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Abstract
The restricted Delaunay triangulation can be conceived as an operator that takes as input a
k-manifold (typically smooth) embedded in Rd and a set of points sampled with sufficient density
on that manifold, and produces as output a k-dimensional triangulation of the manifold, the input
points serving as its vertices. What happens if we feed that triangulation back into the operator,
replacing the original manifold, while retaining the same set of input points? If k = 2 and the
sample points are sufficiently dense, we obtain another triangulation of the manifold. Iterating
this process, we soon reach an iteration for which the input and output triangulations are the
same. We call this triangulation a fixed point of the restricted Delaunay triangulation operator.

With this observation, and a new test for distinguishing “critical points” near the manifold
from those near its medial axis, we develop a provably good surface reconstruction algorithm for
R3 with unusually modest sampling requirements. We develop a similar algorithm for construct-
ing a simplicial complex that models a 2-manifold embedded in a high-dimensional space Rd, also
with modest sampling requirements (especially compared to algorithms that depend on sliver ex-
udation). The latter algorithm builds a non-manifold representation similar to the flow complex,
but made solely of Delaunay simplices. The algorithm avoids the curse of dimensionality: its
running time is polynomial, not exponential, in d.
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1 Introduction

Manifold reconstruction is the problem of discovering the structure of a k-dimensional
manifold embedded in Rd, given only a set of points sampled from the manifold. The classic
application is surface reconstruction, the problem of discovering a surface (2-manifold) in
three-dimensional space. Manifold reconstruction also has applications in higher-dimensional
spaces, such as discovering relationships in data and studying algebraic varieties.

A large vein of research in surface and manifold reconstruction develops algorithms
that are provably good [1, 2, 13, 5]: if the points sampled from a manifold are sufficiently
dense, these algorithms are guaranteed to produce a geometrically accurate representation
of the unknown manifold with the correct topology. Most of these algorithms are based on
Delaunay triangulations, and their output is a set of Delaunay simplices that approximates
the unknown manifold. In particular, they generate restricted Delaunay triangulations. In
this paper, we study restricted Delaunay triangulations that model 2-manifolds embedded in
ambient spaces of three or more dimensions. Our algorithm’s guarantees hold for relatively
sparse point samples, especially in four or more dimensions.
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47:2 Fixed Points of the Restricted Delaunay Triangulation Operator

The restricted Delaunay triangulation (RDT) is a geometric structure that formally
extends the Delaunay triangulation to curved manifolds. Think of the RDT as a mathematical
operator that takes two inputs—a manifold and a finite set of points that lie on the manifold—
and produces as output a triangulation of the manifold whose vertices are the input points.
This result is conditional: if the points are not sampled densely enough, the RDT will not
be a triangulation of the manifold. The RDT is (unconditionally) a subcomplex of the
full-dimensional Delaunay triangulation in Rd. It has proven itself as a mathematically
powerful tool for surface meshing and surface reconstruction.

What happens if we feed an RDT of a 2-manifold back into the operator, replacing
the original manifold, while retaining the same set of input points? If the sample points
are sufficiently dense, and the triangulation is a sufficiently good approximation of the
manifold from which they were sampled, we obtain another triangulation of the manifold.
We prove that if we iterate this process, we eventually reach an iteration for which the input
triangulation and output triangulation are the same. We call this triangulation a fixed point
of the restricted Delaunay triangulation operator for the specified point set. Such fixed-point
triangulations appear to be particularly accurate representations of the unknown manifold.

Fixed-point triangulations bifurcate into those that stay everywhere close to the unknown
manifold and those that somewhere come very close to its medial axis. We call the set of
simplices that can appear in the former the manifold fixed-point complex (MF complex),
and we discuss how to compute it. The MF complex is a fixed point of the RDT operator;
moreover, it is the union of all the fixed points that stay far from the medial axis.

The MF complex closely resembles the well-known flow complex [17], but it better
approximates (in Hausdorff distance and tangents) the unknown manifold. Unlike the flow
complex, the MF complex is a subcomplex of the Delaunay triangulation, so it offers greater
simplicity. In three dimensions, it is easy to extract a subcomplex of the MF complex that is
itself a manifold, homeomorphic to the unknown manifold. In higher dimensions, we prove
that such a subcomplex exists. We believe that heuristic algorithms will have little difficulty
extracting a homeomorphic manifold, but the problem seems difficult in theory.

Manifold reconstruction algorithms in high-dimensional ambient spaces face the curse of
dimensionality: a Delaunay triangulation of n vertices in the ambient space Rd can have up
to Θ(n dd/2e ) d-simplices. Even if the complexity is close to linear, as often happens, it is not
feasible to triangulate large point clouds of dimension much higher than 10. Our algorithm’s
running time is polynomial in d, thanks to a method for computing low-dimensional cross-
sections of high-dimensional Voronoi diagrams that we borrow from Flötotto [16].

An important ingredient for computing either the MF complex or the flow complex is a
test that examines “critical points” (where Delaunay simplices intersect their Voronoi duals)
and distinguishes those near the unknown manifold from those near its medial axis. We
propose a test that is correct for sparser samples than the test proposed by Dey, Giesen,
Ramos, and Sadri [12] in their paper on computing flow complexes. More importantly, we
extend it to higher dimensions, without constructing the Delaunay triangulation in Rd. Our
new test can be used to construct flow complexes as well.

A benefit of our approach is that our analysis guarantees good reconstructions for coarser
point samples than traditional Delaunay reconstruction algorithms such as the Crust [1]
and Cocone [2, 13] algorithms or the Dey et al. flow complex algorithm. In R3, we compute
a homeomorphic reconstruction from a 0.143-sample of a surface (see the definition in
Section 2); by comparison, the analysis of the Cocone algorithm guarantees a homeomorphic
reconstruction only for a 0.05-sample. We attribute the improved constant to our new
critical point classifier, a new method for proving homeomorphisms, and the exploitation of
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critical points (like the flow complex, but with Delaunay triangles). In higher dimensions, a
0.143-sample also suffices, though we do not guarantee a homeomorphic reconstruction. This
coarse sampling requirement sharply distinguishes our algorithm from previous algorithms
for manifold reconstruction in codimension two or higher [5, 9]. (See Section 3).

In R3, our algorithm produces triangles that are similar but not identical to those produced
by Edelsbrunner’s Wrap algorithm [14] (which is based on flows); and similar but not identical
to those used by Dey et al. to help construct the flow complex. The differences are subtle
but theoretically important, as they permit us to benefit from the forthcoming Lemma 5.

Unfortunately, our algorithm reconstructs only 2-manifolds. The problem is that the
Delaunay 3-simplices used to triangulate a 3-manifold can have extremely unstable affine hulls
and normals; they can be perpendicular to the original manifold, and their normals parallel.
If we feed such a defective triangulation back into the RDT operator, it will likely produce a
triangulation with nasty folds and self-intersections, not homeomorphic to Σ. Nevertheless,
we suspect that RDTs will someday be adapted to reconstructing general k-manifolds. For
that reason, we discuss some parts of our algorithm in a general-dimensional framework.

