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Abstract
Following groundbreaking work by Haussler and Welzl (1987), the use of small ε-nets has become
a standard technique for solving algorithmic and extremal problems in geometry and learning
theory. Two significant recent developments are: (i) an upper bound on the size of the smallest
ε-nets for set systems, as a function of their so-called shallow-cell complexity (Chan, Grant,
Könemann, and Sharpe); and (ii) the construction of a set system whose members can be obtained
by intersecting a point set in R4 by a family of half-spaces such that the size of any ε-net for
them is Ω( 1

ε log 1
ε ) (Pach and Tardos).

The present paper completes both of these avenues of research. We (i) give a lower bound,
matching the result of Chan et al., and (ii) generalize the construction of Pach and Tardos to
half-spaces in Rd, for any d ≥ 4, to show that the general upper bound, O( dε log 1

ε ), of Haussler
and Welzl for the size of the smallest ε-nets is tight.
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1 Introduction

Let X be a finite set and let R be a system of subsets of an underlying set containing
X. In computational geometry, the pair (X,R) is usually called a range space. A subset
X ′ ⊆ X is called an ε-net for (X,R) if X ′ ∩ R 6= ∅ for every R ∈ R with at least ε|X|
elements. The use of small-sized ε-nets in geometrically defined range spaces has become a
standard technique in discrete and computational geometry, with many combinatorial and
algorithmic consequences. In most applications, ε-nets precisely and provably capture the
most important quantitative and qualitative properties that one would expect from a random
sample. Typical applications include the existence of spanning trees and simplicial partitions
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54:2 New Lower Bounds for ε-Nets

with low crossing number, upper bounds for discrepancy of set systems, LP rounding, range
searching, streaming algorithms; see [13, 18].

For any subset Y ⊆ X, define the projection of R on Y to be the set system

R|Y :=
{
Y ∩R : R ∈ R

}
.

The Vapnik-Chervonenkis dimension or, in short, the VC-dimension of the range space
(X,R) is the minimum integer d such that |R|Y | < 2|R| for any subset Y ⊆ X with
|Y | > d. According to the Sauer–Shelah lemma [21, 23] (discovered earlier by Vapnik and
Chervonenkis [24]), for any range space (X,R) whose VC-dimension is at most d and for
any subset Y ⊆ X, we have |R|Y | = O(|Y |d).

A straightforward sampling argument shows that every range space (X,R) has an ε-net of
size O( 1

ε log |R|X |). The remarkable result of Haussler and Welzl [10], based on the previous
work of Vapnik and Chervonenkis [24], shows that much smaller ε-nets exist if we assume
that our range space has small VC-dimension. Haussler and Welzl [10] showed that if the
VC-dimension of a range space (X,R) is at most d, then by picking a random sample of
size Θ(dε log d

ε ), we obtain an ε-net with positive probability. Actually, they only used the
weaker assumption that |R|Y | = O(|Y |d) for every Y ⊆ X. This bound was later improved
to (1 + o(1))(dε log 1

ε ), as d, 1
ε →∞ [11]. In the sequel, we will refer to this result as the ε-net

theorem. The key feature of the ε-net theorem is that it guarantees the existence of an ε-net
whose size is independent of both |X| and |R|X |. Furthermore, if one only requires the VC-
dimension of (X,R) to be bounded by d, then this bound cannot be improved. It was shown
in [11] that given any ε > 0 and integer d ≥ 2, there exist range spaces with VC-dimension
at most d, and for which any ε-net must have size at least

(
1− 2

d + 1
d(d+2) + o(1)

)
d
ε log 1

ε .
The effectiveness of ε-net theory in geometry derives from the fact that most “geometrically

defined” range spaces (X,R) arising in applications have bounded VC-dimension and, hence,
satisfy the preconditions of the ε-net theorem.

There are two important types of geometric set systems, both involving points and
geometric objects in Rd, that are used in such applications. Let R be a family of possibly
unbounded geometric objects in Rd, such as the family of all half-spaces, all balls, all polytopes
with a bounded number of facets, or all semialgebraic sets of bounded complexity, i.e., subsets
of Rd defined by at most D polynomial equations or inequalities in the d variables, each of
degree at most D. Given a finite set of points X ⊂ Rd, we define the primal range space
(X,R) as the set system “induced by containment” in the objects from R. Formally, it is
a set system with the set of elements X and sets {X ∩ R : R ∈ R}. The combinatorial
properties of this range space depend on the projection R|X . Using this terminology, Radon’s
theorem [13] implies that the primal range space on a ground set X, induced by containment
in half-spaces in Rd, has VC-dimension at most d+ 1 [18]. Thus, by the ε-net theorem, this
range space has an ε-net of size O(dε log 1

ε ).
In many applications, it is natural to consider the dual range space, in which the roles

of the points and ranges are swapped. As above, let R be a family of geometric objects
(ranges) in Rd. Given a finite set of objects S ⊆ R, the dual range space “induced” by
them is defined as the set system (hypergraph) on the ground set S, consisting of the sets
Sx := {S ∈ S : x ∈ S} for all x ∈ Rd. It can be shown that if for any X ⊂ Rd the
VC-dimension of the range space (X,R) is less than d, then the VC-dimension of the dual
range space induced by any subset of R is less than 2d [13].

Recent progress

In many geometric scenarios, however, one can find smaller ε-nets than those whose existence
is guaranteed by the ε-net theorem. It has been known for a long time that this is the case, e.g.,
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for primal set systems induced by containment in balls in R2 and half-spaces in R2 and R3.
Over the past two decades, a number of specialized techniques have been developed to show
the existence of small-sized ε-nets for such set systems [3, 4, 5, 6, 7, 8, 11, 12, 14, 16, 20, 25, 26].
Based on these successes, it was generally believed that in most geometric scenarios one
should be able to substantially strengthen the ε-net theorem, and obtain perhaps even a
O
( 1
ε

)
upper bound for the size of the smallest ε-nets. In this direction, there have been two

significant recent developments: one positive and one negative.
Upper bounds. Following the work of Clarkson and Varadarajan [8], it has been gradually

realized that if one replaces the condition that the range space (X,R) has bounded VC-
dimension by a more refined combinatorial property, one can prove the existence of ε-nets of
size o( 1

ε log 1
ε ). To formulate this property, we need to introduce some terminology.

