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Abstract
We describe two (1 + ε)-approximation algorithms for computing the Fréchet distance between
two homeomorphic piecewise linear surfaces R and S of genus zero and total complexity n, with
Fréchet distance δ.
1. A 2O

((
n+ Area(R)+Area(S)

(εδ)2

)2)
time algorithm if R and S are composed of fat triangles (triangles

with angles larger than a constant).
2. An O(D/(εδ)2) · n + 2O(D4/(ε4δ2)) time algorithm if R and S are polyhedral terrains over

[0, 1]2 with slope at most D.
Although, the Fréchet distance between curves has been studied extensively, very little is known
for surfaces. Our results are the first algorithms (both for surfaces and terrains) that are guaran-
teed to terminate in finite time. Our latter result, in particular, implies a linear time algorithm
for terrains of constant maximum slope and constant Fréchet distance.
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1 Introduction

Measuring similarity between geometric objects is a fundamental problem that appears in
several applications in computer science (see, for example, references [27, 16]). A natural
way of estimating such a similarity is formalized via the notion of the Fréchet distance. The
Fréchet distance takes into account the endowed topology of the objects, which makes it a
more desirable choice compared to other classical measures like the Hausdorff distance for
many applications.

The Fréchet distance between curves can be computed efficiently [2], and it has been
successfully used in many applications [20, 25, 21, 5, 28, 6, 7]. Surprisingly though, computing
the Fréchet distance becomes much harder for higher dimensional objects, even surfaces. It
is NP-hard to compute the Fréchet distance between a triangle and a (self-crossing) surface
[17], between two terrains [8], and between two polygons with (the same number of) holes [8].
Furthermore, to the best of our knowledge, no exact or approximation algorithm exists for
computing the Fréchet distance between two surfaces, even two terrains, that is guaranteed
to terminate in finite time.

In this paper, we study the problem of computing the Fréchet distance between surfaces
of genus zero (punctured spheres). Our input is composed of two homeomorphic piecewise
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linear orientable surfaces, R and S, each constructed from a set of Euclidean triangles by
identifying pairs of equal-length edges. The input also includes immersions ϕR : R → R3 and
ϕS : S → R3 that are isometric on each triangle of R and S, respectively. The Fréchet length
of a homeomorphism σ : R → S, is defined to be δF (σ) = maxx∈R ||ϕR(x)− ϕS(σ(x))||2.
The Fréchet distance between (immersed) R and S is defined to be δF (R,S) = infσ δF (σ),
where σ ranges over all homeomorphisms between R and S. Note that δF (R,S) depends
on the immersions ϕR and ϕS , which are not explicitly mentioned here and throughout the
paper to simplify the notation.

1.1 Previous work

The Fréchet distance and its variants between curves have been extensively studied [3, 13,
12, 19, 4, 11], resulting in very efficient exact or approximation algorithms. In contrast, very
little is known about computing the Fréchet distance between surfaces. Alt and Buchin [1]
show that the Fréchet distance between triangulated surfaces is uppersemicomputable: there
is an algorithm that generates an infinite sequence of real numbers that converges to the
Fréchet distance. Buchin et al. [9] describe a polynomial time exact algorithm for computing
the Fréchet distance between simple polygons. Their work is generalized to exact polynomial
time algorithms for folded polygons and polygons with constant numbers of holes by Cook
et al. [10], and Nayyeri and Sidiropoulos [22], respectively. To our knowledge, there is no
exact or approximation algorithm that is guaranteed to terminate in finite time for surfaces
or even polyhedral terrains.

1.2 Our contribution

In this paper, we describe (1+ε)-approximation algorithms for computing the Fréchet distance
between two triangulated surfaces R and S (composed of fat triangles) immersed in R3.

I Theorem 1. Let R = (RV ,RE ,RT ) and S = (SV ,SE ,ST ) be two triangulated surfaces
composed of fat triangles, let n = |RV | + |SV |, and let ε > 0. There exists a (1 + ε)-
approximation algorithm for computing the Fréchet distance between R and S with running
time

2
O

((
|RV |+|SV |+ Area(R)+Area(S)

(εδ)2

)2
)
.

Note that Area(R)+Area(S)
δ2 is invariant up to scaling, therefore, scaling the surfaces does

not change the running time of our algorithm. We view this result as a first step towards
designing efficient approximation algorithms for computing the Fréchet distance between
surfaces.

We describe a significantly more efficient algorithm if R and S are polyhedral terrains
over [0, 1]2. This algorithm works in linear time for surfaces of constant maximum slope with
constant Fréchet distance.

I Theorem 2. Let R and S be polyhedral terrains over [0, 1]2 of maximum slope D, and
let n = |RV | + |SV |. There exists a (1 + ε)-approximation algorithm for computing the
Fréchet distance between R and S with running time

O(D/(εδ)2) · n+ 2O(D4/(ε4δ2)).
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1.3 Overview
First, we consider the problem for piecewise linear triangulations R = (RV ,RE ,RT ) and
S = (SV ,SE ,ST ), composed of triangles of diameter at most r. We design an algorithm that,
for each δ > 0, returns an (R,S)-homeomorphism of Fréchet length δ+O(r) if δ ≥ δF (R,S).
If δ < δF (R,S), our algorithm either returns an (R,S)-homeomorphism of Fréchet length
δ + O(r), or it correctly decides that the δF (R,S) > δ. We use binary search with this
algorithm to approximate δF (R,S).

