
The Farthest-Point Geodesic Voronoi Diagram of
Points on the Boundary of a Simple Polygon∗

Eunjin Oh1, Luis Barba2, and Hee-Kap Ahn3

1 Department of Computer Science and Engineering, POSTECH,
77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, Korea
jin9082@postech.ac.kr

2 Départment d’Informatique, Université Libre de Bruxelles, Brussels, Belgium;
and
School of Computer Science, Carleton University, Ottawa, Canada
lbarbafl@ulb.ac.be

3 Department of Computer Science and Engineering, POSTECH,
77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, Korea
heekap@postech.ac.kr

Abstract
Given a set of sites (points) in a simple polygon, the farthest-point geodesic Voronoi diagram
partitions the polygon into cells, at most one cell per site, such that every point in a cell has
the same farthest site with respect to the geodesic metric. We present an O((n + m) log logn)-
time algorithm to compute the farthest-point geodesic Voronoi diagram for m sites lying on the
boundary of a simple n-gon.

1998 ACM Subject Classification I.3.5 Computational Geometry and Object Modeling

Keywords and phrases Geodesic distance, simple polygons, farthest-point Voronoi diagram

Digital Object Identifier 10.4230/LIPIcs.SoCG.2016.56

1 Introduction

Let P be a simple polygon with n vertices. Given two points x and y in P , the geodesic
path π(x, y) is the shortest path contained in P connecting x with y. Note that if the
straight-line segment connecting x with y is contained in P , then π(x, y) is a straight-line
segment. Otherwise, π(x, y) is a polygonal chain whose vertices (other than its endpoints)
are reflex vertices of P . We refer the reader to [10] for more information on geodesic paths.

The geodesic distance between x and y, denoted by d(x, y), is the sum of the Euclidean
lengths of each segment in π(x, y). Throughout this paper, when referring to the distance
between two points in P , we mean the geodesic distance between them. To ease the
description, we assume that each vertex of P has a unique farthest neighbor. This general
position condition was also assumed by Aronov et al. [3] and Ahn et al. [2] and can be
obtained by applying a slight perturbation to the positions of the vertices [7].

Let S be a set of m sites (points) contained in P . Given a point x ∈ P , a (geodesic)
S-farthest neighbor of x, is a site n(P, S, x) (or simply n(x)) of S that maximizes the geodesic
distance to x. Let FS : P → R be the function that maps each point x ∈ P to the distance
to a S-farthest neighbor of x (i.e., FS(x) = d(x,n(x))). A point x in P that minimizes FS(x)
is called the geodesic center of S (in P).

∗ This was supported by the NRF grant 2011-0030044 (SRC-GAIA) funded by the government of Korea.

© Eunjin Oh, Luis Barba, and Hee-Kap Ahn;
licensed under Creative Commons License CC-BY

32nd International Symposium on Computational Geometry (SoCG 2016).
Editors: Sándor Fekete and Anna Lubiw; Article No. 56; pp. 56:1–56:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SoCG.2016.56
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

56:2 FVD of Points on the Boundary of a Simple Polygon

We can decompose P into Voronoi cells such that for each site s ∈ S, Cell(s) is the set of
points x ∈ P such that d(x, s) is strictly larger than d(x, s′) for any other site s′ of S (some
cells might be empty). The set int(P) \ ∪s∈SCell(s) defines the (farthest) Voronoi tree of S
with root at the geodesic center of S and leaves on the boundary of P . Each edge of this
diagram consists of a sequence of straight-lines and hyperbolic arcs [3].

The Voronoi tree together with the set of Voronoi cells defines the farthest-point geodesic
Voronoi diagram of S (in P), denoted by FVD[S] (or simply FVD if S is clear from context).
Thus, we indistinctively refer to FVD as a tree or as a set of Voronoi cells.

There are many similarities between the Euclidean farthest-point Voronoi diagram and
the farthest-point geodesic Voronoi diagram (see [3] for further references). In the Euclidean
case, a site has a nonempty Voronoi cell if and only if it is extreme, i.e., it lies on the boundary
of the convex hull of the set of sites. Moreover, the clockwise sequence of Voronoi cells (at
infinity) is the same as the clockwise sequence of sites along the boundary of the convex hull.
With these properties, the Euclidean farthest-point Voronoi diagram can be computed in
linear time if the convex hull of the sites is known [1].

In the geodesic case, a site with nonempty Voronoi cell lies on the boundary of the
geodesic convex hull of the sites. The clockwise order of the Voronoi cells along the boundary
of P is a subsequence of the clockwise order of sites along the boundary of the geodesic
convex hull. However, the cell of an extreme site may be empty, roughly because the polygon
is not large enough for the cell to appear. In addition, the complexity of the bisector between
two sites can be linear to the complexity of the polygon.

Previous work. Since the early 1980s many classical geometric problems have been studied
in the geodesic setting. The problem of computing the geodesic diameter of the vertices of a
simple n-gon P (and its counterpart, the geodesic center) received a lot of attention from
the computational geometry community. Chazelle [6] gave the first algorithm for computing
the geodesic diameter. This algorithm runs in O(n2) time using linear space. Suri [13]
reduced the complexity to O(n logn)-time without increasing the space complexity. Finally,
Hershberger and Suri [8] presented a fast matrix search technique, one application of which
is a linear-time algorithm for computing the diameter of P . A key step in this process is the
computation of the farthest neighbor of each vertex in P .

The first algorithm for computing the geodesic center was given by Asano and Toussaint [4],
and runs in O(n4 logn)-time. This algorithm computes a super set of the vertices of FVD[V],
where V is the set of vertices of P . In 1989, Pollack et al. [12] improved the running time to
O(n logn) time. In a recent paper, Ahn et al. [2] settled the complexity of this problem by
presenting a Θ(n)-time algorithm to compute the geodesic center of a simple n-gon.

Since the geodesic center and diameter can both be computed from FVD[V] in linear time,
the problem of computing farthest-point geodesic Voronoi diagrams is a strict generalization.
For a set S of m points in P , Aronov et al. [3] presented an algorithm to compute FVD[S] in
O((n+m) log(n+m)) time. While a trivial lower bound of Ω(n+m logm) is known for this
general problem, there has been no progress closing this gap. In other words, it is not known
whether or not the dependence on n, the complexity of P , is linear in the running time. In
fact, this problem was explicitly posed by Mitchell [10, Chapter 27] in the Handbook of
Computational Geometry.

