3 [Π0(x3),Π1(x3)].

One may object to the algorithm that since a connected component of P can split into
more components by a cut, the arcs on Σ are not necessarily well-defined, since subsets of the
arc originally added to Σ can be on the boundary of many different connected components of
P . However, since the arcs are convex arcs of radius at most 1, the following lemma shows
that it is not a problem.

I Lemma 7. Let A be an arc of ∂P1 which is a convex arc of any radius or a concave arc
with radius at least 1. For any i ≥ 1, there exists at most one connected component K of Pi

such that (a subset of) A is an arc of ∂K.

2.6 Proof of correctness of Algorithm 1
In this section, we prove that the set V to be cut away from P is disjoint from every subset
of P1 of bounded convex curvature. The proof is by contradiction. The idea is that if there
is a subset of P1 of bounded convex curvature that overlaps V, then Theorem 1 gives the
existence of a unit disk in V which cannot be there. In general, V can have a complicated
shape and is not easy directly to reason about. Therefore, we describe a superset of V
consisting of simplices, which are sufficiently simple that the argument goes through.

A simplex S is a closed region and has a boundary ∂S which is a closed, simple curve
consisting of two, three, or four circular arcs. One of the arcs D on the boundary is the
door. The door D has a radius of at most 1 and is clockwise when ∂S is traversed in
counterclockwise order. We denote the following as the simplex condition, which every
simplex is required to satisfy: Let U be the closed disk such that ∂U contains the door D.
Then U ∪ S does not contain any unit-disk unless U has radius 1, in which case U is the
only unit-disk contained in U ∪ S.

I Lemma 8. There exists a set S of at most five simplices such that if S =
⋃

S∈S S, then
V ⊂ S and ∂S ⊆ ∂P [s(C), t(C)] ∪ C. There is a tree T with the nodes being S with the
following properties. The root of T is a simplex with the door C. If a curve φ ⊂ P exits a
simplex S0 ∈ S, it is either through the door of S0 or through an arc which is the door of a
child of S0 in T, and in the latter case, φ enters the child. If S0 has a parent in T and φ
exits S0 through the door of S0, then φ enters the parent.

An example of the tree T is given in Figure 11 for case (c) from Section 2.5. The following
lemma is the heart of our proof of correctness. Recall that the curves in L+ are open, oriented
curves that turn to the left with curvature at most 1.

I Lemma 9. Let γ be a curve in L+ contained in P . Let C be an arc specifying an area V
to be removed from P and suppose that γ starts at a point a ∈ C. If γ leaves V again, it is
through a point on C[s(C), a].

Proof. Assume for contradiction that γ leaves V through a point not as stated in the lemma.
Since the boundary of V is contained in ∂P ∪ C, γ leaves V from a point on C(a, t(C)].
Consider the tree T as described in Lemma 8. Let S be a simplex with maximum distance
in T to the root such that γ enters S. Let D be the door of S and s(D) and t(D) be the
beginning and end of D in counterclockwise order, respectively. Let D be the open disk such
that D is an arc on the circle ∂D. It follows from Lemma 8 that the first time γ enters S,
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Figure 11

it is through a point on D. Let e ∈ D be the point closest to s(D) such that γ eventually
enters S through e. After e, γ must leave S through a point f on D(e, t(D)], since otherwise
γ enters the interior of the closed, simple curve defined by γ[a, e], D[s(D), e], ∂P [s(C), s(D)],
and C[s(C), a], which it cannot exit again by assumption. Hence, Theorem 1 implies that the
region bounded by ∂D[f, e] and γ[e, f ] contain a unit disk different from D. That contradicts
the simplex condition of S. J

By the following lemma, we conclude that when the algorithm terminates, P is the
maximum subset of P1 of bounded convex curvature. The lemma follows easily from Lemma
9.

I Lemma 10. For every i = 1, 2, . . ., Pi contains Q for every set Q ⊂ P1 of bounded convex
curvature.

2.7 Proof that Algorithm 1 performs a linear number of iterations
Since the set V that we remove from P is contained in one connected component of P , the
algorithm only makes changes to one connected component of P at a time. A vertex v of ∂P
is improper if v is a convex vertex and v is not a vertex of ∂P1. An improper vertex can be
introduced in two different ways: 1) If the arc C specifying a cut intersects a cut arc and the
intersection point v is on ∂V , then v becomes a convex and hence improper vertex. 2) If the
arc C begins or ends at the endpoint v /∈ ∂P1 of a cut arc which is not a convex vertex, v
might be a convex and hence improper vertex after the cut has been performed.