Consider a homeomorphism g : R → S of Fréchet length at most δ + r. As the first
step, our algorithm computes f0, an approximation of g|RV ∪g−1(SV ) (the restriction of g into
RV ∪ g−1(SV )). Precisely, for each vertex u ∈ RV (resp. each vertex v ∈ SV ), f0(u) and g(u)
(resp. f−1

0 (v) and g−1(v)) are in the same triangle of ST (resp. RT ). To compute f0(u), for
each u ∈ RV (resp. for each v ∈ SV ), our algorithm enumerates over all possible triangles that
can contain g(u) (resp. g−1(v)): triangles of ST (resp. RT ) whose distance from u (resp. v)
is at most δ. Our algorithm refines R and S with regards to f0. Let R̃V = RV ∪ f−1

0 (SV ),
and S̃V = SV ∪ f0(RV ). Then, let R̃ = (R̃V , R̃E , R̃T ) and S̃ = (S̃V , S̃E , S̃T ) be arbitrary
refinements of R and S, respectively.

Our algorithm seeks to extend f0 to a homeomorphim f : R̃ → S̃, with Fréchet length at
most δ +O(r). Let the homeomorphism h : R̃ → S̃ be an extension of f0 of Fréchet length
δ +O(r) (we show such a homeomorphism exists). So, h1 = h|R̃E is a one-to-one continuous
map with the following properties: (1) f0 = h1|R̃V , (2) h1 maps the boundary vertices
to boundary vertices, and boundary edges to boundary edges, (3) h1 preserves the cyclic
order of edges around each vertex (the combinatorial embedding of (R̃V , R̃E)), and (4)
δF (h1) = δ +O(r).

Moreover, we observe that any map f1 : R̃E → S̃ with properties (1) to (4) can be
extended to a homeomorphism between R̃ and S̃ of Fréchet length δ+O(r). As a result, our
problem of extending f0 to (R̃, S̃)-homeomorphism f reduces to finding an f1 with properties
(1) to (4), or equivalently finding the image of each edge e ∈ R̃E under f1.

Let e ∈ R̃E , and let γ = h1(e), so, δF (e, γ) ≤ δF (h1) ≤ δ +O(r). The intersection of γ
with any triangle t ∈ S̃T is a collection of paths {γ1, . . . , γk}. As the diameter of t is at most
r, modifying γi’s inside t can only increase the Fréchet length by O(r). Since we allow an
O(r) additive approximation factor, we can overlook the exact positions of γi’s in t, and
focus only on their intersection pattern. When the intersection patterns in all triangles of
S̃T are viewed as a whole, they specify the sequence of edges in S̃E that γ crosses, that is
the homotopy class of γ in S̃\S̃V .

Potentially, the image of an edge e ∈ R̃E may belong to infinitely many homotopy
classes (in S̃\S̃V ). We bound the number of possible homotopy classes, by considering the
interaction of h1(R̃E) with S̃E . We view h1(R̃E) as an embedding of (R̃V , R̃E) on S̃ that is
combinatorially equivalent with its triangulated embedding on R̃. We show that if an edge
s ∈ S̃E is crossed a sufficiently large number of times by h1(R̃E), then we can shortcut the
curves in h1(R̃E) along s to obtain a different embedding of (R̃V , R̃E) on S̃. Following Cook
et al. [10], we observe that such shortcutting operations decrease the crossing number on s,
but do not increase the Fréchet distance. We conclude the existence of an f1 : R̃E → S̃ of
Fréchet length δ +O(r) such that each edge s ∈ S̃E is crossed by f1(R̃E) a bounded number
of times.

Our algorithm uses normal coordinates to enumerate the set of homotopy classes for the
curves of f1(R̃E) in S̃\S̃V . Normal coordinates record, for each edge s ∈ S̃T , the number
of times it is crossed by f1(R̃E). Our crossing bound implies a bound on the maximum
coordinate of any set of normal coordinates that must be considered, thus, a bound on all
possible normal coordinates.

SoCG 2016
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Provided f0 and a set of normal coordinates, our algorithm constructs an f1 : R̃E → S̃
of Fréchet length δ +O(r) via constructing the images of all edges. Finally, our algorithm
extends f1 to include the interior of triangles, R̃T , to obtain f : R̃ → S̃ of Fréchet length at
most δ +O(r). The running time of our algorithm depends on the complexity of R and S,
as well as their vertex densities: the maximum number of their vertices in any ball of radius
max(δ, r).

To obtain our (1 + ε)-approximation algorithm for two general triangulations R and S,
our algorithm refines them into triangulations composed of triangles of diameter O(εδ). Then,
the above algorithm can be applied to find a homeomorphism of Fréchet length δ +O(εδ). If
R and S are terrains with slope at most D, our algorithms can find triangulations R′ and
S ′ within the Fréchet distance εδ of R and S, respectively. The complexity of R′ and S ′,
and their vertex densities are bounded by functions of ε, δ and D, therefore, we obtain a
linear time (1 + ε)-approximation algorithm if all these parameters are constant.

2 Preliminaries

Maps

Let f : A → B be a function, and let U ⊆ A. We define f(U) to be {f(u)|u ∈ A}. The
function f |U : U → B, the restriction of f to the subset U , is defined as for all u ∈ U ,
f |U (u) = f(u). In this case, we also say, that f is an extension of f |U to A. For topological
spaces A and B, f is a homeomorphism if (1) it is a bijection, (2) it is continuous, and (3)
its inverse is continuous.