Our result. In this paper, we present an O((n+m) log logn)-time algorithm to compute
FVD of m points on the boundary of a simple n-gon. This is the first improvement on the
computation of farthest-point geodesic Voronoi diagrams since 1993 [3]. Indeed, while we

E. Oh, L. Barba, and H.-K. Ahn 56:3

consider sites lying on the boundary of the polygon only, our approach can also be extended
to handle arbitrary sites in the polygon. Then the running time becomes O(n log logn +
m log(n+m)). The details can be found in the full version of this paper. Our result suggests
that the computation time of Voronoi diagrams has only a close-to-linear dependence in the
complexity of the polygon. We believe our results could be used as a stepping stone to solve
the question posed by Mitchell [10, Chapter 27]. Due to lack of space, some of the proofs are
omitted. All missing proofs can be found in the full version of this paper.

1.1 Outline
The algorithm consists of three phases. First, we compute the farthest-point geodesic Voronoi
diagram restricted to the boundary of the polygon. Then we recursively decompose the
interior of the polygon into smaller (non-Voronoi) cells until the complexity of each of them
becomes constant. Finally, we explicitly compute the farthest-point geodesic Voronoi diagram
in each of the cells and merge them to complete the description of the Voronoi diagram.

In order to compute the Voronoi diagram of S, we start by computing the restriction of
FVD[S] to the boundary of P in linear time. The main tool used to speed up the algorithm
is the matrix search technique introduced by Hershberger and Suri [8] which provides a
“partial” description of FVD[S] ∩ ∂P (i.e., the restriction of FVD[S] to the vertices of P .) To
extend it to the entire boundary of P , we borrow some tools used by Ahn et al. [2]. This
reduces the problem to the computation of upper envelopes of distance functions which can
be completed in linear time.

Once FVD[S] restricted to ∂P is computed, we recursively split the polygon into cells
by a closed polygonal path in time linear to the complexity of the cell. By recursively
repeating this procedure on each resulting cell, we guarantee that after O(log logn) rounds
the boundary of each cell consists of a constant number of geodesic paths. In particular, we
guarantee that each cell is a pseudo-triangle, a quadrilateral, or a simple polygon enclosed
by a convex chain and a concave chain which we call a lune-cell.

While decomposing the polygon, we also compute the farthest-point geodesic Voronoi
diagram of S restricted to the boundary of each cell. Each round can be completed in linear
time which leads to an overall running time of O((n+m) log logn).

Finally, we compute the farthest-point geodesic Voronoi diagram restricted to each cell in
time linear to the complexity of the cell using the algorithm in [5].

2 Decomposing the boundary

Given a set A of points, let ∂A and int(A) denote the boundary and the interior of A,
respectively. Let P be a simple n-gon and S be a set of m sites (points) contained in ∂P .
Throughout most of this paper, we will make the assumption that S is the set of all vertices
of P . This assumption is general enough as we show how to extend the result to the case
when S is an arbitrary set of sites contained on the boundary of P in Section 6.

The following result was used by Ahn et al. [2] and is based on the matrix search technique
developed by Hershberger and Suri [8].

I Lemma 1 (Result from [8]). We can compute the S-farthest neighbor of each vertex of P
in O(n) time.

Using Lemma 1, we mark the vertices of P that are S-farthest neighbors of at least one
vertex of P . Let M denote the set of marked vertices of P (clearly this set can be computed

SoCG 2016

56:4 FVD of Points on the Boundary of a Simple Polygon

in O(n) time after applying Lemma 1). In other words, M contains all vertices of P whose
Voronoi region contains at least one vertex of P .

For a marked vertex w of P , the vertices of P whose farthest neighbor is w appear
contiguously along ∂P [3]. That is, given an edge uv such that n(u) = n(v), we know that
n(x) = n(u) = n(v) for each point x ∈ uv. Therefore, after computing all these farthest
neighbors, we effectively split ∂P into subchains, each associated with a different vertex of
M (see [2] further for the first use of this technique).

Given two points x and y on ∂P , let C[x, y] denote the portion of ∂P from x to y in
clockwise order. We say that three (nonempty) disjoint sets A1, A2 and A3 contained in ∂P
are in clockwise order if A2 ⊂ C[a, c] for any a ∈ A1 and any c ∈ A3.

I Lemma 2 ([3, Corollary 2.7.4]). The order of sites with nonempty Voronoi cells along ∂P
is the same as the order of Voronoi cells along ∂P .

We call an edge ab of P a transition edge if n(a) 6= n(b). Let ab be a transition edge of P
such that b is the clockwise neighbor of a along ∂P . Recall that we have computed n(a) and
n(b) and note that a, b,n(a),n(b) are in clockwise order by Lemma 2. Let v be a vertex of
P such that n(a), v,n(b) are in clockwise order. If there is a point x on ∂P whose farthest
neighbor is v, then x must lie on ab. In other words, the Voronoi cell Cell(v) restricted to
∂P is contained in ab and hence, there is no vertex u of P such that n(u) = v.

Since we know which vertex is the farthest neighbor of each non-transition edge of P , to
complete the description of FVD restricted to ∂P it suffices to compute FVD restricted to
transition edges. To this end, we need some tools introduced in the following sections.

2.1 The apexed triangles
An apexed triangle 4 = (a, b, c) with apex a(4) = a is a triangle contained in P with an
associated distance function g4(x) such that (1) a(4) is a vertex of P , (2) there is an edge
of ∂P containing both b and c, and (3) there is a vertex d(4) of P , called the definer of 4,
such that

g4(x) =
{
‖x− a(4)‖+ d(a(4),d(4)) = d(x,d(4)) if x ∈ 4
−∞ if x /∈ 4,

where ‖x− y‖ denote the Euclidean distance between x and y.
Intuitively, 4 bounds a constant complexity region where the geodesic distance function

from d(4) can be obtained by looking only at the distance from a(4). We call the side of
an apexed triangle 4 opposite to the apex the bottom side of 4. Note that the bottom side
of 4 is contained in an edge of P .