2 The Restricted Delaunay Triangulation

Let Σ be a k-manifold embedded in Rd. Let V ⊂ Σ (for “Vertices”) be a finite set of n points
sampled from Σ. Let Del V and Vor V denote, respectively, the d-dimensional Delaunay
triangulation and Voronoi diagram of V . Our goal is to find a subset of the k-faces in Del V
that forms a triangulation that geometrically approximates Σ and is topologically equivalent
to Σ. For k = 2, this is always possible if Σ is sufficiently smooth and V is sufficiently dense.

Throughout this paper, we use pq to denote the line segment connecting p to q, and |pq |
to denote its length; i.e., the distance from p to q. The codimension of Σ is d− k. We presume
familiarity with the duality between Delaunay triangulations and Voronoi diagrams: every
simplex τ of dimension j in Del V has a dual face of dimension d − j in Vor V , denoted τ∗.
In particular, the Voronoi cell of a site u ∈ V is denoted u∗ = {p ∈ Rd : ∀w ∈ V, |up| ≤ |wp|}.

The restricted Voronoi diagram of V with respect to Σ, denoted Vor|Σ V , is a cell complex
much like Vor V , but the Voronoi cells contain only points on the manifold Σ. Thus Vor|Σ V =
{c∩Σ : c ∈ Vor V }, where c ranges over all the cells of all dimensions in the Voronoi diagram. In
other words, we replace each Voronoi face c with its restriction c|Σ = c∩Σ. For each site u ∈ V ,
Vor|Σ V contains the restricted Voronoi cell of u, namely, u∗ |Σ = {p ∈ Σ : ∀w ∈ V, |up| ≤ |wp|}.

RDTs are defined not by restricting Delaunay simplices to a manifold, but by dualizing
the restricted Voronoi diagram. The restricted Delaunay triangulation of V with respect to
Σ, denoted Del|Σ V , is the subcomplex of Del V that contains every simplex in Del V whose
Voronoi dual face intersects Σ. (I.e., Del|Σ V contains every simplex dual to a face of Vor V
that contributes a nonempty face to Vor|Σ V .)

We find it useful to define Del|P V not just for manifolds, but for any arbitrary point set
P ⊆ Rd. Although the RDT operator is usually applied to smooth manifolds, we will apply
it to piecewise linear manifolds and even individual simplices.

Let us characterize the restricted Delaunay simplices. A circumsphere of a j-simplex is
any hypersphere in Rd that passes through all j + 1 vertices of the simplex. A d-simplex
has one unique circumsphere, whereas a lower-dimensional simplex has infinitely many. The
diametric sphere of a simplex τ is the unique circumsphere with least radius. The center
of τ’s diametric sphere, called the circumcenter of τ, lies on the affine hull of τ. The affine
circumsphere of τ is the unique ( j − 1)-sphere that passes through all j + 1 vertices; it lies on
τ’s affine hull and it is a cross-section of every circumsphere of τ. The circumradius of τ is
the radius of its affine circumsphere, which is also the radius of its diametric sphere.

SoCG 2016



47:4 Fixed Points of the Restricted Delaunay Triangulation Operator

A circumsphere S is empty if no vertex in V is inside S. (Vertices precisely on S don’t
count.) Simplices in an ordinary Delaunay triangulation Del V are characterized by the
well-known empty circumsphere condition: τ is Delaunay if its vertices are in V and it has
at least one empty circumsphere. For τ to be restricted Delaunay, it must satisfy these
conditions plus one more: it has at least one empty circumsphere whose center lies on the
manifold Σ.

If Σ is a k-manifold, Del|Σ V typically contains only simplices of dimensions k and lower.
If simplices of higher dimension appear, we perturb Σ infinitesimally to make them go away.
For any cell complex T , the underlying space |T | of T is the union of simplices in T ; i.e.,
|T | =

⋃
τ∈T τ. (The operator | · | collapses a set of sets of points into a set of points.) Under

favorable conditions, |Del|Σ V | can be a k-manifold and a topologically and geometrically
good approximation of Σ.

RDTs have become a standard tool in provably good surface reconstruction algorithms
such as Crust [1] and Cocone [2, 13] and in many guaranteed-quality surface meshing
algorithms [6, 10, 15]. In the mesh generation problem, Σ is known and we choose the mesh
vertices V ∈ Σ so that Del|Σ V is a high-quality mesh. In the manifold reconstruction problem,
V is known but Σ is not, and we try to infer Σ from V by guessing the subcomplex of Del V
most likely to be Del|Σ V or a good approximation thereof. Without knowing Σ, however, we
cannot necessarily determine Del|Σ V , even if V is sampled extremely densely.

A major research victory in surface reconstruction was the characterization of how dense
a point sample V ⊂ Σ needs to be to guarantee a correct reconstruction, taking into account
that the requirements vary through space. Let M be Σ’s medial axis. The local feature
size function is lfs : Σ → R, p 7→ d(p, M), where d(p, M) denotes the distance from p to M.
We require that Σ is smooth enough that infp∈Σ lfs(p) > 0. A finite point set V ⊂ Σ is an
ε-sample of Σ if for every point p ∈ Σ, d(p,V ) ≤ ε lfs(p). That is, there is some sample
v ∈ V in the ball of radius ε lfs(p) centered at p. The function lfs(·) has proven itself as an
appropriate, space-varying measure of the sampling density necessary so that algorithms for
surface reconstruction and surface meshing can guarantee the correctness of their outputs.

For a 2-manifold Σ ⊂ Rd and a 0.2695-sample V ⊂ Σ, we can show that |Del|Σ V | is
homeomorphic to Σ. (See the full-length version of this paper.) There is a homeomorphism
that doesn’t move any point too far, so the Hausdorff distance between Σ and |Del|Σ V | is
small. The triangles in Del|Σ V are approximately parallel to the surface Σ nearby.

To beat the curse of dimensionality, we borrow from Flötotto [16] and Boissonnat and
Ghosh [5] the idea of the tangential Delaunay complex, which is simply the restricted Delaunay
triangulation Del|Π V where Π is a k-flat (i.e., a k-dimensional affine subspace). Whereas
a d-dimensional Voronoi diagram Vor V with n vertices may have complexity as high as
Θ(n dd/2e ), a k-dimensional cross-section of Vor V has complexity only O(n dk/2e ) and can be
computed much faster. The trick is to observe that a k-dimensional cross-section Vor|Π V of
Vor V is a power diagram. If we project each point v ∈ V orthogonally onto Π and assign each
projected point a weight of −d(v,Π)2, where d(v,Π) is the distance from v to Π, then the
k-dimensional power diagram of the weighted, projected points is the desired cross-section of
the d-dimensional Voronoi diagram. The dual of Vor|Π V is a weighted Delaunay triangulation
Del|Π V and can be computed by standard algorithms for computing (k + 1)-dimensional
convex hulls such as the randomized incremental algorithm of Clarkson and Shor [11], which
takes expected O(n dk/2e + n log n) time.