Given a function ϕ : N→ R+, we say that the primal range space (X,R) has shallow-cell
complexity ϕ if there exists a constant c = c(R) > 0 such that, for every Y ⊆ X and for
every positive integer l, the number of at most l-element sets in R|Y is O

(
|Y | · ϕ(|Y |) · lc

)
.

Note that if the VC-dimension of (X,R) is d, then for every Y ⊆ X, the number of elements
of the projection of the set system R to Y satisfies |R|Y | = O(|Y |d). However, the condition
that (X,R) has shallow-cell complexity ϕ for some function ϕ(n) = O(nd′), 0 < d′ < d− 1
and some constant c = c(R), implies not only that |R|Y | = O(|Y |1+d′+c), but it reveals some
nontrivial finer details about the distribution of the sizes of the smaller members of R|Y .

Several of the range spaces mentioned earlier turn out to have low shallow-cell complexity.
For instance, the primal range spaces induced by containment of points in disks in R2 or
half-spaces in R3 have shallow-cell complexity ϕ(n) = O(1). In general, it is known [13] that
the primal range space induced by containment of points by half-spaces in Rd has shallow-cell
complexity ϕ(n) = O

(
nbd/2c−1).

Define the union complexity of a family of objects R, as the maximum number of faces
(boundary pieces) of all dimensions that the union of any n members of R can have; see [1].
Applying a simple probabilistic technique developed by Clarkson and Shor [9], one can
find an interesting relationship between the union complexity of a family of objects R and
the shallow-cell complexities of the dual range spaces induced by subsets S ⊂ R. Suppose
that the union complexity of a family R of objects in the plane is O

(
nϕ(n)

)
, for some

“well-behaved” non-decreasing function ϕ. Then the number of at most l-element subsets
in the dual range space induced by any S ⊂ R is O

(
l2 · |S|l ϕ( |S|l )

)
= O

(
|S|ϕ(|S|)l

)
[22]; i.e.,

the dual range space induced by S has shallow-cell complexity O
(
ϕ(n)

)
. According to the

above definitions, this means that for any S ⊂ R and for any positive integer l, the number
of l-element subsets S ′ ⊆ S for which there is a point p′ ∈ R2 contained in all elements
of S ′, but in none of the elements of S \ S ′, is at most O

(
|S|ϕ(|S|)l

)
. Note that for small

values of l, the points p′ are not heavily covered (l times). Thus, the corresponding cells⋂
S∈S′ S \

⋃
T∈S\S′ T of the arrangement S are “shallow,” and the number of these shallow

cells is bounded from above. This explains the use of the term “shallow-cell complexity”.
A series of elegant results [3, 6, 26] illustrate that if the shallow-cell complexity of a set

system is ϕ(n) = o(n), then it permits smaller ε-nets than what is guaranteed by the ε-net
theorem. The following theorem represents the current state of the art (see [15] for a simple
proof).

I Theorem 1. Let (X,R) be a range space with shallow-cell complexity ϕ, where ϕ(n) =
O(nd) for some constant d. Then, for every ε > 0, it has an ε-net of size O

( 1
ε logϕ( 1

ε )
)
,

where the constant hidden in the O-notation depends on d.

Proof. (Sketch.) The main result in [6] shows the existence of ε-nets of size O
( 1
ε logϕ(|X|)

)
SoCG 2016
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for any non-decreasing function ϕ1. To get a bound independent of |X|, first compute a
small (ε/2)-approximation A ⊆ X for (X,R) [13]. It is known that there is such an A with
|A| = O

(
d
ε2 log 1

ε

)
= O( 1

ε3 ), and for any R ∈ R, we have |R∩A||A| ≥
|R|
|X| −

ε
2 . In particular, any

R ∈ R with |R| ≥ ε|X| contains at least an ε
2 -fraction of the elements of A. Therefore, an

(ε/2)-net for (A,R|A) is an ε-net for (X,R). Computing an (ε/2)-net for (A,R|A) gives the
required set of size O

( 2
ε logϕ(|A|)

)
= O

( 1
ε logϕ( 1

ε3 )
)

= O
( 1
ε logϕ( 1

ε )
)
. J

Lower bounds. It was conjectured for a long time [14] that most geometrically defined
range spaces of bounded Vapnik-Chervonekis dimension have “linear-sized” ε-nets, i.e., ε-nets
of size O

( 1
ε

)
. These hopes were shattered by Alon [2], who established a superlinear (but

barely superlinear!) lower bound on the size of ε-nets for the primal range space induced by
straight lines in the plane. Shortly after, Pach and Tardos [19] managed to establish a tight
lower bound, Ω( 1

ε log 1
ε ) for the size of ε-nets in primal range spaces induced by half-spaces

in R4, and in several other geometric scenarios.

I Theorem 2. [19] Let F denote the family of half-spaces in R4. For any ε > 0, there exist
point sets X ⊂ R4 such that in the (primal) range spaces (X,F), the size of every ε-net is at
least 1

9ε log 1
ε .

Our contributions

The aim of this paper is to complete both avenues of research opened by Theorems 1 and 2.
Our following theorem, proved in Section 2, generalizes Theorem 2 to higher dimensions
d ≥ 4. It provides an asymptotically tight bound in terms of both ε and d, and hence
completely settles the ε-net problem for half-spaces.