The concept of the apexed triangle was introduced by Ahn et al. [2]. After computing
the farthest S-neighbor of each vertex, they show how to compute a linear number of apexed
triangles in linear time with the following property: for each point p ∈ P , there exists an
apexed triangle 4 such that p ∈ 4 and d(4) = n(p). By the definition of the apexed
triangle, we have d(p,n(p)) = g4(p). To summarize the results presented by Ahn et al. [2],
we need some definitions. Given a chain C contained in ∂P with endpoints u and v, the
funnel of a site s to C, denoted by γs(C), is the weakly simple polygon contained in P

bounded by C, π(u, s) and π(s, v).

I Lemma 3 (Summary of [2]). Given a simple n-gon P with vertex set S, we can compute
a set of O(n) apexed triangles in O(n) time with the property that for any site s ∈ S, the
union of all apexed triangles with definer s is a funnel γs such that Cell(s) ⊂ γs.

E. Oh, L. Barba, and H.-K. Ahn 56:5

In other words, Lemma 3 states that for each site s of S, the set of apexed triangles with
definer s forms a connected component. In particular, the union of their bottom sides is a
connected chain along ∂P . Moreover, these apexed triangles are interior disjoint.

2.2 The refined farthest-point geodesic Voronoi diagram
We consider a refined version of FVD which we call the refined farthest-point geodesic Voronoi
diagram defined as follows: for each site s ∈ S, the Voronoi cell Cell(s) of FVD is subdivided
by the apexed triangles with definer s. That is, for each apexed triangle 4 with definer s, we
define a refined cell rCell(4) = int(4) ∩ Cell(s). Since any two apexed triangles 41 and 42
with the same definer are interior disjoint, we know that rCell(41) and rCell(42) are also
interior disjoint. We denote the set int(P) \ ∪4rCell(4) by rFVD. Then, rFVD forms a tree
consisting of arcs and vertices. Notice that each arc of rFVD is a connected subset of either
the bisector of two sites or a side of an apexed triangle. Since the number of the apexed
triangles is O(n), the complexity of rFVD is still linear.

I Lemma 4. For a point x in rCell(4) for an apexed triangle 4, the line segment connecting
x and y is contained in rCell(4), where y is the point on the bottom side of 4 hit by the ray
from a(4) towards x. Moreover, rCell(4) is connected.

3 Computing the farthest-point geodesic Voronoi diagram restricted
to the boundary of the polygon

We compute all apexed triangles satisfying the condition in Lemma 3 in O(n) time [2]. Recall
that the apexed triangles with the same definer are interior disjoint and have their bottom
sides on ∂P whose union forms a connected chain. Moreover, their union is a funnel by
Lemma 3. Thus, the apexed triangles with the same definer can be sorted along ∂P .

I Lemma 5. Let s be a site in S and let τs 6= ∅ be the set of all apexed triangles with
definer s. We can sort the apexed triangles in τs along ∂P with respect to their bottom sides
in O(|τs|) time.

3.1 Computing rFVD restricted to a transition edge
Let uv be a transition edge of P such that u is the clockwise neighbor of v. Without loss of
generality, we assume that uv is horizontal and u lies to the left of v. Recall that if there is
a site s with Cell(s)∩ uv 6= φ, then s lies in C[n(v),n(u)]. Thus, to compute rFVD∩ uv, it is
sufficient to consider the apexed triangles with definers in C[n(v),n(u)]. Let A be the set of
apexed triangles with definers in C[n(v),n(u)].

In this section, we give a procedure to compute rFVD∩uv in O(|A|) time using the sorted
lists of the apexed triangles with definers in C[n(v),n(u)]. Once it is done for all transition
edges, we have the refined farthest-point geodesic Voronoi diagram restricted to ∂P . Let
s1 = n(u), s2, . . . , s` = n(v) be the sites lying on C[n(v),n(u)] in counterclockwise order
along ∂P .

3.1.1 An upper envelope and rFVD
Consider any t functions f1, . . . , ft with fj : D → R ∪ {−∞} for 1 ≤ j ≤ t, where D is any
point set. We define the upper envelope of f1, . . . , ft as the function f : D → R ∪ {−∞}
such that f(x) = max1≤j≤t fj(x). Moreover, we say that a function fj appears on the upper
envelope if fj(x) = f(x) ∈ R at some point x.

SoCG 2016

56:6 FVD of Points on the Boundary of a Simple Polygon

In this subsection, we restrict the domain of the distance functions g4 to uv. By definition,
the upper envelope of g4 for all apexed triangles 4 ∈ A on uv coincides with rFVD ∩ uv
in its projection on uv. We consider the sites one by one in order and compute the upper
envelope of g4 for all apexed triangles 4 ∈ A on uv as follows.

While the upper envelope of g4 for all apexed triangles 4 ∈ A is continuous on uv, the
upper envelope of g4′ of all apexed triangles 4′ with definers from s1 up to sk on uv (we
simply say the upper envelope for sites from s1 to sk) might be discontinuous at some point
on uv for 1 ≤ k < `. Let w be the leftmost point where the upper envelope for sites from s1
to sk is discontinuous. Then we define U(sk) as the function such that U(sk)(x) is the value
of the upper envelope for sites from s1 to sk at x for a point x lying to the left of w, and
U(sk)(x) = −∞ for a point x lying to the right of w. By definition, U(n(v)) is the upper
envelope of the distance functions of all apexed triangles in A. Note that rCell(4) ∩ uv = φ

for some apexed triangle 4 ∈ A. Thus the distance function of an apexed triangle might
not appear on U(sk) on uv. Let τU (sk) be the list of the apexed triangles whose distance
functions appear on U(sk) sorted along uv from u with respect to their bottom sides. Note
that if d(4i) 6= d(4i+1), the bisector of d(4i) and d(4i+1) crosses the intersection of the
bottom sides of 4i and 4i+1 for two consecutive apexed triangles 4i and 4i+1 of τU (sk).

3.1.2 A procedure for computing U(s`)

Suppose that we have already computed U(sk−1) and τU (sk−1) for some index 2 ≤ k ≤ `.
We show how to compute U(sk) and τU (sk) from U(sk−1) and τU (sk−1) in the following.
We use two auxiliary lists U ′ and τ ′U which are initially set to U(sk−1) and τU (sk−1). We
update U ′ and τ ′U until they finally become U(sk) and τU (sk), respectively.

Let τk be the list of the apexed triangles with definer sk sorted along ∂P with respect to
their bottom sides. For any apexed triangle 4, we denote the list of the apexed triangles
in τk overlapping with 4 in their bottom sides by τO(4). Also, we denote the lists of the
apexed triangles in τk \ τO(4) lying left to 4 and lying right to 4 with respect to their
bottom sides by τL(4) and τR(4), respectively.