For more details about Delaunay triangulations, restricted Delaunay triangulations,
medial axes, the local feature size, and ε-samples, see Dey [13] or Cheng et al. [10].
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3 Slivers and Ambiguities in Manifold Reconstruction

All Delaunay-based surface reconstruction algorithms face a problem that doesn’t sound like
it should be a problem: Del V typically contains many different subcomplexes that would
serve as good triangulations of Σ. Even in three dimensions, four nearly-cocircular vertices
on Σ may form a flat, kite-shaped tetrahedron called a sliver, which is usually aligned roughly
parallel to the surface. Slivers create ambiguities for surface reconstruction, because the top
two faces or the bottom two faces of a sliver might equally well represent the surface. The
choice might not matter, but to obtain a manifold a choice must be made.

Extracting a manifold from Del V typically requires many such choices. Unfortunately,
these choices are not independent. Ultra-thin slivers can stack up in interlocking layers. In
higher dimensions, slivers and their higher-dimensional analogs layer along multiple axes.

Sections 4 through 6 analyze the effects of taking the output of the RDT operator and
feeding it back into the RDT operator. Slivers are the reason why the RDTs produced by
successive iterations may differ from each other. We will see that successive iterates tend to
be better than their predecessors until they arrive at a fixed point. However, fixed points
are not unique. For example, if a sliver in R3 contains its own circumcenter, there may be
one fixed-point triangulation that chooses the sliver’s bottom two faces, and another that
chooses the top two. Making the point sample V very dense does nothing to prevent this.

Section 8 presents an algorithm that computes a manifold fixed-point complex (MF
complex) that is the union of all fixed-point triangulations that don’t get close to the
medial axis. The MF complex might contain all four faces of a sliver that contains its own
circumcenter (or, if d > 3, intersects its own Voronoi dual face). However, typically only a
minority of slivers contain their own circumcenters. (The circumcenter of a sliver is very
unstable: a small perturbation of a vertex can shoot the circumcenter far away.) The MF
complex accepts fewer triangles than algorithms like Crust and Cocone, resolving most, but
not all, of the ambiguities, and also obtaining higher quality.

In R3, there is a fast, simple method for resolving the remaining ambiguities and extracting
a manifold, described in Section 8, but it relies on the fact that a codimension-one manifold
(d − k = 1) partitions space into “inside” and “outside”; it finds the outermost boundary.

For codimension two or higher, Cheng, Dey, and Ramos [9] and Boissonnat and Ghosh [5]
solve this problem by replacing Del V with a weighted Delaunay triangulation and using a
technique called sliver exudation [8] to select vertex weights so that the slivers disappear and
the triangulation has only one subcomplex that approximates Σ. At least in theory, sliver
exudation also has the virtue that it enables the reconstruction of manifolds of dimension
greater than 2, unlike our method. Unfortunately, sliver exudation is so fragile that it is only
guaranteed to work with an extremely dense sample V—the bounds on ε are not derived
explicitly, but these algorithms probably require a 10−10-sample or finer to guarantee success.
Both groups of authors admit their algorithms are not practical.

In theory, the problem of manifold extraction from an MF complex seems challenging and
we wonder if it is NP-hard. (Bern and Eppstein [4] observe that given a collection of triangles
in the plane, it is NP-hard to determine whether some subset of them form a triangulation
of the triangles’ vertex set.) Nevertheless, we suspect that manifold extraction from an MF
complex is not hard in practice, as slivers usually appear as isolated singletons or in small
groups, especially after the MF complex filters out most slivers. We predict that in practice,
2-manifolds can reliably be extracted from MF complexes by methods based on heuristic
search; whereas sliver exudation will never be practical, as its weight perturbations degrade
the quality of triangulations that may already be fragile due to sparse sampling.
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4 Fixed-Point Triangulations

In the 2-manifold reconstruction problem, we do not know Σ, so we cannot compute Del|Σ V .
But suppose we could somehow generate a rough approximation Λ of Σ that is piecewise linear
and homeomorphic to Σ, that stays somewhat close to Σ, and that is locally approximately
parallel to Σ (in ways we formalize later). We will show that the triangulation T1 = Del|Λ V
is also homeomorphic to Σ, and it is likely to be a better approximation to Σ than Λ.

As Λ is piecewise linear, we can compute Del|Λ V in high dimensions without suffering the
curse of dimensionality. We take each flat piece f ⊂ Λ and compute Del| f V by computing a
Voronoi cross-section as described in Section 2. (Observe that Del| f V is a subcomplex of
Del|aff f V where aff f denotes f ’s affine hull.) We stitch these fragmentary triangulations
together to yield T1. This method requires the computation of many low-dimensional power
diagrams, but nonetheless it may be much faster than computing a high-dimensional Voronoi
diagram. Moreover, it can more easily take advantage of locality: if the sample points are
uniformly distributed on Σ, simple spatial data structures such as spatial hashing might speed
up computing Del| f V to as fast as constant time. The Voronoi cross-section computations
are mutually independent, making them amenable to multicore parallelization.

Next, consider computing T2 = Del| |T1 | V the same way; now each flat piece is a triangle
τ ∈ T1. Likewise compute T3 = Del| |T2 | V , T4 = Del| |T3 | V , etc. We eventually obtain a
triangulation T ∗ = Del| |T ∗ | V identical to the last input. We call T ∗ a fixed point of the
restricted Delaunay triangulation operator, and we denote it Del∗ |Λ V .

Each simplex τ in a triangulation Ti, i ≥ 2, is there because of a Delaunay simplex σ ∈ Ti−1
that intersects τ∗. We say that σ generates τ. Next we show that, with one minor exception,
a simplex only generates simplices with smaller circumradii—plus it might regenerate itself.
This leads us to conclude that the iterations always reach a fixed point. Moreover, each
successive iteration tends to shrink the circumradii. The fixed-point triangulation Del∗ |Λ V is
composed of small-radius triangles; under the right conditions, this helps us to guarantee
that it is close to the true manifold Σ and has similar tangents and normals.

I Lemma 1 (Monotonic Circumradii Lemma). Consider the restricted Delaunay triangulation
T = Del| |D | V , where D ⊆ Del V is a set of Delaunay simplices. Each restricted Delaunay
simplex τ ∈ T is generated by a simplex in D with greater circumradius, or by a simplex with
the same circumradius and the same circumcenter as τ (possibly by τ itself).