Consider the first time an improper vertex appears. Let v be the vertex and let K be
the connected component such that v ∈ ∂K. Then v will be removed by the subsequent cut
performed in K since a cut arc with an endpoint at v is closest to the top of Σ among all
objects in Σ ∩ ∂K. It follows inductively that there can be one or two improper vertices in
each component, and after the next iteration performed in the component, none of them will
be left.

A vertex v of ∂P which is not a point on ∂P1 (note the difference between being a vertex
of ∂P1 and being a point on ∂P1) can only be created if the arc C specifying a cut to be
performed in P intersects a cut arc at v. It follows that v is a convex and hence improper
vertex. Equivalently, every proper vertex is on ∂P1.

Consider an endpoint c of the arc C specifying a cut to be performed in Pi, where
Pi+1 = Pi \V . If c is an inner point of an arc A of ∂Pi, Lemma 4 together with Observation 5
gives that A is not a cut arc since the circle containing C osculates A at c. Hence, A is (a
subset of) an arc of ∂P1 and c ∈ ∂P1. Furthermore, due to the way C is defined, an improper
vertex of ∂Pi will never be chosen as c. Also in this case, we get that c is on ∂P1. We
summerize these observations in the following lemma.
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I Lemma 11.
1. There are at most two improper vertices of ∂K for each connected component K of P . If

there are two, they are endpoints of the same cut arc.
2. All improper vertices of ∂K, where K is a connected component of P , are removed by the

following cut performed in K.
3. The endpoints s(C) and t(C) of an arc C specifying a cut are both points on ∂P1.

I Lemma 12. The algorithm performs O(n) iterations.

Sketch of proof. We divide the iterations into the types 1–5 defined below and prove that
there is a linear number of each type. We bound the iterations of type 1 by observing that
each such iteration corresponds to introducing an edge in a plane multigraph with 2n vertices,
where each pair of vertices can be connected by at most O(1) edges. Hence, Euler’s formula
implies that O(n) edges are created in total. The iterations of types 2–5 can be bounded by
the number of iterations of type 1 or by observing that each iteration completely removes
one of the objects of ∂P1 from ∂P . Hence there are O(n) of each type.

Consider what happens during iterations i when the algorithm picks an object σ from Σ.
Let V be the set removed from Pi during the iteration, i.e., Pi+1 = Pi \ V, where possibly
V = ∅. Lemma 11 implies that the iteration is of one of the following types.
1. V is specified by an arc C and each endpoint of C is either a vertex of ∂P1 or an inner

point of an arc of ∂P1 which is not a vertex of ∂Pi.
2. V is specified by an arc C and one or both endpoints of C is a vertex v of ∂Pi which is

not a vertex of ∂P1. Hence, such a vertex v is the endpoint of a cut arc of ∂Pi.
3. A complete connected component K is removed from P , i.e., V = K.
4. V = ∅ and nothing happens since σ is not anymore on ∂P .
5. V = ∅ and nothing happens since σ is a perfect cut arc.

Consider cuts of type 1. We see that each such cut corresponds to adding an edge to a
plane graph G with 2n nodes. There is one node in G for each arc and vertex of ∂P1. We
choose a curve φ from s(C) to t(C) contained in V as the edge corresponding to the cut. This
is possible since V is connected by Lemma 3. A vertex v of ∂P1 is incident to φ if v is an
endpoint of φ. An arc A of ∂P1 is incident to φ if an endpoint of φ is an inner point of A.
Let A0 and A1 be the objects of ∂P1 incident to φ such that s(C) ∈ A0 and t(C) ∈ A1. Let
C be the circle containing C. Observe that if A0 (resp. A1) is an arc, then C osculates A0 at
s(C) (resp. A1 at t(C)).

We say that A0 and A1 are parallel if:
A0 and A1 are concentric arcs, one is concave, the other is convex, and the radius of the
convex is 2 larger than the radius of the concave.
A0 and A1 are two parallel line segments (in the ordinary sense) with opposite directions
and distance 2.
A1 (resp. A0) is a vertex while A0 (resp. A1) is convex arc with radius 2 and center A1
(resp. A0).