Surfaces

A surface Q (or a 2-manifold) is a space, in which every point has a neighborhood that
is homeomorphic to the plane or half-plane. An embedding Φ : Q → R3 is a continuous
one-to-one map. An immersion ϕ : Q → R3 is a continuous map, such that for any x ∈ Q
there is a neighborhood Nx of x, on which f is an embedding.

A piecewise linear surface is a surface Q that is constructed from a set of Euclidean
polygons by identifying pairs of equal-length edges. In this paper, we assume that all the
constituent polygons are triangles. We denote the constituent vertices, edges, and triangles of
Q by QV , QE , and QT , in order, thus, we write Q = (QV ,QE ,QT ). A locally isometric
immersion is an immersion ϕ : Q → R3 such that for each t ∈ QT , ϕ|t is an isometric map.
In particular, t and ϕ(t) are congruent triangles.

Embedded curves and graphs

Let Q be a surface and let α, β : [0, 1] → Q be curves embedded on Q with the same
endpoints, α(0) = β(0) and α(1) = β(1). A homotopy h : [0, 1]× [0, 1]→ Q is a continuous
map such that h[x, 0] = α, h[x, 1] = β, h[0, t] = α(0) = β(0), and h[1, t] = α(1) = β(1).

An embedding of a graph G = (V,E) into a surface Q is a continuous function that
maps vertices in V into distinct points in Q and edges in E into disjoint paths except for
their endpoints. The faces of the embedding are maximal subsets of Q that are disjoint
from the image of the graph. An embedding is cellular if all its faces are topological disks.
In particular, each boundary component in a cellular embedding is covered by the image of
the graph. A cellular embedding on an orientable surface can be described by a rotation
system. A rotation system is composed of a cyclic (clockwise) order of edges around vertices.
A rotation system is a combinatorial description of the embedding of a graph. Equivalent
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rotation systems of G on two different surfaces Q and Q′ induce a one-to-one correspondence
between the vertices, edges, and faces of the different embeddings. Therefore, they can be
extended to a homeomorphism between Q and Q′. Note that the homotopy class of an edge
might be completely different in two combinatorially equivalent embeddings. For example,
one can apply Dehn Twists on a cycle that avoids vertices of the embedding to change the
homotopy class of edges without affecting the rotation system.

Fréchet distance

Let R and S be homeomorphic piecewise linear triangulations, and let ϕR : R → R3 and
ϕS : S → R3 be locally isometric immersions. The Fréchet length of a homeomorphism
σ : R → S, is defined to be δF (σ) = maxx∈R ||ϕR(x)− ϕS(σ(x))||2. The Fréchet distance
between (immersed) R and S is defined to be δF (R,S) = infσ δF (σ), where σ ranges over
all homeomorphisms between R and S. Note that δF (R,S) depends on the immersions ϕR
and ϕS , which are not explicitly mentioned here and throughout the paper to simplify the
notation. Also, note that, a homeomorphism that realizes δF (R,S) does not necessarily exist
as the Fréchet distance is defined as an infimum.

Neighborhoods

Given U ⊂ R3, and r ∈ R≥0, we define the set Br(U) to be composed of all the points in
R3 that are not farther than r from U . In particular, for a p ∈ R3, Br(p) is a closed ball
of radius r, and for a curve γ ⊆ R3, Br(γ) is the union of balls of radius r centered on all
points of γ. Let Q = (QV ,QE ,QT ) be a triangulated surface. We use U ∩ QV to denote
the set of vertices inside U , U ∩QE to denote the set of edges of QE that intersect U , and
U ∩QT to denote the set of triangles of QT that intersect U .

3 Fréchet distance between fine triangulaions

In this section, let R and S be two triangulated surfaces (of genus zero) composed of triangles
with diameter at most r. Also, let ϕR : R → R3 and ϕS : S → R3 be immersions. We
consider the Fréchet length and Fréchet distance with respect to ϕR and ϕS , but to simplify
the exposition we do not explicitly mention them when it is clear from the context. We
describe an algorithm that, given δ > 0, returns an (R,S)-homeomorphism of Fréchet length
δ +O(r) if δ ≥ δF (R,S). If δ < δF (R,S), our algorithm either returns a homeomorphism of
Fréchet length δ +O(r) or it correctly decides that δ < δF (R,S).

3.1 Mapping vertices
A bijection f0 : R̃V → S̃V is an approximate vertex map if and only if it has the following
properties.
1. R̃V = RV ∪R′V , S̃V = SV ∪ S ′V , f0(RV ) = S ′V , and f0(R′V ) = SV .
2. f0 maps boundary vertices to boundary vertices, and it preserves the cyclic order of

boundary vertices on each boundary component.
3. There exists an f : R → S of Fréchet length at most δ + r such that

(a) for each u ∈ RV , f(u) and f0(u) are in the same triangle of ST , and
(b) for each v ∈ SV , f−1(v) and f−1

0 (v) are in the same triangle of RT .
We say that f0 agrees with f .

SoCG 2016
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Figure 1 H and H ′; corresponding faces and vertices have the same colors.

We show that an approximate vertex map can be extended to an (R,S)-homeomorphism
with Fréchet length δ +O(r). To that end, we find the following lemma helpful.

I Lemma 3. Let t be a triangle with diameter r, and let P, P ′ ⊆ int(t) be finite point sets
with the same cardinality. Also, let g : P → P ′ be a bijection. There exists a homeomorphism
h : t→ t such that
1. h|∂(t) is the identity map.
2. h|P = g.
3. δF (h) ≤ r.