Proof. Consider a simplex τ ∈ T . By the definition of restricted Delaunay triangulation,
the Voronoi face τ∗ dual to τ intersects some simplex σ ∈ D, and thus σ generates τ.

Let p be a point in σ∩ τ∗. As τ∗ is τ’s dual Voronoi face, the hypersphere S with center p
that passes through every vertex of τ is empty (encloses no vertex in V). Let R be the radius
of S, and let rτ be the circumradius of τ. The affine circumsphere of τ is a cross-section of S,
so rτ ≤ R. Moreover, if rτ = R then τ’s circumcenter is the center p of S.

Let D be the diametric sphere of σ, and let rσ be the radius of D. If D = S, then rσ = R
and p is the circumcenter of σ; whereas if D encloses S, then rσ > R. As p ∈ σ and S is
empty, there is only one other possibility, illustrated in Figure 1: D intersects S, and D ∩ S is
a (d − 2)-sphere whose affine hull is a hyperplane Π. As S is empty, σ’s vertices are restricted
to one side of Π (possibly lying on Π), and therefore so is σ itself. As p ∈ σ, at least half of
S lies on that side of Π, and that portion of S is enclosed by D. Hence rσ > R.

Therefore, rτ ≤ rσ, and equality is possible only if p is the circumcenter of σ and τ. J

To better understand fixed-point triangulations and algorithms for computing them, we
define a directed almost-acyclic graph called the restriction DAG G. There is one node in G
for each simplex in Del V . G has a directed edge (σ, τ) if σ generates τ.
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Figure 1 The Monotonic Circumradii Lemma: if σ generates τ, then rτ ≤ R ≤ rσ .

Lemma 1 implies that G is almost acyclic. Two kinds of cycles are possible. We say that
a Delaunay simplex τ is anchored if it intersects its own dual τ∗. An anchored simplex has a
self-edge (τ, τ) in G and can generate itself. The second kind of cycle is a clique of two or
more anchored simplices, representing a “degenerate” configuration in which several simplices
share the same affine circumsphere, and they all intersect their shared circumcenter (which
implies that the circumcenter is on the boundary of each simplex). As the simplices in such
a clique are all present or all absent in a fixed-point triangulation, we contract each such
clique into a single node of G (with self-edge). Then the only cycles are self-edges.

As G (after clique contraction) is a DAG (plus self-edges), we use standard tree terminology:
given edges (σ, τ) and (τ, ζ ), σ is a parent of τ and an ancestor of ζ , τ, and σ; ζ is a child
of τ and a descendant of σ, τ, and ζ . The acyclicity of G implies that iterations of the
restricted Delaunay operator always reach a fixed point, and allows us to characterize it.

I Theorem 2. Let D ⊆ Del V be a Delaunay subcomplex. Then the fixed-point triangulation
Del∗ | |D | V exists and contains every anchored simplex that has an ancestor in D (possibly
itself), every descendant of those anchored simplices, and no other simplex.

I Corollary 3. For every arbitrary point set P ⊆ Rd and every finite point set V ⊂ Rd,
Del∗ |P V exists and can be computed with a finite number of iterations of the restricted
Delaunay operator.

The corollary is unconditional. For every P and V , we can take D = Del|P V and
characterize the simplices in Del∗ |P V = Del∗ | |D | V with Theorem 2. Of course, the fact that
a fixed point exists doesn’t imply that it is anything more than a messy subcomplex of Del V .
If the fixed-point triangulation is to be a good manifold, P should be a good approximation
of Σ and V should be an ε-sample for a small ε .

Theorem 2 serves an algorithmic purpose as well as a theoretical one. The fastest way to
compute a fixed-point triangulation is not to iterate the restricted Delaunay triangulation
operator; rather, we apply Theorem 2 and build part of the restriction DAG. (After we
compute which simplices a particular simplex generates, there is no need to compute them
again.) It suffices to generate the nodes of G that represent simplices that arise in one of the
iterations. Moreover, it suffices to consider just the k-simplices. (We perturb |D| to prevent
higher-dimensional simplices from being generated, and we gain no benefit from generating a
lower-dimensional simplex that is not a face of a generated k-simplex.) If Del V has many
slivers, we might need just a small portion of the DAG.

We do not know a useful bound on the number of iterations required to reach a fixed
point (we doubt it will ever reach 8 in practice), but we present evidence in the next section
that convergence is fast. One can generate a good triangulation by stopping after a few
iterations, without reaching a fixed point. Moreover, if many iterations are performed, the
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extra computation is likely needed only in a few locations. At any rate, the reconstruction
algorithms we present in Section 8 do not actually perform these iterations; rather, they
directly find triangles that can appear in a fixed-point triangulation.

We give some intuition why a fixed-point triangulation T partly resolves some of the
ambiguities posed by slivers. In codimension one (d−k = 1), |T | partitions Rd into an “inside”
region and an “outside” region. If the circumcenter of a sliver d-simplex τ lies outside |T |,
then τ is outside also; if τ’s circumcenter is inside, so is τ. (If τ contains its own circumcenter,
it can be classified either way, so the fixed-point triangulation is not unique.) In codimension
two or higher (d − k ≥ 2), a fixed-point triangulation maintains an analogous relationship
among the manifold k-simplices and the Voronoi (d − k)-cells they intersect.

5 Proximity of the Fixed-Point Triangulation to Σ

Lemma 1 tells us that iterations of the RDT operator shrink the circumradii, but says nothing
about how much they shrink. Here, we show that if the input manifold does not come too
close to the medial axis, the consecutive triangulations fit into a region that shrinks until it
is everywhere close to Σ. We show that a parameter governing the distance from an iterate
Ti to Σ converges quickly to a small fixed point. The distance bound yields bounds on the
circumradii of the triangles and the accuracy of the tangents for each iterated triangulation,
which we use to show that subsequent triangulations are k-manifolds. As a bonus, we
considerably tighten the proximity (e.g., Hausdorff distance) bounds that apply to many
standard algorithms for Delaunay surface reconstruction and surface mesh generation.

Let M be the medial axis of Σ. Define the nearest-point map ν : Rd \ M → Σ, q 7→ q̃, a
function that maps each point to the nearest point on Σ. For brevity, we write q̃ for ν(q). If
a point q does not have a unique nearest point on Σ, then q ∈ M by the definition of medial
axis, and q̃ is undefined. The homeomorphisms we employ will be the nearest-point map
from some reconstruction |T | to Σ.

For ω ∈ [0, 1), let the ω-sausage be the region Σω = {q : d(q, Σ) ≤ ω lfs(q̃)}, where d(q, Σ)
is the distance from q to Σ. Note that Σ0 = Σ. The ω-sausage is what topologists call a
tubular neighborhood of Σ. For k = 1 its shape resembles a traditional sausage (albeit tied in
a loop), whereas for k = 2 it is more of a breakfast patty. Σω is a d-dimensional union of
(d − k)-balls: at each point p ∈ Σ is centered one (d − k)-ball of radius ω lfs(p), normal to Σ.