If A0 and A1 are parallel, there are infinitely many unit-circles that osculates A0 or A1
like C does. Otherwise, there are only O(1). Hence, by Euler’s formula, we are adding O(n)
edges to G that connect non-parallel objects. One can verify that even if A0 and A1 are
parallel, we make O(1) edges between them in G. J

Since every cut arc is eventually picked from Σ by Algorithm 1, the linear bound on the
number of iterations leads to the following lemma.
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Algorithm 2: PerformCut(C)
1 U ← {s(C)}.
2 while U 6= ∅
3 Remove a point e from U . If e is not a vertex of ∂P , create a vertex at e.
4 a← e.
5 repeat
6 Let b← TraverseP(C, a, e). If b is not a vertex of ∂P , create a vertex at b.
7 Mark all objects on ∂P [a, b] as removed, except for vertices a and b.
8 If b ∈ ∂P (s(C), t(C)), add b to U .
9 if C enters or leaves P at b

10 a← TraverseC(C, b). If a is not a vertex of ∂P , create a vertex at a.
11 Change ∂P by setting the arc succeeding a and preceding b to C[a, b].
12 else
13 a← e.

14 until a = e

I Lemma 13. The total number of cut arcs created while running Algorithm 1 is O(n).
Likewise, the total number of different vertices appearing on ∂P while running Algorithm 1
is O(n).

We have now proved the following theorem.

I Theorem 14. Given a simply-connected open region P1 bounded by a curvilinear polygon
consisting of n line segments and circular arcs, there is a unique maximum set Q ⊆ P1 of
bounded convex curvature which contains every set Q′ ⊆ P1 of bounded convex curvature.
∂Q consists of O(n) line segments and circular arcs, and Algorithm 1 computes Q in O(n)
iterations.

3 Implementation

In this section, we show how the algorithm can be implemented so that it uses O(n logn)
time in total and O(n) space.

Let C be the arc specifying a cut to be performed in P . Let R1, . . . , Rr be the connected
components of P \ C, and assume without loss of generality that the sets R1, . . . , Rs, s ≤ r,
have to be removed since their boundaries contain a part of ∂P (s(C), t(C)). For ease of
presentation we assume that C contains no vertices of ∂P except for possibly the endpoints
s(C) and t(C). Algorithm 2 traverses the boundary of each of the regions R1, . . . , Rs and
introduces the new cut arcs in order to remove the regions from P .

The algorithm traverses ∂P (s(C), t(C)) from s(C) and removes the regions R1, . . . , Rs one
by one. Each point in the set U is on the boundary of one of the regions R1, . . . , Rs which
has not so far been removed. The loop at line 5 traverses one such region.

The subroutine TraverseP(C, a, e) traverses ∂P from a until we meet e or a point where
C enters or exits P . The point b where we stop traversing is returned.

The subroutine TraverseC(C, b) follows C from b through P until it exits P at some point
a, which is returned. Since we assumed that no vertex of ∂P is an inner point of C, it is
uniquely defined which direction of C to follow.
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Since P is simply-connected, the regions R1, . . . , Rr induce a tree T such that there is an
edge in T between two regions Rj and Rk if there is an arc C(x, y) ⊂ ∂Rj ∩ ∂Rk for x 6= y.
By Lemma 3, V is connected, so the regions R1, . . . , Rs induce a subtree in T . Therefore,
each of the regions in T is traversed at least once by Algorithm 2. On the other hand, a
region is removed from P while its boundary is traversed, so each region is traversed at most
once. Hence, we have the following lemma.

I Lemma 15. Algorithm 2 traverses the boundary of each region R1, . . . , Rs exactly once
and thus correctly computes P ← P \ V as specified by the arc C.

The point TraverseC(C, b) is the first intersection point between C and ∂P when following
C from b in the relevant direction. Cheng et al. [4] describes an efficient solution to the
following problem. For a simple polygon V , preprocess V such that queries of the following
kind can be answered efficiently: Given a circular unit-radius arc beginning at some point in
the interior of V , find the first intersection point between the arc and V if it exists. The
algorithm requires O(n) space, uses O(n logn) time on preprocessing, and answers queries in
O(logn) time, where n is the number of vertices of V .

It is straightforward to generalize the method of Cheng et al. to curvilinear polygons. We
apply the preprocessing to the original input ∂P1. Thus, by querying an arc following C from
b in the direction through P , we know the point where C exits P1. However, the arc C can
exit P before it exits P1, namely if and only if it crosses a cut arc of ∂P . In the following,
we show how to detect if that is the case or not.

Since C enters or exits P at b, there exists a point d ∈ C ∩ P such that C(d, b) ⊂ P . In
the following, d denotes such a point. It is not necessary to compute d, it is merely a tool
in our analysis. We know from Lemma 11 that s(C), t(C) ∈ ∂P1. Using the circular ray
shooting data structure, we can find a closed subset C′ ⊆ C such that s(C′), t(C′) ∈ ∂P1,
C′(s(C′), t(C′)) ⊂ P1, and b ∈ C′. Hence also d ∈ C′. The following lemma says that if the
arc C′, when traversed in any direction from d, enters a removed area, i.e., a connected
component of P1 \ P , then it stays in that removed area.