Proof. Let (x, y, z) be vertices of t. Let g′ : {x, y, z} ∪ P → {x, y, z} ∪ P ′ be a bijection
that is the identity map for {x, y, z} and g for P . Let H be a triangulation (a plane graph)
with vertex set {x, y, z} ∪ P . Let H ′ be a graph with vertex set V ′ = {x, y, z} ∪ P ′, where
v, v′ ∈ V ′ are adjacent if any only if there corresponding vertices via g′ are adjacent in H.
The isomorphism between H and H ′ naturally gives rise to a combinatorial embedding of
H ′ that is equivalent to the embedding of H. The isomorphism between H and H ′ and their
equivalent embedding provides bijections between vertex sets, edge sets, and face sets of H
and H ′. Let h be any homeomorphism that respects these bijections and that is identity on
the boundary. By the construction, h has properties (1) and (2). Additionally, δF (h) ≤ r, as
h maps points within t that has diameter r. J

I Lemma 4. Let R = (RV ,RE ,RT ) and S = (SV ,SE ,ST ) be triangulated surfaces composed
of triangles of diameter at most r. Any approximate vertex map f0 : R → S can be extended
to a (R,S)-homeomorphism of Fréchet length δ + 3r.

Proof. Let g : R → S be a homeomorphism of Fréchet length δ + r that agrees with f0. We
construct homeomorphisms g′ : R → R and g′′ : S → S, each of Fréchet length at most r,
such that g′′ ◦ g ◦ g′ is an extension of f0.

We construct g′ in three steps as follows. (1) For each v ∈ RV , we define g′(v) = v. (2)
For each e ∈ RE , if e is not a boundary edge we define g′|e to be the identity map, otherwise
g′|e is any homeomorphism, in which for any p ∈ f−1

0 (SV ) ∩ e we have g′|e(p) = g−1(f0(p)).
Such a homeomorphism exists because both f0 and g preserve the order of boundary edges
along boundary cycles. (3) For each t ∈ RT , we define g′|t to be the extension of g′|∂(t) to t
such that for any p ∈ f−1

0 (SV ) ∩ t we have g′|t(p) = g−1(f0(p)). Lemma 3 implies that such
an extension exists.

The construction of g′′ is very similar. (1) For each v ∈ SV , we define g′′(v) = v. (2) For
each e ∈ SE , if e is not a boundary edge we define g′′|e to be the identity map, otherwise g′′|e
is any homeomorphism, in which for any p ∈ f0(RV )∩e we have g′′|e(p) = g(f−1

0 (p)). (3) For
each t ∈ ST , we define g′′|t to be the extension of g′′|∂(t) to t such that for any p ∈ f0(RV )∩ t
we have g′′|t(p) = g(f−1

0 (p)). Lemma 3 implies that such an extension exists. J

Our algorithm computes a set of candidates for f0 via guessing the triangles that con-
tain the images and preimages of RV and SV , respectively, under a homeomorphism of
Fréchet length at most δ + r.
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Figure 2 Proof of Lemma 4; f0 = g′′ ◦ g ◦ g′ on vertices x ∈ RV (red) and y ∈ SV (blue).

I Lemma 5. Let R and S be triangulated surfaces composed of triangles of diameter at most
r. There exists a set F0 of size∏

u∈RV

|Bδ+r(u) ∩ ST | ·
∏
v∈SV

|Bδ+r(v) ∩RT |

that contains an approximate vertex map. (Bδ+r(u) ∩ ST denotes the set of triangles of ST
that intersect Bδ+r(u), and Bδ+r(v) ∩RT denotes the set of triangles of RT that intersect
Bδ+r(v).)

Proof. Let f0 be an approximate vertex map, and let f be the homeomorphism of Fréchet length
δ + r that agrees with f0. For each u ∈ RV , we need to guess the triangle t ∈ ST that
contains f0(u) or equivalently f(u). Since ||f(u)− u|| ≤ δ + r, t should intersect Bδ+r(u),
thus, there are |Bδ+r(u)∩ST | choices for the triangle that contains f0(u). Similarly, for each
v ∈ SV , there are |Bδ+r(v) ∩RT | choices for the triangle that contains f−1

0 (v). J

3.2 Mapping edges
Let f0 : R̃V → S̃V be an approximate vertex map. Let R̃ = (R̃V , R̃E , R̃T ) and S̃ =
(S̃V , S̃E , S̃T ) be refinements of R and S, respectively.

A scaffold map is a continuous one-to-one map f1 : R̃E → S̃ with the following
properties.
1. f1(R̃V ) = S̃V .
2. f1 is a cellular embedding of (R̃V , R̃E) on S̃.
3. f1 maps boundary edges to boundary edges (so, it preserves the cyclic order of boundary

edges around boundary components).
4. f1 preserves the cyclic order of edges around each vertex: for any u ∈ R̃V with neighbors
{w1, . . . , wk}, the cyclic order of the edges {(u,w1), (u,w2), . . . , (u,wk)} around u is
identical to the cyclic order of curves {f1(u,w1), . . . , f1(u,wk)} around f1(u).

5. For each e ∈ R̃E and each t ∈ S̃T , f1(e) ∩ t is a collection of straight line segments that
intersect ∂(t) at their endpoints.