Next, we show that for any point set P ⊆ Σω̄ with ω̄ a little less than 1, the fixed-point
triangulation Del∗ |P V is included in Σω with ω close to zero. The following lemma (see the
full-length paper) bounds the interpolation error over a restricted Delaunay simplex in Σω.

I Lemma 4 (ε-Interpolation Lemma). Let Σ ⊂ Rd be a smooth k-manifold without boundary.
Let V be an ε-sample of Σ for some ε < 0.5. Let τ ∈ Del V be a simplex (of any dimension)
whose dual Voronoi face τ∗ intersects the ω-sausage Σω. If ω ≤ 1 − ε and ω < 1−4ε2

1+4ε2 (the
latter precondition is equivalent to λ < 0.5), then for every point x ∈ τ,

|x x̃ | ≤ Ω(ω) lfs( x̃), where Ω(ω) = 1 −

√
1 − λ2

(1 − λ)2 and λ =

√
1 + ω
1 − ωε.

In particular, for τ ∈ Del|Σ V (i.e., τ∗ intersects Σ so we can set ω = 0), Lemma 4 gives
|x x̃ | ≤

(
1 −

√
1 − ε2

(1−ε )2

)
lfs( x̃) ≈ ε2

2 lfs( x̃). Compare with the bound of 15ε2 lfs( x̃) in Cheng
et al. [10, Theorem 13.22]—an improvement by a factor of up to 30.

Lemma 4 implies that if an input to the restricted Delaunay triangulation operator is in
the ω-sausage for a middling value of ω, then the output is in the ω-sausage for a smaller ω.
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I Lemma 5 (Shrinking Sausage Lemma). Let Σ ⊂ Rd be a bounded, smooth k-manifold without
boundary. Let V be an ε-sample of Σ with ε ≤ 0.3084. Let ω and ω̄ be two real solutions of
ω = Ω(ω), where Ω(ω) is defined in Lemma 4 and the solutions of interest are approximately

ω =
1
2 ε

2 + ε3 +
17
8 ε4 + 5ε5 +

199
16 ε6 + O(ε7) and ω̄ = 1 − 8ε2 + 32ε4 − 384ε6 + O(ε8).

Let P be a point set included in the ω-sausage Σω for some ω < min {1 − ε, ω̄}. Let the
simplicial complex T = Del∗ |P V be the fixed point of the restricted Delaunay triangulation
operator given the input P. Then |T | is a subset of the ω-sausage Σω.

Proof. By Lemma 4, if an input to the restricted Delaunay triangulation operator lies in
the ω-sausage for ω < min

{
1 − ε, 1−4ε2

1+4ε2

}
, then the output lies in the Ω(ω)-sausage. We

observe that Ω(ω) = ω; Ω(ω̄) = ω̄; for any ω ∈ (ω, ω̄), Ω(ω) ∈ (ω,ω); and for any ω ∈ [0, ω),
Ω(ω) ∈ (ω,ω). (Note that ω = ω̄ for ε � 0.308406, hence the requirement that ε must be
smaller.) Therefore, if we take an input in the ω-sausage with ω ∈

[
0,min

{
1 − ε, 1−4ε2

1+4ε2 , ω̄
})

and iterate the restricted Delaunay triangulation operator until the output is a fixed point,
then the output is in the ω-sausage. (As ω̄ ≤ 1−4ε2

1+4ε2 for all ε ∈ [0, 0.308406], we omit 1−4ε2

1+4ε2

from the lemma’s preconditions.) J

We emphasize that convergence is rapid. For example, when ε = 0.143, ω � 0.0145 and
ω̄ � 0.8471. If we start with a triangulation in the 0.847-sausage, after five iterations we
obtain a triangulation in the 0.0147-sausage. Convergence is even faster for smaller values
of ε . In the unlikely event that an input takes many iterations to reach its fixed point, one
can always stop early; a small constant number of iterations suffices to reach a triangulation
nearly as good as the fixed point.

Observe that the conditions of Lemma 5 are mild: P can be an arbitrary point set, so long
as it is in the ω-sausage for a suitable ω. We have not yet guaranteed that the fixed-point
triangulation is more than a messy subcomplex of Del V—but it is a mess close to Σ. The
next section describes conditions that ensure that the output is a 2-manifold.

6 Homeomorphism of the Restricted Delaunay Triangulation to Σ

Computational geometers have developed a theory of surface sampling to show that under the
right conditions, a restricted Delaunay triangulation Del|Σ V is homeomorphic to a smooth
surface Σ [1, 2, 10, 13]. (More precisely, its underlying space |Del|Λ V | is homeomorphic.) We
present here an alternative theorem that allows us to handle a nonsmooth Λ. Specifically, we
show that |Del|Λ V | is homeomorphic to a smooth 2-manifold Σ without boundary if V ⊂ Σ is
a sufficiently dense ε-sample and Λ is a piecewise smooth 2-manifold that approximates Σ well
(in both location and tangents). We note that Boissonnat and Oudot [7] developed a method
for treating restricted Delaunay triangulations when Σ itself is a nonsmooth, Lipschitz surface,
but our method meets our needs better.

An advantage of our proof is that it enlarges the value of ε for which certain properties hold.
For example, we can show that the restricted Delaunay triangulation Del|Σ V is homeomorphic
to a 2-manifold Σ ⊂ Rd for any 0.2695-sample V , and the fixed-point triangulation Del∗ |Σ V
is likewise for any 0.143-sample. (See full-length paper.) Not only does the former claim
improve the constant ε = 0.18 proven in Dey’s book [13] for R3; it holds in any dimension d.

Let Σ be a smooth k-manifold embedded in Rd. For every point p ∈ Σ, let TpΣ denote
the k-flat (i.e., a k-dimensional affine subspace) tangent to Σ at p, called the tangent space
at p, and let NpΣ denote the (d − k)-flat normal to Σ at p, called the normal space at p. In
this paper we are mainly interested in k = 2, for which TpΣ is a plane.
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Let Γ,Π ⊆ Rd be two flats such that 1 ≤ dim Γ ≤ dimΠ ≤ d − 1. If they intersect each
other at a point x, the angle ∠(Γ,Π) separating them is maxp∈Γ\{x }minq∈Π\{x } ∠pxq. If they
do not intersect each other, translate Γ so they intersect, then measure the angle as above.
This angle is never obtuse. We sometimes substitute line segments or Voronoi faces for flats,
in which case we mean to measure the nonobtuse angles separating their affine hulls. It is
well known that for any two points p, q ∈ Σ, ∠(NpΣ, NqΣ) = ∠(TpΣ,TqΣ).