Let 4a denote the last element (the rightmost apexed triangle) of τ ′U . With respect
to 4a, we partition τk into three disjoint sublists τL(4a), τO(4a) and τR(4a). We can
compute these sublists in O(|τk|) time.

Case 1: Some apexed triangles in τk overlap with 4a. If τO(4a) 6= φ, let 4 be the
leftmost apexed triangle in τO(4a). We compare the distance functions g4 and g4a on
4a ∩4 ∩ uv. That is, we compare d(x, sk) and d(x,d(4a)) for x ∈ 4a ∩4 ∩ uv.

1. If there is a point on 4a ∩4∩ uv that is equidistant from sk and d(4a), g4 appears on
U(sk). Moreover, the distance functions of the apexed triangles in τR(4) also appear on
U(sk), and no apexed triangle in τL(4) appears on U(sk) by Lemma 2. Thus we append
4 and the apexed triangles in τR(4) at the end of τ ′U . We also update U ′ accordingly.
Then, τ ′U and U ′ are τU (sk) and U(sk), respectively.

2. If d(x,d(4a)) > d(x, sk) for all points x ∈ 4a ∩4∩uv, then 4 and its distance function
do not appear on τU (sk) and U(sk), respectively, by Lemma 2. Thus we do nothing and
scan the apexed triangles in τO(4a) ∪ τR(4a), except 4, from left to right until we find
an apexed triangle 4′ such that there is a point on 4a ∩4′ ∩ uv which is equidistant
from d(4a) and sk. Then we apply the procedure in (1) with 4′ instead of 4. If there
is no such apexed triangle, we have U(sk) = U ′ and τU (sk) = τ ′U .

E. Oh, L. Barba, and H.-K. Ahn 56:7

3. Otherwise, we have d(x, sk) > d(x,d(4a)) for all points x ∈ 4a ∩ 4 ∩ uv. Then the
distance function of 4a does not appear on U(sk). Thus, we remove 4a and its distance
function from τ ′U and U ′, respectively. We consider the apexed triangles in τL(4a)
from right to left. For an apexed triangle 4′ ∈ τL(4a), we do the following. Since
τ ′U is updated, we update 4a to the last element of τ ′U . Afterwards, we check whether
d(x, sk) ≥ d(x,d(4a)) for all points x ∈ 4a ∩ 4′ ∩ uv if 4′ overlaps with 4a. If so,
we remove 4a from τ ′U and update 4a. We do this until we find an apexed triangle
4′ ∈ τL(4a) such that this test fails. Then, there is a point on 4′ ∩4a ∩ uv which is
equidistant from d(4a) and sk. After we reach such an apexed triangle 4′, we apply the
procedure in (1) with 4′ instead of 4.

Case 2: No apexed triangle in τk overlaps with 4a. If τO(4a) = φ, we cannot compare
the distance function of any apexed triangle in τk with the distance function of 4a directly,
so we need a different method to handle this.

There are two possible subcases: either τL(4a) = φ or τR(4a) = φ. Note that these are
the only possible subcases since the union of the apexed triangles with the same definer is
connected. For the former subcase, the upper envelope of sites from s1 to sk is discontinuous
at the right endpoint of the bottom side of 4a. Thus g4 does not appear on U(sk) for any
apexed triangle 4 ∈ τk. Thus U(sk) = U ′ and τU (sk) = τ ′U .

For the latter subcase, at most one of sk and d(4a) has its Voronoi cell in FVD[Sk],
where Sk = {s1, . . . , sk}, by Lemma 2. We can find a site (sk or d(4a)) which does not have
its Voronoi cell in FVD[Sk] in O(1) time. Due to lack of space, we omit the description of
this procedure. It can be found in the full version of this paper.

If sk does not have its Voronoi cell in FVD[Sk], then U(sk) = U ′ and τU (sk) = τ ′U . If
d(4a) does not have its Voronoi cell in FVD[Sk], we remove all apexed triangles with definer
d(4a) from τ ′U and their distance functions from U ′. Since such apexed triangles lie at the
end of τ ′U consecutively, it takes the time proportional to the number of the apexed triangles.
Afterwards, we do this until the last element of τk and the last element of τ ′U overlap in their
bottom sides. When the two elements overlap, we apply the procedure of Case 1.

In total, the running time is bounded by O(|A|).

I Theorem 6. The farthest-point geodesic Voronoi diagram of the vertices of a simple n-gon
P restricted to the boundary of P can be computed in O(n) time.

4 Decomposing the polygon into smaller cells

Until now, we have computed rFVD ∩ ∂P of size O(n). We add the points in rFVD ∩ ∂P to
the vertex set of P , and apply the algorithm to compute the apexed triangles with respect
to the vertex set of P again [2]. Note that now there is no transition edge. Thus all apexed
triangles are disjoint in their bottom sides. We have the set of the apexed triangles sorted
along ∂P with respect to their bottom sides.

A subset A of P is geodesically convex if π(x, y) ⊆ A for any x, y ∈ A. We define a
t-path-cell for some t ∈ N as a simple polygon contained in P with all vertices on ∂P which
is geodesically convex and has at most t convex vertices.

In the following, for a cell C, |∂C| denotes the number of edges of C. For a curve γ,
|rFVD ∩ γ| denotes the number of the refined cells intersecting γ.

Sketch of the algorithm. We subdivide P into t-path-cells recursively for some t ∈ N
until each cell becomes a base cell. There are three types of base cells. The first type is

SoCG 2016

56:8 FVD of Points on the Boundary of a Simple Polygon

rCell(41)

γ

w3

w1

(a) (b) (c)

C1

C2

C3

γ
C1

C2
C3γ

w0

w2

C1C2

C3

rCell(41)

α

α

rCell(42)

rCell(42)

e
C6

C4

C5

Figure 1 (a) The region bounded by the black curve is a 16-path-cell. All convex vertices
are marked with black disks. The region is subdivided into six 5-path-cells by the red thick
curve consisting of π(w0, w1), π(w1, w2), π(w2, w3) and π(w3, w0). (b) The arc α of rFVD intersects
C1, C2, C3 and crosses C2. (c) The arc α of rFVD intersects C1, C2, C3 and crosses C2. Note that α
does not cross C3.

a quadrilateral crossed by exactly one arc of rFVD through two opposite sides, which we
call an arc-quadrilateral. The second type is a 3-path-cell. Note that a 3-path-cell is a
pseudo-triangle. The third type is a region of P whose boundary consists of one convex chain
and one concave chain, which we call a lune-cell. Note that a convex polygon is a lune-cell
whose concave chain is just a vertex of the polygon.