3.2.1 Sufficiency of scaffold maps
We show that a scaffold map f1 : R̃E → S̃ can be extended to a (R̃, S̃)-homeomorphism of
Fréchet length arbitrarily close to δF (f1). As Properties (2) to (4) of a scaffold map f1 imply,
f1(R̃E) is an embedding of (R̃V , R̃E) on the surface S̃ that is combinatorially equivalent
to the embedding of (R̃V , R̃E) on R̃. In particular, f1 gives a one-to-one correspondence
between the triangles in R̃T and the faces of f1(R̃E). Property (5) of a scaffold map
implies that each triangle corresponds to a folded polygon: a piecewise linear triangulated
(sub-)surface (of S̃) whose interior is disjoint from S̃V .

To extend f1 to a homeomorphism, for each triangle t ∈ R̃T and its corresponding folded
polygon pt with boundary f1(∂(t)), we extend f1|∂(t) to a (t, pt)-homeomorphism. The proof

SoCG 2016
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of Lemma 1 of Cook et al. [10] actually proves the following stronger statement, which
facilitates the extension of f1|∂(t).

I Lemma 6 (Cook et al. [10]). Let t be a triangle, p be a folded polygon with n triangles,
and g : ∂(t) → ∂(p) a homeomorphism. For any ε > 0, the map g can be extended to a
homeomorphism, h : t→ p, for which δF (h) ≤ δF (g) + ε, in polynomial time in n.

The one-to-one correspondence of triangles to folded polygons and Lemma 6 imply that a
scaffold map can be extended to an (R̃, S̃)-homeomorphism of arbitrary close Fréchet length.

I Lemma 7. Let f1 : R̃E → S̃ be a scaffold map that maps each triangle to a folded
polygon composed of at most m triangles. For any ε > 0, the map f1 can be extended to a
homeomorphism f : R̃ → S̃, for which δF (f) ≤ δF (f1) + ε, in O(m|R̃V + S̃V |) time.

In light of Lemma 7 we focus on computing a scaffold map with Fréchet length δ +O(r).

3.2.2 Crossing bounds
We show that any approximate vertex map can be extended to a scaffold map of Fréchet length
δ +O(r), whose image intersects each edge s ∈ S̃ a bounded number of times. (Note that,
a priori, these intersection numbers can be arbitrarily large, giving rise to infinitely many
scaffold maps.) To this end, we consider a homeomorphism h : R̃ → S̃ of Fréchet length
δ +O(r) that is an extension of an approximate vertex map, which exists by Lemma 4. We
modify h1 = h|R̃E via a sequence of shortcutting operations (defined below) to obtain a
scaffold map of Fréchet length δ +O(r), whose image intersects each edge of S̃ a bounded
number of times.

Let α : [0, 1] → Rd be an immersed curve, let 0 ≤ t1 < t2 ≤ 1, and let ` : [t1, t2] →
Rd be a line segment with endpoints α[t1] and α[t2]. Finally, let α′ : [0, 1] → Rd be
α[0, t1)∪`[t1, t2]∪α(t2, 1], that is α′ coincides with α in [0, t1)∪ (t2, 1], and coincides with the
line segment ` on [t1, t2]. We say that α′ is obtained from α via a shortcutting operation.
The following lemma is key in our arguments.

I Lemma 8 (Lemma 3 of Buchin et al. [9]). Let α : [0, 1]→ Rd and α′ : [0, 1]→ Rd be two
curves, and let s be a line segment. If α′ is obtained from α via a sequence of shortcutting
operations then δF (α′, s) ≤ δF (α, s).

The following lemma follows from Lemma 4.1 and Lemma 4.2 of Erickson and Nayyeri [14].
Also, see Schaefer and Štefankovič [24] for similar shortcutting arguments.

I Lemma 9 (Erickson and Nayyeri [14]). Let Γ = {γ1, γ2, . . . , γk} be a set of non-crossing
curves on a triangulated surface (of genus zero) Q = (QV ,QE ,QT ). There exists a set of
non-crossing curves Γ′ = {γ′1, γ′2, . . . , γ′k} with the following properties.
1. For each i, γ′i is obtained from γi via a sequence of shortcutting operations along the edges

in QE.
2. For each γ′ ∈ Γ′ and t ∈ QT , each connected component of γ′ ∩ t is

(a) a path with endpoints on different sides of t, or
(b) a path with one point being a vertex of t and the other on its opposite side, or
(c) a side of t, in this case γ′ coincide with the side of t.

3. For each e ∈ QE, if e is crossed by m different curves of Γ′ then it is crossed at most 2m
times.
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Figure 3 Examples for normal coordinates in triangles.

We remark that if Γ is composed of edges of a cellularly embedded graph on Q, Γ′ is
the set of edges of a combinatorially equivalent cellular embedding on Q. This is because
the shortcutting operation does not change the boundary edges or the cyclic order of edges
around vertices. Now, we are ready to show the existence of our desired scaffold map.

I Lemma 10. Any approximate vertex map f0 : R̃V → S̃V can be extended to a scaffold
map f1 : R̃E → S̃ of Fréchet length δ+ 3r such that any edge s ∈ S̃E is crossed by f1(R̃E) at
most 2|Bδ+3r(s)∩R̃E | times. (Bδ+3r(s) ∩ R̃E denotes the subset of edges of R̃E that intersect
Bδ+3r(s).)

Proof. By Lemma 4, f0 can be extended to a homeomorphism h of Fréchet length at most
δ+3r. Let Γ = {γe = h(e)|e ∈ R̃E}, and note that δF (e, γe) ≤ δ+3r. Because δF (h) ≤ δ+3r,
for any s ∈ S̃E , if γe intersects s then e must intersect Bδ+3r(s). Thus, s is crossed by at
most |Bδ+3r(s) ∩ R̃E | different γe’s. Now, let Λ = {λe|e ∈ R̃E} be the set of paths obtained
from Γ via Lemma 9 that has properties (1), (2), and (3). In particular, any segment s ∈ S̃
is crossed at most 2|Bδ+3r(s)∩R̃E | times.