I Theorem 3. For any integer d ≥ 1 and any ε > 0, there exist primal range spaces (X,F)
induced by point sets X and collections of half-spaces F in R2d+2 such that the size of every
ε-net for (X,F) is at least d

9ε log 1
ε . In particular, for any integer d′ ≥ 4, this implies the

existence of point sets X in Rd′ such that any ε-net for the primal set system F induced by
halfspaces in Rd′ has size at least bd

′/2c−1
9ε log 1

ε .

As was mentioned in the first subsection, for any d ≥ 1, the VC-dimension of any range
space induced by points and half-spaces in Rd is at most d+ 1. Thus, Theorem 3 matches, up
to a constant factor independent of d and ε, the upper bound implied by the ε-net theorem of
Haussler and Welzl. Noga Alon pointed out to us that it is very easy to show that for a fixed
ε > 0, the lower bound for ε-nets in range spaces induced by half-spaces in Rd has to grow at
least linearly in d. To see this, suppose that we want to obtain a 1

3 -net, say, for the range
space induced by open half-spaces on a set X of 3d points in general position in Rd. Notice
that for this we need at least d+ 1 points. Indeed, any d points of X span a hyperplane, and
one of the open half-spaces determined by this hyperplane contains at least |X|3 points.

The key element of the proof of Theorem 2 [19] was to construct a set B of (k + 3)2k−2

axis-parallel rectangles in the plane such that for any subset of them there is a set Q of
at most 2k−1 points that hit none of the rectangles that belong to this subset and all the
rectangles in its complement (the precise statement is given in Section 3). In Section 4, we

1 Their result is in fact for the more general problem of small weight ε-nets.
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generalize this statement to Rd by constructing roughly d times more axis-parallel boxes2
than in the planar case, but the size of the set Q remains the same size. We will prove

I Lemma 4. Let k, d ≥ 2 be integers. Then there exists a set B of d(k+ 1)2k−2 axis-parallel
boxes in Rd+1 such that for any subset S ⊆ B there exists a 2k−1-element set Q of points in
Rd+1 with the property that
(i) Q ∩B 6= ∅ for any B ∈ B \ S, and
(ii) Q ∩B = ∅ for any B ∈ S.

In the next section we show how this lemma implies the bound of Theorem 3, which is d
times better than the bound in Theorem 2. In Section 3 we give a proof of a weaker form of
Lemma 4, which is easy to deduce from the main lemma of [19]. Applying this lemma to
obtain the lower bounds for ε-nets would result in getting bounds that are roughly twice as
worse than the ones stated in Theorem 2. The proof of Lemma 4 will be given in Section 4.

In Section 5, we show that the bound in Theorem 1 cannot be improved.

I Definition 5. A function ϕ : R+ → R+ is called submultiplicative if there exists an
α, 0 < α < 1 such that
1. ϕα(x) ≤ ϕ(xα) for all sufficiently large x ∈ R+, and
2. ϕ(xy) ≤ ϕ(x)ϕ(y) for all sufficiently large x, y ∈ R+.

I Theorem 6. Let d be a fixed positive integer and let ϕ : R+ → R+ be any submultiplicative
function with ϕ(n) = O(nd). Then, for any ε > 0 there exist range spaces (X,F) that
have
(i) shallow-cell complexity ϕ, and for which
(ii) the size of any ε-net is at least Ω( 1

ε logϕ( 1
ε )).

Note that if ϕ(n) = Ω(n), then this theorem yields a lower bound for the size of the
smallest ε-nets in the constructed range spaces which is somewhat weaker than the bound
Ω(dε log 1

ε ), valid for the old constructions in [11]. Indeed, the property that the VC-dimension
is at most d, imposed on the range spaces constructed in [11], implies that the range space
has shallow-cell complexity O(nd−1).

Theorem 6 becomes interesting when ϕ(n) = o(n) and the upper bound O
( 1
ε logϕ( 1

ε )
)
in

Theorem 1 improves on the general upper bound O
( 1
ε log 1

ε

)
guaranteed by the ε-net theorem.

Theorem 6 shows that, if ϕ(n) = o(n), even this improved bound is asymptotically tight.
The best upper and lower bounds for the size of small ε-nets in range spaces with a given

shallow-cell complexity ϕ are based on purely combinatorial arguments, and they imply
directly or indirectly all known results on ε-nets in geometrically defined range spaces (see [17]
for a detailed discussion). This suggests that the introduction of the notion of shallow-cell
complexity provided the right framework for ε-net theory.

2 Proof of Theorem 3 using Lemma 4

Let B be a set of (d+ 1)-dimensional axis-parallel boxes in Rd+1. We recall that the dual
range space induced by B is the set system (hypergraph) on the ground set B consisting of
the sets Bp := {B ∈ B : p ∈ B} for all p ∈ Rd+1.

2 An axis-parallel box in Rd is the Cartesian product of d+ 1 intervals. For simplicity, in the sequel, they
will be called “boxes”.

SoCG 2016
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I Lemma 7. Consider the dual range space induced by a set of axis-parallel boxes B in Rd+1.
Then there exists a function f : B → R2d+2 such that for every point p ∈ Rd+1, there is a
half-space H in R2d+2 with {f(B) : B ∈ Bp} = H ∩ {f(B) : B ∈ B}.

Proof. By translation, we can assume that all the boxes in B lie in the positive orthant of
Rd+1.

Consider the function g : B → R2d+2, which maps a box B = [xl1, xr1]× [xl2, xr2]× · · · ×
[xld+1, x

r
d+1] to the point (xl1, 1/xr1, xl2, 1/xr2, . . . , xld+1, 1/xrd+1) lying in the positive orthant

of R2d+2. For any p = (a1, a2, . . . , ad+1) in the positive orthant, let Cp denote the box
[0, a1]× [0, 1/a1]× [0, a2]× [0, 1/a2]× · · · × [0, ad+1]× [0, 1/ad+1]. Obviously, p lies in a box
B if and only if g(B) ∈ Cp.

Thus, g maps the set of boxes in B to a set of points in R2d+2, such that for any point p
in the positive orthant of Rd+1, the set of boxes Bp ⊂ B that contain p are mapped to the
set of points that belong to the box Bp. (Note that Bp contains the origin.)