I Lemma 16. Let x be one of the endpoints of C′. There is at most one cut arc A of ∂P
which intersects C′(d, x). There is such an arc A if and only if x /∈ ∂P . If A exists, C′(d, x)
and A intersect at a unique point y, and C′[y, x) ⊂ P1 \ P .

It is possible that C′(s(C′), d) and C′(d, t(C′)) intersect the same cut arc B. That is easy
to detect since we are given a point b ∈ ∂P ∩C′ where C′ enters of leaves P . Thus, we check if
b is on a cut arc B and if C(b, x) intersects the same arc. Otherwise, every cut arc A satisfies
that A ∩ C′(s(C), d) = ∅ or A ∩ C′(d, t(C)) = ∅, and we have the following lemma.

I Lemma 17. Let A be a cut arc of ∂P such that s(A), t(A) ∈ ∂P1. Assume that A ∩
C′(s(C′), d) = ∅ or A ∩ C′(d, t(C′)) = ∅. Then, the following two statements hold:

A and C′(s(C′), d) intersect if and only if the endpoints of C′ and A appear in the order
s(C′), t(A), t(C′), s(A) on ∂P1.
A and C′(d, t(C′)) intersect if and only if the endpoints of C′ and A appear in the order
s(C′), s(A), t(C′), t(A) on ∂P1.

See Figure 12, which illustrates Lemma 17. The black arc A is the only cut arc of ∂P .
The thick part of the grey arc C is C′.

Lemma 17 leads to our method for finding cut arcs intersecting an arc C′ by searching
after arcs with endpoints on specific portions of ∂P1. We associate to each point p on ∂P1 a
unique number ϕ(p) ∈ [0, n). Let the vertices of ∂P1 be v0, v1, . . . , vn−1, vn, where v0 = vn.
We set ϕ(vi) = i for i < n. For the points p on the arc between two vertices vi and vi+1, we
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Figure 12

Algorithm 3: TraverseC(C, b)
1 Use the circular ray shooting data structure to find the arc C′ ⊆ C such that
C′(s(C′), t(C′)) ⊂ P1, s(C′), t(C′) ∈ ∂P1, and b ∈ C′.

2 Let z ∈ {s(C′), t(C′)} be the endpoint of C′ when following C′ from b through P .
3 If b is on a cut arc B of ∂P and C(b, z) intersects B at a point a, return a.
4 Ask the data structure Θ if any point θ(A) is in the rectangle(s) as specified by

Lemma 18. If so, return the intersection point between A and C′(b, z).
5 Return z.

interpolate between i and i+ 1 to uniquely define ϕ(p). For an arc A with s(A), t(A) ∈ ∂P1,
we define an associated point θ(A) ∈ [0, n)× (0, 2n) in the following way:

θ(A) =
{

(ϕ(s(A)), ϕ(t(A))) if ϕ(s(A)) < ϕ(t(A))
(ϕ(s(A)), ϕ(t(A)) + n) otherwise.

Lemma 17 then leads to the following.

I Lemma 18. Let A be a cut arc of ∂P such that s(A), t(A) ∈ ∂P1. Assume that A ∩
C′(s(C′), d) = ∅ or A ∩ C′(d, t(C′)) = ∅. Let θ(C′) = (x, y).

A and C′(s(C′), d) intersect if and only if
y < n and θ(A) is in [0, x)× (x, y) or (y, n)× (x+ n, y + n), or
y ≥ n and θ(A) is in (y − n, x)× (x, y).

A and C′(d, t(C′)) intersect if and only if
y < n and θ(A) is in (x, y)× (y, x+ n), or
y ≥ n and θ(A) is in [0, y − n)× (y − n, x) or (x, n)× (y, x+ n).

For each cut arc A of ∂P where s(A), t(A) ∈ ∂P1, we store the point θ(A) in a data
structure Θ. It is necessary to add new points to and delete points from Θ as the algorithm
proceeds, since new cut arcs are created and other no longer appear on ∂P . We need to be
able to find a point θ(A) in a rectangle specified by C′ as stated in Lemma 18. Therefore,
we implement Θ as a fully dynamic orthogonal range searching structure as described by
Blelloch [3]. Algorithm 3 sketches how to implement TraverseC.

It is now possible to bound the running time and memory requirement of Algorithm 1
when using our suggested implementation.

I Theorem 19. Algorithm 1 can be implemented so that it runs in time O(n logn) and uses
O(n) space.
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