We further modify Λ to obtain a set of piecewise linear paths Ω = {ωe|e ∈ R̃E}. For
each λe ∈ Λ and each t ∈ S̃T , let {λ1

e, . . . , λ
k
e} be the connected components of λe ∩ t. For

each 1 ≤ i ≤ k, we define ωie to be the straight line segment between the endpoints of
λie. Property (2) of Lemma 9 implies that each ωie is (a) a line segment between different
sides of t, (b) a line segment between a vertex of t and its opposite side, or (c) a side of
t (in this case ωe = ωie). Since each ωe is obtained from λe via a sequence of shortcutting
operations, which itself is obtained from γe via a sequence of shortcutting operations, we
have δF (e, ωe) ≤ δF (e, λe) ≤ δF (e, γe) ≤ δ + 3r (Lemma 8). J

3.2.3 Enumeration via normal coordinates
Let g1 : R̃E → S̃ be a scaffold map, and let t ∈ S̃T . The intersection of g1(R̃E) with t is a
collection of elementary segments: straight line segments with endpoints on ∂(t). The
intersection pattern of g1(R̃E) ∩ t can be presented (up to continuous deformation) with
three numbers, one per edge. For each edge s ∈ SE we define its (extended) normal
coordinate, denoted by N(e), as follows: (1) N(e) = −1 if e ∈ g1(R̃E), and (2) N(e) is the
number of elementary segments intersecting the interior of e, otherwise. See Figure 3 for
examples of extended normal coordinates in triangles. (Our (extended) normal coordinates
are straight forward extensions of normal coordinates defined for normal curves in surfaces, or
normal surfaces in 3-manifolds. See references [23, 26, 15] for a detailed exposition of normal
curves, the two dimensional variant of standard normal surfaces introduced by Haken [18].)

The set of normal coordinates of g1(R̃E) is a vector of |S̃E | numbers, one per edge in S̃E .
Provided the normal coordinates, there is a unique way of locating the elementary segments
inside each t ∈ S̃T (up to a continuous deformation) so that they do not cross. Hence, the
normal coordinates specify, for every e ∈ R̃E , the sequence of edges that g1(e) crosses (its
homotopy class in S̃\S̃E). The following corollary is implied by Lemma 10.
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I Corollary 11. There is a collection N of sets of normal coordinates of size at most∏
s∈S̃E

2|Bδ+3r(s)∩R̃E |,

such that for any approximate vertex map f0 : R̃V → S̃V , N contains the set of normal
coordinates of a scaffold map f1 : R̃E → S̃ with the following properties:
1. f1 is an extension of f0.
2. δF (f1) ≤ δ + 3r.

Next, we show that provided the normal coordinates of a scaffold map g1, we can build
another scaffold map f1 with the same normal coordinates within the Fréchet distance O(r)
of g1. In fact, we show the following stronger lemma.

I Lemma 12. Let g1 : R̃E → S̃ be a scaffold map of Fréchet length δ′, and let e ∈ R̃E. Let
T ⊆ S̃T be the set of all triangles that intersect g1(e). For any point x ∈ e and any point
y ∈ t ∈ T , we have ||x− y|| ≤ δ′ + 2r.

Proof. Let z ∈ g(e) ∩ t, and let x′ = g−1(z). Because x and x′ are both on e, we have
||x− x′|| ≤ r. Since y and z are in the same triangle t, we have ||z − y|| ≤ r. Therefore,

||x− y|| ≤ ||x− x′||+ ||x′ − z||+ ||z − y|| ≤ r + δ′ + r ≤ δ′ + 2r . J

The following corollary is immediate observing that the normal coordinates uniquely
specify the sequence of triangles each curves cross.

I Corollary 13. Let g1 : R̃E → S̃ and f1 : R̃E → S̃ be two scaffold maps with identical sets
of normal coordinates. For each e ∈ R̃, we have δF (e, f1(e)) ≤ δF (e, g1(e)) + 2r.

I Lemma 14. Let N be the set of normal coordinates of a scaffold map g1 : R̃E → S̃.
Provided N , there is an algorithm to compute a scaffold map f1 : R̃E → S̃ such that
δF (f1) ≤ δF (g1) + 2r.

Proof. By Corollary 13, it suffices to find any scaffold map with normal coordinates N . For
each s ∈ S̃E , we arbitrarily select N(s) points on s. N uniquely determines, for each t ∈ S̃T ,
which points should be connected with elementary segments. For each edge e ∈ R̃E , we obtain
a path γe composed of elementary segments. Lemma 12 implies that any homeomorphism
between e and γe has Fréchet length at most δF (g1) + 2r. Our f1 will be the union of all
such homeomorphisms, one per each e ∈ R̃E . J

3.3 Summing up
Now, we are ready to prove the main lemmas of this section. The following lemma describes
an algorithm that for a sufficiently large δ returns a homeomorphism of Fréchet length close
to δ, and for a sufficiently small δ it decides that no homeomorphism with Fréchet length δ
exists.