We complete the proof by applying the following simple lemma (Lemma 2.3 in [19]) to the
set Q = g(B): To each point q ∈ Q in the positive orthant of R2d+2, we can assign another
point q′ in the positive orthant of R2d+2 such that for each box in R2d+2 that contains the
origin there is a half-space with the property that q belongs to the box if and only if q′
belongs to the corresponding half-space. The mapping f(B) = (g(B))′ for every B ∈ B meets
the requirements of the lemma. J

Now we are in a position to establish Theorem 3 using Lemma 4. Let ε = α
2k−1 with

k ∈ N, k ≥ 2, and 1
3 ≤ α ≤

2
3 . Applying Lemma 4, we obtain a set B of d(k + 1)2k−2 boxes

in Rd+1. We claim that the dual range space induced by these boxes does not admit an ε-net
of size (1− α)|B|.

Assume for contradiction that there is an ε-net S ⊆ B with | S | ≤ (1− α)|B|. According
to Lemma 4, there exists a set Q of 2k−1 points in Rd+1 with the property that no box in S
contains any point of Q, but every member of B \ S does. By the pigeonhole principle, there
is a point p ∈ Q contained in at least |B \ S |/|Q| members of B \ S. We have

|B \ S |
|Q|

≥ α|B|
|Q|

= α|B|
2k−1 = ε|B|.

Thus, none of the at least ε|B| members of B hit by p belong to S, contradicting the
assumption that S was an ε-net.

Hence, the size of any ε-net in the dual range space induced by B is at least (1− α)|B| =
(1− α)d(k + 1)2k−2 = (1−α)α

2 · dε (k + 1) ≥ d
9ε log 1

ε .
By Lemma 7, any lower bound for the size of ε-nets in the dual range space induced by

the set B of boxes in Rd+1 gives the same lower bound for the size of an ε-net in the (primal)
range space on the set of points f(B) ⊂ R2d+2 corresponding to these boxes, in which the
ranges are half-spaces in Rd+1. Thus, Theorem 3 follows immediately for even values of d,
and with a slight loss in the constant, also for odd values (applying the lower bound for
d− 1). J

The system of boxes constructed above has a fixed number of elements, depending on the
value of 1/ε. We can obtain arbitrarily large constructions by replacing each box of B ∈ B
with several slightly translated copies of B (we refer the reader to [19] for details).

3 Proof of a weaker form of Lemma 4

In this section we sketch a proof of a weaker form of Lemma 4.
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I Lemma 8. Let k, d ≥ 1 be integers. Then there exists a set B of bd+1
2 c(k + 3)2k−2 axis-

parallel boxes in Rd+1 such that for any subset S ⊆ B there exists a 2k−1-element set Q of
points with the property that
(i) Q ∩B 6= ∅ for any B ∈ B \ S, and
(ii) Q ∩B = ∅ for any B ∈ S.

Via the same proof as the one given in Section 2 one can get that there exist primal range
spaces (X,F) induced by point sets X and collections of half-spaces F in R2d+2 such that
the size of every ε-net for (X,F) is at least b

d+1
2 c
9ε log 1

ε . Lemma 8 follows directly from

I Lemma 9 ([19]). Let k ≥ 2 be an integer. Then there exists a set R of (k + 3)2k−2

axis-parallel rectangles in R2 such that for any S ⊆ R there exists a 2k−1-element set Q of
points in R2 with the property that
(i) Q ∩R 6= ∅ for any R ∈ R \ S, and
(ii) Q ∩R = ∅ for any R ∈ S.

Denote the x-coordinate and y-coordinate of a point p ∈ R2 by x(p) and y(p) respectively,
and set m = bd+1

2 c. Let R = {R1, . . . , Rt}, t = (k + 3)2k−2, be a set of rectangles satisfying
the conditions of Lemma 9. By scaling, one can assume that R ⊂ [0, 1]2 for every R ∈ R.

For i = 1 . . .m, define the function fi mapping a point in R2 to a product of (d + 1)
intervals in Rd+1, as follows.

p ∈ R2, fi(p) = [0, 1]× · · · × [0, 1]︸ ︷︷ ︸
2i− 2 intervals

×x(p)× y(p)× [0, 1]× · · · × [0, 1]︸ ︷︷ ︸
d + 1− 2i intervals

.

This mapping lifts each rectangle R ∈ R to the box fi(R) = {fi(p) : p ∈ R}, and each set
of rectangles R′ ⊆ R to the set of boxes fi(R′) = {fi(R) | R ∈ R′}.

Let B =
⋃
i fi(R) be the required set of (k + 3)bd+1

2 c2
k−2 boxes in Rd+1. Given a set

S ⊆ B, let Ri ⊆ R, i = 1 . . .m, be such that S ∩fi(R) = fi(Ri). Using Lemma 9, let
Qi = {qi1, . . . , qi2k−1} ⊂ R2 be the set of points hitting all rectangles in R \ Ri, and no
rectangle in Ri. Now observe that the set

Q =
{{(

x(q1
j ), y(q1

j ), . . . , x(qmj ), y(qmj )
)

: j ∈ [1, 2k−1]
}

if d is odd.{(
x(q1

j ), y(q1
j ), . . . , x(qmj ), y(qmj ), 1

)
: j ∈ [1, 2k−1]

}
if d is even.

of 2k−1 points in Rd+1 is the required set for S: any rectangle R ∈ R \ Ri contains a
unique point q ∈ Qi, and thus f(R) contains the unique point of Q with x(q) and y(q) in its
(2i− 1)-th and 2i-th coordinates. Similarly, a rectangle R ∈ Ri is not hit by any point of Qi,
and thus is not hit by any point of Q.

Instead of lifting the rectangles in bd+1
2 c disjoint coordinates in Rd+1, the proof of

Lemma 4 shows how to pack them more carefully into d coordinates, thus improving the
above bound by a factor of two.