Let {tk} be the sequence such that t1 = n and tk = b
√
tk−1c + 1. Initially, P itself

is a t1-path-cell. Assume that the kth iteration is completed. We show how to subdivide
each tk-path-cell with tk > 3 into tk+1-path-cells and base cells in the (k + 1)th iteration in
Section 4.1. Note that a base cell is not subdivided further.

While subdividing the polygon into cells, we compute rFVD ∩ ∂C for each cell C (of
any kind) in time linear on |∂C| and |rFVD ∩ ∂C|. In Section 5, we show how to compute
rFVD ∩ T for each base cell T in O(|rFVD ∩ ∂T |) time once rFVD ∩ ∂T is computed.

Note that tk ≤ 3 with k = c log logn for some constant 1 < c. Moreover, in the kth
iteration, P is subdivided into tk-path-cells and base cells. Thus, in O(log logn) iterations,
every t-path-cell gets subdivided into base cells. We will show that each iteration takes O(n)
time in Section 4.1, which implies that the overall running time for the computation in this
section is O(n log logn). We will also show that the total complexity of rFVD restricted to
the boundaries of all cells in the kth iteration is O(kn) for any k ∈ N. See Lemma 10.

4.1 Subdividing a t-path-cell into smaller cells
If a tk-path-cell C is a pseudo-triangle or a lune-cell, C is a base cell and we do not subdivide
it further. Otherwise, we subdivide it using the algorithm in this section.

The subdivision consists of three phases. In Phase 1, we subdivide each tk-path-cell into
tk+1-path-cells by a curve connecting at most tk+1 vertices of the tk-path-cell. In Phase 2,
we subdivide each tk+1-path-cell further along an arc of rFVD crossing the cell if there is such
an arc. In Phase 3, we subdivide cells created in Phase 2 into tk+1-path-cells and lune-cells.

4.1.1 Phase 1. Subdivision by a curve connecting at most tk+1 vertices
Let C be a tk-path-cell computed in the kth iteration. Recall that C consists of at most tk
convex vertices and is simple. Let β be the largest integer satisfying that βb

√
tkc is less than

the number of the convex vertices of C. Then we have β ≤ b
√
tkc+ 1 = tk+1.

E. Oh, L. Barba, and H.-K. Ahn 56:9

We choose β + 1 vertices w0, w1, . . . , wβ from the convex vertices of C as follows. We
choose a convex vertex of C and denote it by w0. Then we choose the jb

√
tkcth convex vertex

of C from w0 in clockwise order and denote it by wj for all j = 1, . . . , β. We set wβ+1 = w0.
Then we construct the closed curve γC (or simply γ when C is clear from context) consisting
of the geodesic paths π(w0, w1), π(w1, w2), . . . , (wβ , w0). See Figure 1(a). In other words,
the closed curve γC is the boundary of the geodesic convex hull of w0, . . . , wβ . Note that γ
does not cross itself. Moreover, γ is contained in C since C is geodesically convex.

We compute γ in time linear to the number of edges of C as follows. The algorithm
computing geodesic paths in [11] takes k source-destination pairs as input, where both sources
and destinations are on the boundary of a simple polygon. It returns the geodesic path
between the source and the destination for each input pair. For all pairs, computing the
geodesic paths takes O(N + k) time in total if k shortest paths do not cross (but possibly
overlap) one another, where N is the complexity of the polygon. In our case, the pairs
(wj , wj+1) for j = 0, . . . , β are β + 1 input source-destination pairs. Since the geodesic paths
for all input pairs do not cross one another, γ can be computed in O(β + |∂C|) = O(|∂C|)
time. Then we compute rFVD∩ γ in O(|rFVD∩ ∂C|+ |∂C|) time using rFVD∩ ∂C which has
already been computed in the kth iteration. We will describe this procedure in Section 4.2.

The curve γ subdivides C into tk+1-path-cells. The set C \ γ consists of at least β + 2
connected components. Note that the closure of each connected component is a tk+1-path-cell.
Moreover, the union of the closures of all connected components is exactly the closure of C
since C is simple. These components define the subdivision of C induced by γ.

4.1.2 Phase 2. Subdivision along an arc of rFVD
After subdividing C into tk+1-path-cells C1, . . . , Cδ (δ ≥ β + 2) by the curve γC , an arc α of
rFVD may cross Cj for some 1 ≤ j ≤ δ. In Phase 2, for each arc α crossing Cj , we isolate
the subarc α ∩ Cj from Cj by creating a new cell which we call an arc-quadrilateral. For an
arc-quadrilateral � created by an arc α, we have rFVD ∩� = α ∩ Cj .

To bound the number of arc-quadrilaterals created in each iteration and the running time
for Phase 2, we need the following technical lemma.
I Lemma 7. For a geodesic convex polygon C with t convex vertices (t ∈ N), let γ be a
simple closed curve connecting at most t convex vertices of C such that every two consecutive
vertices in clockwise order are connected by a geodesic path. Then, for each arc α of rFVD
with α ∩ C 6= φ, α intersects at most three cells in the subdivision of C by γ.

Since C is geodesically convex, α intersects at most two edges of a cell C in Phase 1,
which can be proved in a way similar to the proof of Lemma 7. This implies that α ∩ Cj
consists of at most two connected components. We say an arc α of rFVD crosses a cell C ′ if
exactly two edges of C ′ intersect α. For example, in Figure 1(c), α crosses C2 while α does
not cross C3 because there is only one edge of C3 intersecting α.

First, we find an arc α of rFVD that crosses Cj . Since the points in rFVD ∩ ∂Cj along
∂Cj have already been computed, we can scan them in clockwise order. For all arcs, it can
be done in O(|rFVD ∩ Cj |) time by the following lemma.
I Lemma 8. All arcs α of rFVD crossing Cj can be found in O(|rFVD∩∂Cj |) time. Moreover,
for all such α, the pairs (41,42) of apexed triangles such that α ∩ Cj = {x ∈ Cj : g41(x) =
g42(x) > 0} can be found in the same time in total.