Let Λ ⊂ Rd be a piecewise smooth k-manifold. We say that Λ is θ-parallel to Σ if for
every smooth piece Γ ⊆ Λ and every point p ∈ Γ, ∠(TpΓ,Tp̃Σ) ≤ θ.

For any Voronoi face f ∈ Vor V of dimension 1 or greater, we say that f is φ-normal to Σ
at p ∈ f if ∠( f , Np̃Σ) ≤ φ. That is, f is nearly parallel to p̃’s normal space.

To prove that Σ and |Del|Λ V | are homeomorphic for k = 2, we require that Λ ⊂ Σω for a
suitable ω, that Λ be everywhere θ-parallel to Σ, and that the faces of Vor V of dimension
d − 2 or greater be φ-normal to Σ everywhere in the ω-sausage for an appropriate ω, where
θ + φ < 90◦. The following lemma, proven in the full-length version of this paper, shows that
Λ approximates the tangent and normal spaces of Σ with an error linear in ε .

I Lemma 6 (Normal-Parallel Lemma). Let Σ ⊂ Rd be a bounded, smooth 2-manifold without
boundary. Let V ⊂ Σ be an ε-sample of Σ. Let τ ∈ Del V be a triangle whose Voronoi dual
face τ∗ intersects Σω for some ω ≤ 1 − ε. Let Nτ be a flat dual (complementary) to aff τ. Let

χ = arcsin δ + arcsin
(

2
√

3
sin (2 arcsin δ)

)
, δ =

√
ω2 + (1 + ω)ε2

1 − λ , λ =

√
1 + ω
1 − ωε, and

η = arctan λ
4√1 − λ2√

1 − λ2
(
1 +
√

1 − λ2
) ≈ λ + 5

12λ
3 +

57
160λ

5 +
327
896λ

7 +O(λ9).

Then for every point p ∈ τ, ∠(aff τ,Tp̃Σ) = ∠(Nτ, Np̃Σ) ≤ χ + 2η, and for every point
z ∈ τ∗ ∩ Σω, ∠(aff τ,Tz̃Σ) = ∠(Nτ, Nz̃Σ) ≤ χ + η. Therefore, τ is ( χ + 2η)-parallel to Σ, and
τ∗ is ( χ + η)-normal to Σ wherever it intersects Σω.

Proofs about the homeomorphism of restricted Delaunay triangulations usually rely on
the Topological Ball Theorem of Edelsbrunner and Shah [15], and ours is no exception.
The Topological Ball Theorem states that |Del|Λ V | is homeomorphic to Λ if the following
topological ball property holds: for every Voronoi j-face f that intersects Λ, j ∈ [d − k, d],
f ∩Λ is a topological ( j + k − d)-ball and (int f ) ∩Λ = int ( f ∩Λ). (Here int f is an “interior”
with respect to aff f , and int ( f ∩ Λ) is an “interior” with respect to the manifold f ∩ Λ,
not with respect to the ambient space Rd.) Moreover, Λ intersects no Voronoi j-face for
j < d − k. The last condition can be simulated by infinitesimal perturbations of Λ. The
following theorem is one of our main contributions; see the full-length paper for a proof.

I Theorem 7 (θ-φ Homeomorphism Theorem). Let Σ ⊂ Rd be a connected, smooth 2-manifold.
Let Λ ⊂ Σω be a piecewise smooth 2-manifold where ω < (

√
5 − 1 − 2ε2)/(

√
5 − 1 + 2ε2)

(equivalently, λ <
√(√

5 − 1
)
/2 � 0.7861). Suppose that there is a θ ≥ 0◦ and a φ ≥ 0◦ such

that θ + φ < 90◦, Λ is θ-parallel to Σ, and every face f ∈ Vor V of dimension d − 2 or d − 1 is
φ-normal to Σ at every point on f ∩ Σω. Suppose that for every p ∈ Σ, Λ intersects NpΣ at
most once (i.e., ν : Λ→ Σ is injective), and that Λ intersects no i-face of Vor V for i < d − 2.
Then for every j ∈ [0, 2] and every (d − 2+ j)-dimensional face f ∈ Vor V such that f ∩Λ , ∅,
the intersection f ∩Λ is a topological j-ball and (int f ) ∩Λ = int ( f ∩Λ). Thus Λ and Vor V
satisfy the topological ball property and |Del|Λ V | is homeomorphic to Λ.

I Corollary 8. Under the assumptions of Theorem 7, |Del|Λ V | is homeomorphic to Σ.
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The obvious use of Corollary 8 is to show that, given a suitable Λ, the fixed-point
procedure produces a triangulation of Σ. We have a second use for it: our algorithm in
Section 8 does not construct a suitable Λ; instead, it directly computes all the triangles that
might be in a fixed-point triangulation. By the following corollary (proven in the full-length
paper), we know that some subset of those triangles is a good triangulation of Σ.

I Corollary 9. Let Σ ⊂ R3 be a bounded, smooth 2-manifold without boundary. Let V ⊂ Σ be
a finite 0.143-sample of Σ. Then the underlying space of the fixed-point triangulation Del∗ |Σ V
is homeomorphic to Σ.

7 Classifying Critical Points

Recall that a simplex τ ∈ Del V is anchored if it intersects its own Voronoi dual τ∗. We call
the intersection τ ∩ τ∗ a critical point (of the distance function d(p,V ) = minu∈V |pu|). Dey,
Giesen, Ramos, and Sadri [12] show that for a sufficiently dense sample, every critical point
is either a manifold critical point close to the manifold Σ or a medial critical point close to
Σ’s medial axis M. The following theorem is our tighter version of their result.

I Theorem 10 (Critical Point Separation Theorem). Let Σ ⊂ Rd be a smooth k-manifold. Let
V be an ε-sample of Σ for some ε ≤ 0.5. Let τ ∈ Del V be a simplex (of any dimension)
whose dual Voronoi face τ∗ intersects τ. Let z = τ ∩ τ∗. Let

ω̊ =
2 −
√

4 − 12ε2 + ε4 − ε2

4 =
1
2 ε

2 +
1
2 ε

4 +
3
4 ε

6 +
11
8 ε8 + O(ε10) and

µ =
1 −
√

1 − 4ε2

2 = ε2 + ε4 + 2ε6 + 5ε8 + O(ε10).

Then either |zz̃ | ≤ ω̊ lfs( z̃) (i.e., z ∈ Σω̊) or |zm | ≤ µ| z̃m | for some m ∈ M, where M is the
medial axis of Σ.

Here, we describe a method for distinguishing the two types of critical points that works
for larger values of ε (in theory) than the well-known cocone criterion of Amenta, Choi, Dey,
and Leekha [2]. Our method is useful not only for our algorithm, but also for Dey et al.’s
algorithm for computing flow complexes. In particular, our test works in any dimension, and
enables the computation of fixed-point complexes and flow complexes in higher dimensions.
The cocone criterion depends on having accurate estimates of the local tangent planes, but
in high dimensions only poor approximations can be obtained cheaply.