4 Proof of Lemma 4

The desired family B of axis-parallel boxes will be contained in K = [0, 1]d+1, where each box
in B is a Cartesian product of d+ 1 intervals. For ease of exposition, we will identify intervals
with binary sequences; namely, a binary sequence 0.l1l2 . . . ls will correspond to the interval
(0.l1l2 . . . ls000 . . . , 0.l1l2 . . . ls111 . . .) ⊂ (0, 1). For example, the sequence 0 corresponds to
the interval (0, 1), the sequence 0.0 corresponds to the interval (0, 1/2) and so on. We call s
the size of the sequence. The “trivial” sequence 0 is of size 0, 0.0 of size 1 and so on. Note

SoCG 2016



54:8 New Lower Bounds for ε-Nets

that sequences of size s correspond to intervals of Euclidean length 2−s. We denote both
sequences and the corresponding intervals by capital letters X,Y with subscripts, and we
denote the size of any sequence X by size(X).

We have B :=
⋃d
i=1 Bi, where each B ∈ Bi has the form

B = 0× 0× . . .×Xi ×Xi+1 × 0× . . .× 0︸ ︷︷ ︸
d+1 intervals

.

The only “non-trivial” intervals in B – that is, not equal to (0, 1) – are the i-th and the
(i+ 1)-th ones. When clear from the context, we will omit the (d− 1) trivial intervals, and
simply write B = Xi×Xi+1 for B ∈ Bi and where Xi, Xi+1 are binary sequences representing
the corresponding intervals. Set Bi := Bi1

⋃
· · ·
⋃
Bik, where

Bij :=
{
Xi ×Xi+1 : Xi = 0.l1 . . . lk−j , Xi+1 = 0.m1 . . .mj , lk−j = mj = 1

}
for 1 ≤ j ≤ k − 1 and

Bik :=
{
Xi ×Xi+1 : Xi = 0.l1 . . . lk, lk = 1, Xi+1 = 0

}
.

The construction of B is complete. For every i and 1 ≤ j ≤ k − 1, we have |Bij | = 2k−2. We
also have |Bik| = 2k−1. Then, |B| =

∑d
i=1
∑k
j=1 |Bij | = d(k + 1)2k−2. It remains to show

the existence of the desired set Q for any set S ⊆ B. We start with the following crucial
observation, stated without proof.

I Observation 10. The two boxes X = X1 ×X2 × . . .×Xd+1 and Y = Y1 × Y2 × . . .× Yd+1
intersect if and only if for each i ∈ [1, d+ 1], one of Xi or Yi is a subsequence of the other
(we will consider 0 to be a subsequence of every other sequence). Moreover, if this is the case,
then we have X ∩ Y = Z1 × . . .× Zd+1, where Zi = arg max

{
size(Xi), size(Yi)

}
.

It will be useful to define the following larger set of boxes:

(i, j)-level :=
{
Xi ×Xi+1 : Xi is a sequence of size k − j,Xi+1 is a sequence of size j

}
.

Note that the length of the interval in the i-th and (i+ 1)-th coordinates is 2−k+j and 2−j ,
respectively, for the (i, j)-level. Also, for any i and j, the boxes from the (i, j)-level are
disjoint, with their closures forming a cover of the cube K.

Fix some i ∈ [1, d] and j ∈ [1, k − 1]. We say four boxes from the (i, j)-level are grouped
if the corresponding sequences for the i-th and (i + 1)-th coordinate of these boxes differ
only in the last bit. This provides us with the partition of the boxes on the (i, j)-level into
2k−2 groups. Denote this set of groups by G(i, j). Note that for every group G, we have
|G ∩ B| = 1. Given S ⊆ B, we define the following set of boxes:

H(i, j) :=
⋃

G∈Gi,j
|G∩S|=0

{B ∈ G : B = Xi ×Xi+1, sum of last digits of Xi, Xi+1 is even}
⋃

⋃
G∈Gi,j
|G∩S|=1

{B ∈ G : B = Xi ×Xi+1, sum of last digits of Xi, Xi+1 is odd}. (1)

For j = k, pair the boxes into 2k−2 groups of two boxes each, where the two boxes Xi × 0
and X ′i × 0 are paired together if Xi, X

′
i differ in the last bit and choose one box from each

pair into H(i, k) such that H(i, k) ∩ B = B \ S.
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Note that each box B ∈ H(i, j) belongs to the (i, j)-level, and so is of the form B =
Xi ×Xi+1, where Xi has size k − j and Xi+1 has size j. Set

H =
⋃

i∈[1,d]
j∈[1,k−1]

H(i, j).

For each B = Xi ×Xi+1 ∈ Bij , 1 ≤ j ≤ k − 1, the sum of the last digits of Xi and Xi+1 is
even, and so a simple but crucial property of the system of boxes H is that

H ∩ B = B \ S. (2)

The construction of the set H(i, j) is illustrated below. The groups on the (i, j)-level
are bounded by thick lines, and the rectangles from the (i, j)-level that belong to H(i, j)
are shaded dark gray, while the rectangles of S are shaded light gray. In each group the
upper right box belongs to B. We choose two rectangles from each group to add to H(i, j),
depending on whether the rectangle of B in that group belongs to S or not.

The set Q we are going to construct will be a hitting set for H. This is sufficient to
prove the lemma: note that |Q| = |H(i, j)| = 2k−1 for each i, j, and since the boxes at the
(i, j)-level are disjoint, each point from Q must hit exactly one box from H(i, j) and hence
no box of S (by equation (2)).

Before we describe the construction of Q, we define the set of hitting boxes A(i, j):
1. A(1, 1) = H(1, 1),
2. For i ∈ [1, d], j ∈ [2, k]

A(i, j) = {A ∩H : A ∈ A(i, j − 1), H ∈ H(i, j), A ∩H 6= ∅},

3. For i ∈ [2, d]

A(i, 1) = {A ∩H : A ∈ A(i− 1, k), H ∈ H(i, 1), A ∩H 6= ∅}.