Recall that α ∩ Cj consists of at most two connected components. For the case that it
consists exactly two connected components, we consider each connected component separately.
Thus we show the case that α ∩ Cj is connected.

SoCG 2016

56:10 FVD of Points on the Boundary of a Simple Polygon

b1 b2

Cj

α

`1 `2

(a) (b)

P1

P2

P3

P4 C1

C2

a1
a2rCell(41) rCell(42)

a(41)a(42)

C ′

Figure 2 (a) The arc α of rFVD crosses Cj . Thus we isolate α by creating the arc-quadrilateral
bounded by `1, `2 and ∂Cj . (b) The vertices marked with empty disks are vertices of P while the
others are vertices of arc-quadrilaterals lying in int(P). We subdivide the cell into two t-path-cell
C1, C2 and four lune-cells P1, . . . , P4.

For an arc α crossing Cj , we subdivide Cj further into two cells with t′ convex vertices for
t′ ≤ tk+1 and one arc-quadrilateral by adding two line segments bounding α such that no arc
other than α intersects the arc-quadrilateral. Let (41,42) be the pair of apexed triangles
defining α. Let a1, b1 (and a2, b2) be the two connected components of rCell(41) ∩ ∂Cj (and
rCell(42) ∩ ∂Cj) incident to α such that a1, a2 are adjacent to each other and b1, b2 are
adjacent to each other. See Figure 2(a).

Without loss of generality, we assume that a1 is closer than b1 to a(41). Let x be any
point on a1. Then the farthest neighbor of x is the definer of 41. We consider the line `1
passing through x and the apex of 41. Then the intersection between Cj and `1 is contained
in the closure of rCell(41) by Lemma 4. Similarly, we find the line `2 passing through the
apex of 42 and a point on a2.

We subdivide Cj into two cells with at most tk+1 convex vertices and one arc-quadrilateral
by two lines `1 and `2. The quadrilateral bounded by the two lines and ∂Cj is an arc-
quadrilateral since α is the only arc of rFVD that intersects the quadrilateral. We do this
for all arcs crossing some Cj . Note that no arc crosses the resulting cells other than arc-
quadrilaterals by the construction. Then the resulting cells with at most tk+1 convex vertices
and arc-quadrilaterals are the cells in the subdivision of C in the second phase.

4.1.3 Phase 3. Subdivision by a geodesic convex hull

Note that some cell C ′ with t′ convex vertices for 3 < t′ ≤ tk+1 created in Phase 2 might
be neither a t′-path-cell nor a base cell. Such a cell has some vertices in int(P) and some
vertices of P as its vertices. In Phase 3, we subdivide such cells further into t′-path-cells and
base cells.

To subdivide C ′ into tk+1-path-cells and base cells, we first compute the geodesic convex
hull CH of the vertices of C ′ which are vertices of P in time linear to the number of edges in
C ′ using the algorithm for computing k-pair shortest paths in [11]. Consider the connected
components of C ′ \ ∂CH. There are two types of the connected components. A connected
component of the first type is enclosed by a simple closed curve which is part of ∂CH. For
example, C1 and C2 in Figure 2(b) belong to this type. A connected component of the second
type is enclosed by a subchain of ∂CH from u to w in clockwise order and a subchain of ∂C ′
from w to u in counterclockwise order for some u,w ∈ ∂P . For example, Pi in Figure 2(b)
belongs to the second type for i = 1, . . . , 4.

E. Oh, L. Barba, and H.-K. Ahn 56:11

By the construction, a connected component belonging to the first type has all its vertices
on ∂P . Moreover, it has at most t′ convex vertices since C ′ has t′ convex vertices. Therefore,
the closure of a connected component of C ′ \ ∂CH belonging to the first type is a t′-path-cell.

Every vertex of C ′ lying in int(P) is convex with respect to C ′ by the construction of C ′.
Thus, for a connected component P ′ belonging to the second type, the part of ∂P ′ from ∂C ′

is a convex chain with respect to P ′. Moreover, the part of ∂P ′ from ∂CH is the geodesic
path between two points, thus it is a concave chain with respect to P ′. Therefore, the closure
of a connected component belonging to the second type is a lune-cell.

Since C ′ is a simple polygon, the union of the closures of all connected components of
C ′ \CH is exactly the closure of C ′. The closures of all connected components of the first and
the second types are tk+1-path-cells and lune-cells created in the last phase of the (k + 1)th
iteration, respectively. We compute the tk+1-path-cells and the lune-cells subdivided by
∂CH. Then, we compute rFVD ∩ ∂CH using the procedure in Section 4.2. The resulting
tk+1-path-cells and base cells are the final decomposition of C of the (k + 1)th iteration.

4.1.4 Analysis of the complexity

We first bound the complexity of the refined farthest-point geodesic Voronoi diagram restricted
to the boundary of the cells in each iteration. The following technical lemma is used to
bound the complexity.

I Lemma 9. An arc α of rFVD intersects at most nine tk-path-cells and O(k) base cells at
the end of the kth iteration. Moreover, there are at most three tk-path-cells that α intersects
but does not cross at the end of the kth iteration.

Now we are ready to bound the complexities of the cells and rFVD restricted to the cells
in each iteration. Then we finally prove that the running time of the algorithm in this section
is O(n log logn).

I Lemma 10. At the end of the kth iteration, we have
∑
C:a tk-path-cell |rFVD ∩ ∂C| = O(n),∑

C:a tk-path-cell |∂C| = O(n),
∑
T :a base cell |rFVD ∩ ∂T | = O(kn), and

∑
T :a base cell |∂T | =

O(kn).

Proof. Let α be an arc of rFVD. The first and the third complexity bounds hold by Lemma 9
and the fact that the number of the arcs of rFVD is O(n).

The second complexity bound holds since the set of all edges of the tk-path-cells is a
subset of the chords in some triangulation of P . Note that any triangulation of P has O(n)
chords. Moreover, each chord is incident to at most two tk-path-cells.