Let v be a vertex of an anchored simplex τ. Let v∗ ∈ Vor V denote its Voronoi cell.
Consider the set of points at the centers of the medial balls tangent to Σ at v: these centers
all lie on the normal space NvΣ, and each one lies either on the medial axis M or at infinity.
If the codimension is 1 (i.e., d − k = 1), there are two such medial points; if the codimension
is greater, there are infinitely many. In either case, at least one medial point is not at infinity,
and all these medial points, including those at infinity, lie in the Voronoi cell v∗.

Consider first the case of codimension 1. Suppose that we can explicitly construct the
Voronoi diagram (i.e., d is small). Following Amenta and Bern [1], we define the poles of v
to be two vertices of v∗, one on each side of Σ. Let the pole p+ be the vertex of v∗ furthest
from v, unless v∗ is unbounded, in which case p+ is a point at infinity whose direction is
chosen so the ray vp+ lies in v∗. Let the pole p− be the vertex of v∗ furthest from v such
that ∠p+vp− > 90◦. Amenta and Bern show that p− is on the opposite side of Σ from p+.

Our classifier for codimension 1 is simple. Given a critical point z = τ ∩ τ∗, choose any
vertex v of τ and compute v’s poles p+ and p−. Set p = p− if v∗ is unbounded; otherwise,
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47:12 Fixed Points of the Restricted Delaunay Triangulation Operator

select the pole p ∈ {p+, p−} that minimizes ∠pvz. Then, z is a medial critical point if
|vz |/|vp| > 0.313; a manifold critical point otherwise. This classifier relies on a lemma of
Amenta and Bern, which generalizes to higher dimensions and codimensions without change.

I Lemma 11 (Normal Lemma [1]). Let Σ ⊂ Rd be a bounded, smooth k-manifold without
boundary. Let V ⊂ Σ be an ε-sample of Σ for ε < 1. Let p be a point in the Voronoi cell v∗
of a sample v ∈ V such that |vp| ≥ ρ lfs(v) for some ρ > 0. Then ∠(vp, NvΣ) ≤ β(ρ), where
β(ρ) = arcsin ε

1−ε + arcsin ε
ρ(1−ε ) .

I Lemma 12 (Classification Lemma for Codimension 1). Let Σ ⊂ Rd be a bounded, smooth
(d − 1)-manifold without boundary. Let V ⊂ Σ be an ε-sample of Σ for ε ≤ 0.2327. Let
τ ∈ Del V be a simplex such that τ ∩ τ∗ , ∅, and let z be τ’s circumcenter τ ∩ τ∗. Let v be any
vertex of τ. Choose a pole p of the Voronoi cell v∗ as described above. If |vz |/|vp| > 0.313,
then z is a medial critical point; otherwise, z is a manifold critical point.

Proof. As v∗ contains medial points, each at a distance of at least lfs(v) from v, |vp+ | ≥ lfs(v).
Amenta and Bern [1] show that |vp− | ≥ lfs(v) too. Hence |vp| ≥ lfs(v).

If z is a manifold critical point, then z lies in the ω̊-sausage by Theorem 10. In the
full-length paper we show that the circumradius of τ is |vz | ≤

√
ω̊2 + (1 + ω̊)ε2 lfs( z̃), and

| z̃v | ≤ λ lfs( z̃), where λ =
√

1+ω̊
1−ω̊ ε . By the Feature Translation Lemma [13, 10], |vz | ≤√

ω̊2 + (1 + ω̊)ε2 lfs(v)/(1 − λ). For ε ≤ 0.2327, ω̊ < 0.0287 and |vz |/|vp| < 0.3127.
If z is a medial critical point, then there is a medial axis point m ∈ M such that

|zm | ≤ µ| z̃m | ≤ µ(| z̃z | + |zm |); therefore |zm | ≤ | z̃z |µ/(1 − µ). Hence, lfs(v) ≤ |vm | ≤
|vz | + |zm | ≤ |vz | + | z̃z |µ/(1 − µ) ≤ |vz | + |vz |µ/(1 − µ) = |vz |/(1 − µ) and |vz | ≥ (1 − µ) lfs(v).

By the Normal Lemma, ∠(vp, NvΣ) ≤ β(1) and ∠(vz, NvΣ) ≤ β(1 − µ). For codimension
1, NvΣ is a line, so one pole satisfies ∠pvz ≤ β(1) + β(1 − µ) and one satisfies ∠pvz ≥
180◦ − β(1) − β(1 − µ). We choose p to be the former.

As v is a vertex of τ and z is the circumcenter of τ, every point q for which ∠vzq > 90◦ is
closer to another vertex of τ and cannot lie in the Voronoi cell v∗. But p ∈ v∗, so ∠vzp ≤ 90◦
and |vz |/|vp| ≥ cos ∠pvz ≥ cos(β(1) + β(1 − µ)). For ε ≤ 0.2327, |vz |/|vp| > 0.3134. J

We adapt this test to 2-manifolds in codimension 2 or higher by taking a three-dimensional
cross-section of the Voronoi cell v∗. First, we use the following simple algorithm to compute
an approximate tangent plane T̂vΣ for v: find v’s nearest neighbor w ∈ V , then find the vertex
x ∈ V that minimizes the circumradius of 4vwx. We show in the full-length paper that 4vwx
has a small circumradius and its affine hull T̂vΣ = aff 4vwx is an adequate approximation
of v’s tangent plane TvΣ. Let Ξ be the 3-flat that includes T̂vΣ and the critical point z.
We compute the cross-section Ξ ∩ v∗ with the method described in Section 2. As we seek
just one cell in a three-dimensional power diagram, this computation can be dualized to a
three-dimensional convex hull computation, which can be performed in O(n log n) time.

If we knew the true tangent plane TvΣ, we could use the same test and analysis as
Lemma 12; but only an approximation T̂vΣ is available, so we adjust the test to compensate
and require a stricter constraint on ε . (A better tangent plane approximation method would
enable us to loosen this constraint.) Given a critical point z = τ ∩ τ∗, choose any vertex v of
τ, compute T̂vΣ, let Ξ = aff (T̂vΣ∪ {z}), and compute the three-dimensional polyhedron Ξ∩ v∗
and its poles p+ and p−. Select a pole p ∈ {p+, p−} in the same manner as for codimension 1.
Then, z is a medial critical point if |vz |/|vp| > 0.182; a manifold critical point otherwise.
This test works for any ε ≤ 0.1522. We defer the proof to the full-length paper.
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8 Constructing Fixed-Point Complexes

We classify each anchored triangle as a manifold anchored triangle or a medial anchored
triangle according to whether its circumcenter is a manifold critical point or a medial critical
point. A chained triangle is a triangle that is generated by a manifold anchored triangle or
another chained triangle. The manifold fixed-point complex (MF complex) is the set of all
manifold anchored triangles and chained triangles. Like the flow complex, the MF complex
is not a manifold (because of slivers), but it is a useful geometric representation of Σ in other
ways: its Hausdorff distance to Σ is small and all its triangles are good estimates of Σ’s local
tangent space. Unlike the flow complex, the MF complex obtains the latter guarantee without
prohibiting sample points from being too close together. Being a subcomplex of Del V , the
MF complex is a simpler alternative to the flow complex that offers better approximation
bounds. Moreover, for ε ≤ 0.143, some subcomplex of the MF complex is a 2-manifold that
approximates Σ well (namely, Del∗ |Σ V). (We conjecture that for small ε , every MF triangle
participates in at least one such 2-manifold.)