The key properties of the sets of hitting boxes are formulated in the following lemma.

I Lemma 11. Let A(·, ·) be as defined above. Then
(i) For i ∈ [2, d], each A ∈ A(i − 1, k) intersects exactly one box from H(i, 1). Moreover,

each box H ∈ H(i, 1) is intersected by some A ∈ A(i− 1, k).
(ii) Let i ∈ [1, d], and j ∈ [2, k]. Then each A ∈ A(i, j − 1) intersects exactly one box from
H(i, j). Moreover, each box H ∈ H(i, j) is intersected by some A ∈ A(i, j − 1).

Proof. The proof of the lemma is by induction on the pair (i, j) with lexicographic ordering.
By construction of A(·, ·), for each box A ∈ A(i, j):

A = (Hi,j ∩ . . . ∩Hi,1)
⋂

(Hi−1,k ∩ . . . ∩Hi−1,1)
⋂
. . .
⋂

(H1,k ∩ . . . ∩H1,1) (3)

where Hi,j ∈ H(i, j).

SoCG 2016
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Proof of (i). By equation (3) and Observation 10, each box A ∈ A(i− 1, k) has the form
A = X1×. . .×Xi×0×. . .×0, where for each j ∈ [1, i], Xj has size k. In particular, Xi is of size
k. On the other hand, for H ∈ H(i, 1) we have H = 0× . . .×0×Yi×Yi+1×0× . . .×0, where
Yi is a sequence of size k− 1 and Yi+1 is a sequence of size 1. Moreover, for each sequence X ′i
of size k−1 there is exactly one H ∈ H(i, 1) such that H = 0× . . .×0×X ′i×Yi+1×0× . . .×0.
To see that, one has to note that after fixing a sequence X ′i we determine the last digit of
Yi+1 in a unique way based on the even/odd sum criterion from (1). But the last digit is
the whole sequence Yi+1. Thus, defining X ′i as Xi without the last bit, we get the first part
of (i).

On the other hand, by induction, each of the elements from H(i− 1, k) contains one box
from A(i−1, k). This implies that among the elements of A(i−1, k) all sequences X ′i of length
k− 1 are present. Therefore, for each H ∈ H(i, 1), H = 0× . . .×Yi×Yi+1× 0× . . .× 0, there
exists a box A ∈ A(i− 1, k) where A = X1× . . .×Xi−1×Yi× 0× . . .× 0; by Observation 10,
H intersects A.

Proof of (ii). The proof of this part is similar to the previous one. By equation (3)
and Observation 10, each box A ∈ A(i, j − 1) has the form A = X1 × . . . × Xi+1 ×
0 × . . . × 0, where X1, . . . , Xi are sequences of size k − 1 and Xi+1 is of size j − 1. Let
Xi = 0.l1 . . . lk−1, Xi+1 = 0.m1 . . .mj−1.We claim that there is a unique element H ∈ H(i, j),
such that H = 0× . . .×Yi×Yi+1×0× . . .×0, where Yi = 0.l1 . . . lk−j , Yi+1 = 0.m1 . . .mj−1x,
where x is either 0 or 1. Indeed, there are two such boxes in the (i, j)-level, but the value
of x is again uniquely determined based on the even/odd condition from (1) or the simpler
condition for j = k. It is easy to see that H is the only element from H(i, j) that satisfies
the containment relation from Observation 10 with A.

To prove the second part of the claim, we again use induction. For every box H ′ ∈
H(i, j − 1) there is an element A ∈ A(i, j − 1) contained in it. Therefore, for each sequence
Yi = 0.l1 . . . lk−j , Yi+1 = 0.m1 . . .mj−1 there is an element A ∈ A(i, j − 1) that contains
these two sequences as subsequences on the i-th and (i+ 1)-st coordinate. On the other hand,
each H ∈ H(i, j) is determined by such sequences Yi, Yi+1. Therefore each H intersects some
A. J

It is easy to deduce from Lemma 11 that |A(i, j)| = 2k−1 for each i ∈ [1, d] and j ∈ [1, k].
Moreover, each box of H is hit by one of the boxes of A(d, k). Choose one point from each
box of A(d, k) to get the desired set Q.

5 Proof of Theorem 6

The goal of this section is to establish lower bounds on the sizes of ε-nets in range spaces
with given shallow-cell complexity ϕ. Theorem 6 is a consequence of the following more
precise statement.

I Theorem 12. Let ϕ : R+ → R+ be a monotonically increasing submultiplicative function3,
which tends to infinity and is bounded from above by a polynomial of constant degree.

For any 0 < δ < 1
10 one can find an ε0 > 0 with the following property: for any 0 < ε < ε0,

there exists a range space on a set of n = logϕ( 1
ε )

ε elements with shallow-cell complexity ϕ, in
which the size of every ε-net is at least (1−4δ)

ε logϕ( 1
ε ).

3 Compare with Definition 5.



A. Kupavskii, N.H. Mustafa, and J. Pach 54:11

Proof. The parameters of the range space are as follows:

n =
logϕ( 1

ε )
ε

, m = εn = logϕ
(1
ε

)
, p = nϕ1−2δ(n)(

n
m

) .

Let d be the smallest integer such that ϕ(n) = O(nd). In fact, we will assume that
nd−1 ≤ ϕ(n) ≤ c1n

d, for a suitable constant c1 ≥ 1, provided that n is large enough. In the
most interesting case, when ϕ(n) = o(n), we have d = 1. Using that n ≥ logϕ(1/ε)

ε , if ε < ε0,
we have the following logarithmic upper bound on m.

m = logϕ
(1
ε

)
≤ log

(
c1ε
−d) ≤ d log c1

ε
≤ d logn (4)

Consider a range space ([n],F) with a ground set [n] and with a system of m-element
subsets F , where each m-element subset of [n] is added to F independently with probability
p. The next claim follows by a routine application of the Chernoff bound.