I Lemma 15. Let R and S be two triangulated surfaces composed of triangles of diameter at
most r, and let δ > 0. Let ρ be the maximum number of (immersed) vertices of RV ∪ SV in
any ball of radius max(δ, r). There exists a 2O(ρ·(|RV |+|SV |)) time algorithm with the following
properties.
1. If δ ≥ δF (R,S), it computes a homeomorphism, f : R → S, of Fréchet length at most

δ + 5r ,
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2. If δ < δF (R,S)− 5r, it decides that δ < δF (R,S).
3. If δF (R,S)− 5r ≤ δ < δF (R,S), either it computes a homeomorphism, f : R → S, of

Fréchet length at most δ + 5r, or it decides that δ ≤ δF (R,S).

Proof. First, consider the case δ ≥ δF (R,S). By Lemma 5, there is a set of size O(ρ|RV |+|SV |)
that contains an approximate vertex map. Let f0 : R̃ → S̃ be an approximate vertex map.
Let ρ̃ be the maximum number of vertices of R̃V ∪ S̃V in any ball of radius max(δ, r). Let B
be any ball of radius max(δ, r), and let B̃ be the concentric ball of radius max(δ, r) + (δ + r).
For any vertex u ∈ RV ∩ B, we have f0(u) ∈ B̃, and for any vertex v ∈ SV ∩ B, we have
f−1

0 (v) ∈ B̃. Since, B̃ can be covered by a constant number of balls of radii max(δ, r), it
contains O(ρ) vertices of RV ∪ SV . That is, B contains O(ρ) vertices of R̃V ∪ S̃V . We
conclude that ρ̃ = O(ρ).

Let e ∈ RE , and consider Bδ+3r(e) ∩ S̃E , the set of edges in S̃E that intersect Bδ+3r(e).
Any such an edge must have both of its endpoints in Bδ+4r(e), for the length of each edge is
at most r. Now, consider the graph H induced by the vertices in Bδ+4r(e), which includes
all edges in Bδ+3r(e) ∩ S̃E . H is a collection of planar graphs, thus, its number of vertices
and edges are within a constant factor. That is, |Bδ+3r(e) ∩ S̃E | = O(|Bδ+4r(e) ∩ S̃V |). On
the other hand, Bδ+4r(e) can be covered by a constant number of balls of radius max(δ, r),
therefore, |Bδ+4r(e) ∩ S̃V | = O(ρ̃) = O(ρ). Overall, |Bδ+3r(e) ∩ S̃E | = O(ρ).

Therefore, Corollary 11 implies that a collection N of normal coordinate sets exists such
that (1) |N | = 2O(ρ·|S̃E |) = 2O(ρ·(|RV |+|SV |)), and (2) N includes the normal coordinates of
a scaffold map of Fréchet length δ + 3r that is an extension of f0. Provided these normal
coordinates, the algorithm of Lemma 14 computes a scaffold map f1 of Fréchet length δ + 5r.
The total running time is dominated by the size of N .

For any value of δ, our algorithm either computes a correct homeomorphism via computing
a scaffold map or it fails to compute such a homeomorphism. In the former case, our
algorithm returns the homeomorphism only if its Fréchet length is at most δ + 5r. Therefore,
if δ < δF (R,S)− 5r our algorithms recognizes that δ < δF (R,S). For intermediate δ values,
our algorithm either returns a homeomorphism of Fréchet length δ + 5r, or it recognizes that
a homeomorphism of Fréchet length δ does not exist. J

Next, we use binary search with Lemma 15 to estimate the value of the Fréchet distance.

I Lemma 16. Let R and S be two triangulated surfaces composed of triangles of diameter
at most r. Let ρ be the maximum number of vertices of RV ∪ SV in any ball of radius
max(δF (R,S), r). There exists a 2O(ρ·(|RV |+|SV |)) log(δF (R,S)/r) time algorithm to compute
an (R,S)-homeomorphism of Fréchet length at most δF (R,S) + 6r

Proof. We use Lemma 15 as a black box in an exponential and a binary search for δF (R,S).
Initially, we set δ = r, we perform an exponential search to find the smallest 2k · r, for which
Lemma 15 returns a homeomorphism. Hence, we know that 2k−1 · r ≤ δF (R,S) < 2k · r.
Then, we perform a binary search to reduce the size of this gap from O(2k · r) to r, to
guarantee that our homeomorphism has Fréchet length at most δF (R,S) + 6r. Both the
exponential and the binary search can be done in O(k) time. Since 2k · r > δF (R,S), we
have k = O

(
log( δF (R,S)

r )
)
. Thus, the total running time is

2O(ρ·(|RV |+|SV |)) · log(δF (R,S)
r

). J
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4 General surfaces

In this section, we describe an algorithm to compute the Fréchet distance between two
arbitrary surfaces (of genus zero) R = (RV ,RE ,RT ) and S = (SV ,SE ,RT ). To simplify
our running time analysis, we assume that R and S are composed of fat triangles, that is all
their angles are larger than a constant θ > 0. In general, our running time would depend on
the minimum angle of the constituent triangles of the surfaces.

We define an r-refinement of a triangulation to be a refinement composed of triangles
of diameter at most r. Before refining R and S, we define triangulated grids, which we find
helpful here and in the next section.

Triangulated grids. For any w ∈ R, let Gw = (Vw, Ew) be a triangulated grid of width w.
That is

Vw = {(iw, jw) |i, j ∈ Z} ,

and

Ew = {((iw, jw), (i′w, j′w)) |i, j, i′, j′ ∈ Z ∧ (i− i′, j − j′) ∈ {(0, 1), (1, 0), (1, 1)}} .

w

w

w

w

w

w

I Lemma 17. Let Q = (QV ,QE ,QT ) be a triangulated surface composed of fat triangles, and
let r ∈ R+. There exists an O(|QV |+Area(Q)/r2) time algorithm to compute an r-refinement
of Q of size O(|QV |+ Area(Q)/r2).