For the last complexity bound, the number of edges of base cells whose endpoints are
vertices of P is O(n) since they are chords in some triangulation of P . Thus we count the
number of edges of base cells which are not incident to vertices of P . In Phase 1, we do not
create any such edge. In Phase 2, we create at most O(1) such edges whenever we create one
arc-quadrilateral. All edges created in Phase 3 have their endpoints from the vertex set of P .
Therefore, the total number of the edges of all base cells is asymptotically bounded by the
number of arc-quadrilaterals, which is O(kn). J

I Corollary 11. In O(log logn) iterations, P is subdivided into O(n log logn) base cells.

I Lemma 12. The subdivision in each iteration can be done in O(n) time.

SoCG 2016

56:12 FVD of Points on the Boundary of a Simple Polygon

4.2 Computing rFVD restricted to the boundary of a t-path-cell
Recall that the bottom sides of all apexed triangles are interior-disjoint. Moreover, the
union of them is ∂P . In this section, we describe a procedure to compute rFVD ∩ γ in
O(|rFVD ∩ ∂C|+ |∂C|) time once rFVD ∩ ∂C is computed. Recall that γ is a closed curve
connecting consecutive points of every tk+1th convex vertices of C in clockwise order.

If rCell(4) ∩ γ 6= φ for an apexed triangle 4, then we have rCell(4) ∩ ∂C 6= φ. Thus, we
consider only the apexed triangles 4 with rCell(4) ∩ ∂C 6= φ. Let L be the list of all such
apexed triangles sorted along ∂P with respect to their bottom sides.

Consider a line segment ab contained in P . Without loss of generality, we assume that
ab is horizontal and a lies to the left of b. Let 4a and 4b be the apexed triangles which
maximize g4a

(a) and g4b
(b), respectively. If there is a tie by more than one apexed triangles,

we choose an arbitrary one of them. With the two apexed triangles, we define two sorted
lists Lab and Lba. Let Lab be the sorted list of the apexed triangles in L which intersect
ab and whose bottom sides lie from the bottom side of 4a to the bottom side of 4b in
clockwise order along ∂P . Similarly, let Lba be the sorted list of the apexed triangles in L
which intersect ab and whose bottom sides lie from the bottom side of 4b to the bottom
side of 4a in clockwise order along ∂P .

The following lemma together with Section 4.2.1 gives a procedure to compute rFVD∩ ab.
The procedure is similar to the procedure for computing rFVD ∩ ∂P in Section 3.1.

I Lemma 13. Let C be a geodesic convex polygon and a, b be two points with ab ⊂ C. Given
the two sorted lists Lab and Lba, rFVD ∩ ab can be computed in O(|Lab|+ |Lba|) time.

Since an apexed triangle intersects at most two edges of γ, we can compute rFVD ∩ γ in
O(|L|) = O(|rFVD ∩ ∂C|) time once we have Lab and Lba for all edges ab of γ.

4.2.1 Computing Lab and Lba for all edges ab of γ
In this section, we show how to compute Lab and Lba for all edges ab of γ in O(|L|+ |∂C|)
time. Recall that all endpoints of the geodesic paths bounding the t-path-cell C lie in ∂P .
Let ab be an edge of γ, where b is the clockwise neighbor of a. The edge ab is a chord of P
and divides P into two subpolygons such that γ \ ab is contained in one of the subpolygons.
Let P1(ab) be the subpolygon containing γ \ ab and P2(ab) be the other subpolygon. For an
apexed triangle in Lab, its bottom side lies in ∂P2(ab) and its apex lies in ∂P1(ab). On the
other hand, for an apexed triangle in Lba, its bottom side lies in ∂P1(ab) and its apex lies in
∂P2(ab). Moreover, if its apex lies in Pj(ab), then so does its definer for j = 1, 2. By the
construction, P2(ab) and P2(e′) are disjoint in their interior for any edge e′ ∈ γ \ {ab}.

We compute Lab for all edges ab in γ as follows. Initially, Lab for all edges ab are set to
φ. We update the list by scanning the apexed triangles in L from the first to the end. When
we handle an apexed triangle 4 ∈ L, we first find the edge ab of γ such that P2(ab) contains
the bottom side of 4 and check whether 4∩ ab = φ. If it is nonempty, we append 4 to Lab.
Otherwise, we do nothing. Then we handle the apexed triangle next to 4. For Lba, we do
analogously, except that we find the edge ab of γ such that P2(ab) contains the definer of 4.

Note that any three apexed triangles 41,42,43 ∈ L appear on L in the order of their
definers (and their bottom sides) appearing on ∂P . Thus to find the edge ab of γ such that
P2(ab) contains the definer (or the bottom side) of 4, it is sufficient to check at most two
edges; the edge e′ such that P2(e′) contains the bottom side of the apexed triangle previous
to 4 in L and the clockwise neighbor of e′. Therefore, this procedure takes in O(|L|) time.

The following lemmas summarize this section.

E. Oh, L. Barba, and H.-K. Ahn 56:13

I Lemma 14. Let C be a t-path-cell and γ be a simple closed curve connecting at most t
convex vertices of C lying on ∂P such that two consecutive vertices in clockwise order are
connected by a geodesic path. Once rFVD ∩ ∂C is computed, rFVD ∩ γ can be computed in
O(|rFVD ∩ ∂C|+ |∂C|) time.

I Lemma 15. Each iteration takes O(n) time and the algorithm in this section terminates in
O(log logn) iterations. Thus the running time of the algorithm in this section is O(n log logn).

5 Computing rFVD in the interior of a base cell

In this section, we consider a base cell T which is a lune-cell or a pseudo-triangle. Assume
that rFVD ∩ ∂T has already been computed. We extend rFVD ∩ ∂T into the interior of the
cell T in O(|rFVD ∩ ∂T |) time.

To make the description easier, we first make two assumptions: (1) for any apexed triangle
4, rCell(4) ∩ ∂T is connected and contains the bottom side of 4, and (2) T is a lune-cell.
In the full version of this paper, we show how to avoid the assumptions by subdividing each
base cell and trimming each apexed triangle.

5.1 Definition for a new distance function
Without loss of generality, we assume that the bottom side of T is horizontal. We bound the
domain by introducing a box B containing T . To apply the algorithm for computing the
abstract Voronoi diagram in [5, 9], we need to define a new distance function f4 : B → R
since g4 is not continuous. Imagine that we partition B into five regions with respect to
an apexed triangle 4. We will define f4 as a function consisting of at most five algebraic
functions each of whose domains corresponds to a partitioned region in B.