I Claim 13. With high probability, |F| ≤ 2nϕ1−2δ(n).

Theorem 12 follows by combining the next two lemmas that show that, with high
probability, the range space ([n],F)
(i) does not admit an ε-net of size less than (1−4δ)

ε logϕ( 1
ε ), and

(ii) has shallow-cell complexity ϕ.
For the proofs, we need to assume that n = n(δ, d, ϕ) is a sufficiently large constant, or,
equivalently, that ε0 = ε0(δ, d) is sufficiently small.

I Lemma 14. With high probability, the range space ([n],F) has shallow-cell complexity ϕ.

Proof. It is enough to show that for all sufficiently large x ≥ x0, every X ⊆ [n], |X| = x, the
number of sets of size exactly l in F|X is O(xϕ(x)), as this implies that the number of sets
in F|X of size at most l is O(xϕ(x)l). In the computations below, we will also assume that
l ≥ d+ 1 ≥ 2; otherwise if l ≤ d, and assuming x ≥ x0 ≥ 2d, we have(

x

l

)
≤
(
x

d

)
≤ xd ≤ xϕ(x)

where the last inequality follows by the assumption on ϕ(x), provided that x is sufficiently
large. We distinguish two cases.

Case 1: x > n
ϕδ/d(x) . In this case, we trivially upper-bound |F|X | by |F|. By Claim 13,

with high probability, we have

|F| ≤ 2n · ϕ1−2δ(n) ≤ 2n ·
(
ϕ(x) · ϕ

(n
x

))1−2δ (
by the submultiplicativity of ϕ)

≤ 2n ·
(
ϕ(x) · ϕ

(
ϕδ/d(x)

))1−2δ (
as n/x ≤ ϕδ/d(x)

)
≤ 2n ·

(
c1ϕ(x)ϕδ(x)

)1−2δ (
using ϕ(t) ≤ c1t

d
)

≤ 2c′1nϕ(x)1−δ ≤ 2c′1xϕ(x)1−δ+δ/d = O(xϕ(x)).
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Case 2: x ≤ n
ϕδ/d(x) . Denote the largest integer x that satisfies this inequality by x1. It is

clear that x1 = o(n) (recall that ϕ is monotonically increasing and tends to infinity). We
also denote the system of all l-element subsets of F|X by F|lX and the set of all l-element
subsets of X by

(
X
l

)
. Let E be the event that F does not have the required ϕ(·)-shallow-cell

complexity property. Then Pr[E] ≤
∑m
l=2 Pr[El], where El is the event that for some X ⊂ [n],

|X| = x, there are more than xϕ(x) elements in F|lX . Then, for any fixed l ≥ d+ 1 ≥ 2, we
have

Pr[El] ≤
x1∑

x=x0

Pr
[
∃X ⊆ [n], |X| = x, |F|lX | > xϕ(x)

]

≤
x1∑

x=x0

(
n

x

) (xl)∑
s=dxϕ(x)e

Pr
[
For a fixed X, |X| = x, |{S ∈ F|X , |S| = l}| = s

]

≤
x1∑

x=x0

(
n

x

) (xl)∑
s=dxϕ(x)e

((x
l

)
s

)
Pr
[
For a fixed X, |X| = x,S ⊆

(
X

l

)
, |S| = s,

we have F|lX = S
]

≤
x1∑

x=x0

(
n

x

) (xl)∑
s=dxϕ(x)e

((x
l

)
s

)(
1− (1− p)(

n−x
m−l)

)s
(1− p)(

n−x
m−l)((xl)−s) (5)

≤
x1∑

x=x0

(xl)∑
s=dxϕ(x)e

(en
x

)x(e ( exl )l
s

)s (
p

(
n− x
m− l

))s
(6)

≤
x1∑

x=x0

(xl)∑
s=dxϕ(x)e

(en
x

)x(el+1xl−1

llϕ(x) p

(
n

m

)
ml

(n− x−m)l

)s
(7)

≤
x1∑

x=x0

(xl)∑
s=dxϕ(x)e

(en
x

)x((emx
n

)l−1 e2mϕ1−2δ(n)
ϕ(x)

)s
(8)

In the transition to the expression (6), we used several times (i) the bound
(
a
b

)
≤
(
ea
b

)b for
any a, b ∈ N; (ii) the inequality (1− p)b ≥ 1− bp for any integer b ≥ 1 and real 0 ≤ p ≤ 1;
and (iii) we upper-bounded the last factor of (5) by 1.

In the transition from (6) to (7) we lower-bounded s by xϕ(x). We also used the estimate(
n−x
m−l

)
≤
(
n
m

)
ml

(n−x−m)l , which can be verified as follows.

(
n− x
m− l

)
=
(
n− x
m

) l−1∏
i=0

m− i
n− x−m+ (i+ 1)

≤
(
n− x
m

)(
m

n− x−m

)l
≤
(
n

m

)
ml

(n− x−m)l .