Proof. For each triangle t ∈ Q with diameter larger than r, we show how to refine it into a
new triangulation composed of O(Area(t)/r2) triangles with diameter r. Note that when we
put these triangulations together their vertices do not necessarily match on the border of
different triangles. As a result, we may see flat polygons with more than three sides, but, we
can triangulate them without introducing new vertices.

Let t ∈ QT with side lengths `, `′ and `′′, with max(`, `′, `′′) > r. Place t on Gr, the
triangulated grid of width r. Let t be the triangulation of t induced by Gr. The number of
triangles in t is |t| = O((` + `′ + `′′)/r + Area(t)/r2). Since all angles of t are larger than
a constant, `, `′, and `′′ are within a constant factor of each other, and Area(t) = Θ(`2).
Therefore, |t| = O(`/r + `2/r2) = O(`2/r2) = O(Area(t)/r2). J

Our algorithm for general surfaces is implied by Lemma 16 and Lemma 17.

Proof of Theorem 1. Let δ = δF (R,S), and let r = (εδ)/6. Let R and S be r-refinements
of R and S, respectively, obtained by applying the algorithm of Lemma 17, thus, |RV | =
O(|RV |+ Area(R)/r2), and |SV | = O(|SV |+ Area(S)/r2). Also, R and S can be computed
in linear time with respect to their sizes. Trivially, the number of vertices of RV ∪SV in each
ball of radius max(δ, r) is at most n = |RV |+ |SV |. Thus, by Lemma 16 for R and S, there
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is an 2O(n2) log(1/ε) time algorithm to compute an (R,S)-homoemorphism of Fréchet length
at most δ + 6r = (1 + ε)δ. We have,

2O(n2) log(1
ε

) = 2O(|RV |+|SV |)2
log(1

ε
) = 2

O

((
|RV |+|SV |+ Area(R)+Area(S)

(εδ)2

)2
)
. J

5 Terrains

In this section, we describe an algorithm to compute the Fréchet distance between two
polyhedral terrains R and S over [0, 1]2 (i.e. the images of the immersions ϕR : R → R3

and ϕS : S → R3 are polyhedral terrains over [0, 1]2). Let δ = δF (R,S), and let D be the
maximum slope of R and S for any point in their domain, [0, 1]2.

5.1 Sampling
Let Q : [0, 1]2 → R be a polyhedral terrain, let 1/r ∈ Z, and let Gr = (Vr, Er) be a grid of
width r. Here we use Q both to refer to the triangulated surface and to the function over
[0, 1]2. The r-coarse approximation of Q, is a polyhedral terrain Q, whose vertex set is,

QV = {(x, y,Q(x, y)) |(x, y) ∈ Vr} ,

and whose edge set is

QE = {((x, y,Q(x, y)), (x′, y′,Q(x′, y′))) |(x, y), (x′, y′) ∈ Er} .

Again, we view Q as a triangulated surface as well as a function Q : [0, 1]2 → R, thus, we use
Q(x, y) for a point (x, y) ∈ [0, 1]2.

I Lemma 18. Let Q : [0, 1]2 → R be a polyhedral terrain with maximum slope D, and let Q
be its r-coarse approximation, where 1/r ∈ Z. We have δF (Q,Q) ≤ 2

√
2 · rD.

Proof. Let f : Q → Q be the projection map along the z-axis. That is, for any (x, y, z) ∈ Q,
f(x, y, z) = (x, y,Q(x, y)). Let t be the triangle in Gr that contains (x, y), and let (x′, y′) be
any vertex of t. We have ||(x, y)− (x′, y′)|| ≤

√
2 · r, which implies,

||(x, y,Q(x, y))− (x′, y′,Q(x′, y′))|| ≤
√

2 · rD,

and

||(x, y,Q(x, y))− (x′, y′,Q(x′, y′))|| ≤
√

2 · rD,

for the maximum slope of Q is bounded by D too.
On the other hand, since (x′, y′) is a grid point Q(x′, y′) = Q(x′, y′). Thus, by the triangle

inequality,

||(x, y,Q)− (x, y,Q)|| ≤ 2
√

2 · rD. J

Proof of Theorem 2. Let r′ = min(εδ/12, εδ/(8
√

2D)), let 1/r be the smallest integer larger
than 1/r′, and let R and S be r-refinements of R and S, respectively. Consider any point
p = (x, y, z) ∈ R3. The number of vertices of RV ∪ SV in Bmax(δ,r)(p) is at most the
number of grid points, vertices of Vr, in a disk of radius max(δ, r) with center (x, y), which
is O(δ2/r2). Thus, Lemma 16 implies that an (R,S)-homeomorphism of Fréchet length
δ + 6r can be computed in 2O(δ2/r4) = 2O(D4/(ε4δ2)) time. Composing this homeomorphism
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with the (R,R)-homeomorphism and the (S,S)-homeomorphism of Lemma 18, we obtain a
homeomorphism of Fréchet length

δF (S, T ) + 6r + 4
√

2 · rD ≤ δ + εδ/2 + εδ/2 = (1 + ε)δ.

We need to sample O(D/(εδ)2) points from R and S to compute R and S, which takes
O(D/(εδ)2n) time. Therefore, overall, we obtain the desired asymptotic time bound. J
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