Here, we present an algorithm that constructs the MF complex for a 2-manifold Σ ⊂ Rd
in time polynomial in d. In the special case d = 3, standard methods can efficiently extract a
2-manifold from the MF complex; thus we have a surface reconstruction algorithm. In higher
dimensions, we believe heuristics can do the same in practice.

We take as input an n-point ε-sample V ⊂ Σ. If possible, we begin by constructing Del V
and Vor V , then we use Del V to identify the manifold anchored triangles. If d is too large for
the construction of Del V to be feasible, we identify the anchored triangles by enumerating
candidate triangles and checking each one to see if its diametric sphere is empty.

Next, we classify the anchored triangles as manifold or medial as described in Section 7.
We find the chained triangles as described in Section 4. This requires us to determine which
(d − 2)-faces of Vor V intersect anchored or chained triangles. If we have constructed Del V ,
an efficient way to find these Delaunay-Voronoi intersections is to simultaneously “walk”
through both Del V and Vor V in synchrony, working outward from each anchored triangle
along the chained triangles in a depth-first manner. If constructing Del V in infeasible, we
construct a Voronoi cross-section for each MF triangle as described in Section 2.

Let T be the MF complex. In R3, we can extract a 2-manifold from T with a standard
method [2, 13] whose correctness is well known. All MF triangles lie sufficiently close to Σ (in
Σω) that we can assign each edge two “sides”: two triangles in T are on the same “side” of a
shared edge if they meet at a dihedral angle less than 90◦; on opposite sides otherwise. We
prune from T every triangle that has an edge with no matching triangle on the other side.
Each pruned triangle may render other edges one-sided, prompting further pruning. When no
such triangle survives, we label the tetrahedra of Del V that are not enclosed by the surviving
triangles by performing a depth-first search. The search begins at the unbounded outer cell
of Del V and it labels every tetrahedron it visits “outside,” but it never crosses a triangle
still in T . Finally, we output every triangle that separates an unlabeled tetrahedron from a
tetrahedron labeled “outside” or the outer cell of Del V . The method succeeds because by
Corollary 9, T includes the 2-manifold Del∗ |Σ V , whose triangles are not pruned and which
encloses tetrahedra that will not be labeled “outside.” (The output manifold might enclose
additional tetrahedra, which do no harm.)

I Theorem 13. Let Σ ⊂ Rd be a bounded, smooth 2-manifold without boundary. Let V ⊂ Σ
be a finite ε-sample of Σ for ε ≤ 0.143. Our fixed-point reconstruction algorithm produces
a Delaunay subcomplex T ⊂ Del V such that the map ν : p 7→ p̃ sends each point p ∈ T
a distance of at most ω lfs(p̃), where ω ≈ 1

2 ε
2 + ε3 + 17

8 ε
4 + 5ε5 + 199

16 ε
6 and p̃ is the point
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nearest p on Σ; and for every triangle τ ∈ T and every point p ∈ τ, ∠(aff τ,Tp̃Σ) ≤ χ + 2η,
where χ and η are defined in Lemma 6 with ω ← ω. Moreover, some subset of T has an
underlying space homeomorphic to Σ, and for d = 3 we can extract it efficiently.

In almost all practical cases, the MF complex has O(n) triangles, but by placing Θ(n)
sample points on the boundary of an empty sphere, it is possible to create pathological,
sliver-packed examples that have Θ(n2) triangles in R3 or Θ(n3) triangles in R5.

If we explicitly construct Del V and Vor V , the randomized incremental algorithm of
Clarkson and Shor [11] constructs them in expected O(n dd/2e ) time, but for many point sets
that arise in practice it takes expected O(n log n) time [3]. Then it takes time linear in the
size of Del V to identify the anchored triangles and (in R3) to extract the final manifold at
the end. By walking through Del V , we identify the chained triangles at a worst-case cost of
O(n) time per MF triangle, but the typical cost is closer to O(1) per triangle.

If d is large enough that we cannot construct Del V , the brute force algorithm for
identifying the anchor triangles (test all

(
n
3

)
potential triangles for an empty diametric sphere)

takes O(n4) time. However, as manifold anchored triangles tend to be small, for many point
sets that arise in practice, it may be possible to reduce this time substantially by use of
bucketing, spatial hashing, or quadtrees. We can identify the chain triangles by computing a
Voronoi cross-section for each MF triangle at a cost of O(n log n) time per triangle.

In R3, we identify the poles of every Voronoi cell and classify the critical points as manifold
or medial in time linear in the size of Vor V . For d ≥ 4, we compute a three-dimensional
Voronoi cell cross-section for each critical point at a cost of O(n log n) time each.

9 Conclusions

The main open problem we would like to solve is to efficiently find a fixed-point triangulation
that is homeomorphic to Σ for d ≥ 4. There are two very different approaches: one could find
a “starter” triangulation Λ that approximates Σ well enough to apply fixed-point iterations;
or one could find an efficient algorithm for extracting a 2-manifold from the MF complex.
Both problems have stumped us in theory despite long efforts. As we noted in Section 3, we
suspect that manifold extraction is hard in theory, but easy in practice.

It seems promising to consider what the MF complex looks like if we permit simplices of
dimension greater than 2, even when Σ is a 2-manifold. In three dimensions, for instance, the
MF complex would include sliver tetrahedra that contain their own circumcenters and perhaps
other, chained, sliver tetrahedra. We conjecture that for ε ≤ 0.143, this full-dimensional MF
complex is homotopy equivalent to Σ.

We are oddly optimistic that our ideas can be modified to find good representations of
higher-dimensional manifolds, despite the problems we discuss at the end of Section 1. We
observe that the simplices with the most terrible normals and tangents have Voronoi duals
that lie close to Σ. Counterintuitively, we could perhaps better model Σ by taking a restricted
Delaunay triangulation Del|Λ V for a manifold Λ that approximates Σ but is displaced far
enough away from Σ to dodge the Voronoi duals of the most troublesome simplices. Such a
triangulation would not be a fixed point of the restricted Delaunay triangulation operator,
but it might be found by similar methods.
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