Finally, to obtain (8), we substituted the formula for p and used the fact that

ll(n− x−m)l =
(
l · (n− x−m)

)l ≥ (l · n2 )l ≥ nl,
as x ≤ x1 = o(n), m = εn ≤ n/4 for ε < ε0 ≤ 1/4 and l ≥ 2.
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Denote x2 = dn1−δe. We split the expression (8) into two sums Σ1 and Σ2. Let

Σ1 :=
x2−1∑
x=x0

(xl)∑
s=dxϕ(x)e

(en
x

)x((emx
n

)l−1 e2mϕ1−2δ(n)
ϕ(x)

)s

Σ2 :=
x1∑

x=x2

(xl)∑
s=dxϕ(x)e

(en
x

)x((emx
n

)l−1 e2mϕ1−2δ(n)
ϕ(x)

)s

These two sums will be bounded separately. We have

Σ1 ≤
x2−1∑
x=x0

(xl)∑
s=dxϕ(x)e

(en
x

)x((emx
n

)l−1 c1−2δ
1 e2mnd−2dδ

xd−2dδϕ2δ(x)

)s
(9)

≤
x2−1∑
x=x0

(xl)∑
s=dxϕ(x)e

(en
x

)x((emx
n

)l−1−d+2dδ
Cmd+1−2dδ

)s
(for some C > 0)

≤
x2−1∑
x=x0

(xl)∑
s=dxϕ(x)e

(en
x

)x((
n−δ/2

)l−1−d+2dδ
Cmd+1

)s
(10)

≤
x2−1∑
x=x0

xl
(en
x

)x (
n−

δ
2 ·2dδn

δ2
2

)xϕ(x)
≤

x2−1∑
x=x0

xl
(en
x

)x
n−

xϕ(x)dδ2
2 (11)

≤
x2−1∑
x=x0

n2x− xϕ(x)dδ2
2 ≤

x2−1∑
x=x0

n−2x ≤ n

n2x0
= o
( 1
m

)
. (12)

To obtain (9), we used the property that ϕ(n) ≤ ϕ(x)ϕ(n/x) ≤ c1ϕ(x)(n/x)d, provided that
n, x, n/x are sufficiently large. To establish (10), we used the fact that x ≤ x2 = n1−δ and
that em ≤ ed logn ≤ nδ/2 (this follows from (4). In the transition to (11), we needed that
l ≥ d+1, d ≥ 1 and that Cmd+1 ≤ C(d logn)d+1 = o(nδ2/2), by (4). Then we lower-bounded
s by xϕ(x). To arrive at (12), we used that l ≤ x. The last inequality follows from the facts
that x0 is large enough, so that ϕ(x) ≥ ϕ(x0) ≥ 8/(dδ2) and that m = o(n).

Next, we turn to bounding Σ2. First observe that

ϕ1−2δ(n) ≤ ϕ
1−2δ
1−δ (n1−δ) ≤ ϕ

1−2δ
1−δ (x) ≤ ϕ1−δ(x),

where we used the submultiplicativity and monotonicity of the function ϕ(n) and the fact
that x ≥ x2 = n1−δ. Substituting the bound for ϕ1−2δ(n) in Σ2 and putting C = e2m, we
obtain

Σ2 ≤
x1∑

x=x2

(xl)∑
s=dxϕ(x)e

(en
x

)x((emx
n

)l−1
Cϕ−δ(x)

)s

≤
x1∑

x=x2

xl
(en
x

)x (emx
n

Cϕ−δ(x)
)xϕ(x)

(13)

≤
x1∑

x=x2

(n
x

)x−xϕ(x) (
e1+x/(xϕ(x))mxl/(xϕ(x))Cϕ−δ(x)

)xϕ(x)
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≤
x1∑

x=x2

(n
x

)x−xϕ(x) (
C ′ϕ−δ/2(x)

)xϕ(x)
(for some constant C ′ > 0) (14)

≤n
(
n

x1

)x2−x2ϕ(x2) (
Cϕ−δ/2(x2)

)x2ϕ(x2)
≤
(
n

x1

)x2−x2ϕ(x2)
(15)

=
(x1

n

)x2ϕ(x2)−x2
= o(1/m).

In the transition to (13), we used that emx ≤ em2 ≤ ed2 log2 n < n and l ≥ 2. To get (14),
we used that for some constant c > 1 we have xl/(xϕ(x)) ≤ cm/ϕ(x) ≤ clogϕ(x)/ϕ(x) = O(1) and
that m ≤ ϕδ/2(x) for x ≥ x0. To obtain (15), we noticed that n1/(x2ϕ(x2)) = O(1). At the
last equation, we used that x1 = o(n), ne/x1 →∞ as n→∞ and x2ϕ(x2)−x2 = Ω(n1−δ/2).

We have shown that for every l = 2, . . . ,m, Pr[El] = o(1/m). We conclude that Pr[E] ≤∑m
l=2 Pr[El] = o(1) and, hence, with high probability, the range space ([n],F) has shallow-cell

complexity ϕ. J

Now we are in a position to prove that with high probability, the range space ([n],F) does
not admit a small ε-net.

I Lemma 15. With high probability, the size of any ε-net of the range space ([n],F) is at
least (1−4δ)

ε logϕ( 1
ε ).

Proof. Assume without loss of generality that δ < 1/10. Denote by µ the probability that
the range space has an ε-net of size t = (1− 4δ) 1

ε logϕ( 1
ε ) = (1− 4δ)n. Then

µ ≤
∑
X⊆[n]
|X|=t

Pr
[
X is an ε-net for F

]
≤
(
n

t

)
(1− p)(

n−t
m ) ≤

(
n

t

)
e−p(

n−t
m ) (16)

≤
(en
t

)t
e−nϕ

δ(n) ≤5ne−nϕ
δ(n) = o(1). (17)

Here, the crucial transition from (16) to (17) uses the inequality below. Since 1− ax > e−bx

for b > a, 0 < x < 1/a− 1/b, we obtain that

p

(
n− t
m

)
≥ p
(
n

m

)(
n−m− t
n− t

)t
≥ nϕ1−2δ(n)

(
1− m

n− t

)t
≥ nϕ1−2δ(n)

(
1− (1 + δ/2)m

n

)t
≥ nϕ1−2δ(n)e−

(1+δ)mt
n

≥ nϕ1−2δ(n)e−(1−3δ) logϕ( 1
ε ) ≥ nϕ1−2δ(n)ϕ−1+3δ(1

ε

)
≥ nϕδ(n). J

Thus, Lemma 14 and Lemma 15 imply that with high probability the range space ([n],F)
has shallow-cell complexity ϕ and it admits no ε-net of size less than (1− 4δ) 1

ε logϕ( 1
ε ). This

completes the proof of the theorem. J
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