Consider five line segments `1, `2, `3, `4 and `5 such that their common endpoint is a(4)
and the other endpoints lie on ∂B. The line segments `1 and `2 contain the left and the
right corners of 4, respectively. The line segments `3 and `5 are orthogonal to `2 and `1,
respectively. The line segment `4 is contained in the line bisecting the angle of 4 at a(4)
but it does not intersect int(4).

Then B is partitioned by these five line segments into five regions. We denote the
region bounded by `1 and `2 which contains 4 by Gin(4). Note that d(4) /∈ Gin(4) if
d(4) 6= a(4). The remaining four regions are denoted by GLside(4), GLtop(4), GRtop(4),
and GRside(4) in the clockwise order from Gin(4) along ∂B.

For a point x ∈ GLside(4)∪GLtop(4), let x̂4 be the orthogonal projection of x on the line
containing `1. Similarly, for a point x ∈ GRside(4)∪GRtop(4) \ `4, let x̂4 be the orthogonal
projection of x on the line containing `2. For a point x ∈ Gin(4), we set x̂4 = x.

We define a new distance function f4 : B → R for each apexed triangle 4 with
rCell(4) ∩ ∂T 6= φ as follows.

f4(x) =
{
d(a(4),d(4))− ‖x̂4 − a(4)‖ if x ∈ GLtop(4) ∪GRtop(4),
d(a(4),d(4)) + ‖x̂4 − a(4)‖ otherwise.

Note that f4 is continuous on B. Each contour curve, that is a set of points with the same
function value, consists of two line segments and at most one circular arc.

Here, we assume that there is no pair (41,42) of apexed triangles such that two sides,
one from 41 and the other from 42, are parallel. If there exists such a pair, the contour
curves for two apexed triangles may overlap. In the full version, we show how to avoid the
assumption by slightly perturbing the distance function.

SoCG 2016

56:14 FVD of Points on the Boundary of a Simple Polygon

5.2 An algorithm for computing rFVD ∩ T

To compute the farthest-point geodesic Voronoi diagram restricted to T , we apply the
algorithms in [5, 9] with this new distance function, which computes the abstract Voronoi
diagram in a domain where each site has a unique cell touching the boundary of the domain.
While the algorithms in [5, 9] compute the abstract nearest-point Voronoi diagram, they can
be used to compute the farthest-point Voronoi diagram. These algorithms are generalizations
of the linear-time algorithm in [1], which computes the farthest-point and the nearest-point
Voronoi diagram of points in convex position.

In the abstract Voronoi diagram, no explicit sites or distance functions are given. Instead,
for any pair of sites s and s′, the open domains D(s, s′) and D(s′, s) are given. Let A
be the set of all apexed triangles with rFVD ∩ ∂T . In our problem, we regard the apexed
triangles in A as the sites and B as the domain for the abstract Voronoi diagram. For
two apexed triangles 41 and 42 in A, we define the open domain D(41,42) as the set
{x ∈ B : f41(x) > f42(x)}. We denote the abstract Voronoi diagram for the apexed triangles
by aFVD and the cell of 4 on aFVD by aCell(4).

Here, we need to show that the distance function we define in Section 5.1 satisfies the
followings for any subset A′ of A. A proof can be found in the full version of this paper.
1. For any two apexed triangles 41 and 42 in A, the set {x ∈ B : f41(x) = f42(x)} is a

curve with endpoints on ∂B. The curve consists of O(1) pieces of algebraic curves.
2. Each apexed triangle 4 in A′ has exactly one connected and nonempty cell in the abstract

Voronoi diagram of A′.
3. Each point in B belongs to the closure of an abstract Voronoi cell.
4. The abstract Voronoi diagrams of A and A′ form a tree and a forest, respectively.

Thus, we can compute aFVD using the algorithms in [5, 9]. The abstract Voronoi diagram
restricted to T is exactly the refined farthest-point geodesic Voronoi diagram restricted to T .
Note that we already have the abstract Voronoi diagram restricted to ∂T which coincides
with the refined farthest-point geodesic Voronoi diagram restricted to ∂T . After computing
aFVD on B, we traverse aFVD and extract aFVD lying inside T .

I Lemma 16. Given a base cell T constructed by the subdivision algorithm in Section 4.1,
rFVD ∩ T can be computed in O(|rFVD ∩ ∂T |+ |∂T |) time.

I Theorem 17. The farthest-point geodesic Voronoi diagram of the vertices of a simple
n-gon can be computed in O(n log logn) time.

6 A set of sites on the boundary

In this section, we show that the results presented above are general enough to work when
the set S is an arbitrary set of sites contained in the boundary of P .

Since S is a subset of sites contained in ∂P , we can assume without loss of generality
that all sites of S are vertices of P by splitting the edges where they lie on. In this section,
we decompose the boundary of P into chains of consecutive vertices that share the same
S-farthest neighbor and edges of P whose endpoints have distinct S-farthest neighbors. The
following lemma is a counterpart of Lemma 1. Lemma 1 is the only place where it was
assumed that S is the set of vertices of P .

I Lemma 18. Given a set S of m sites contained in ∂P , we can compute the S-farthest
neighbor of each vertex of P in O(n+m) time.

E. Oh, L. Barba, and H.-K. Ahn 56:15

Proof. Let w : P → R be a real valued function on the vertices of P such that for each
vertex v of P , w(v) = DP if v ∈ S, and w(v) = 0 otherwise, where DP is any fixed constant
larger than the diameter of P .

For each vertex p ∈ P , we want to identify n(p). To this end, we define a new distance
function d∗ : P × P → R such that for any two points u and v of P , d∗(u, v) = d(u, v) +
w(u) + w(v). Using a result from Hershberger and Suri [8, Section 6.1 and 6.3], in O(n+m)
time we can compute the farthest neighbor of each vertex of P with respect to d∗.

By the definition of the function w, the maximum distance from any vertex of P is
achieved at a site of S. Therefore, the farthest neighbor from a vertex v of P with respect to
d∗ is indeed the S-farthest neighbor, n(v), of v. J

I Theorem 19. The farthest-point geodesic Voronoi diagram of m points on the boundary
of a simple n-gon can be computed in O((n+m) log logn) time.

References
1 Alok Aggarwal, Leonidas J Guibas, James Saxe, and Peter W Shor. A linear-time algorithm

for computing the Voronoi diagram of a convex polygon. Discrete & Computational Geo-
metry, 4(6):591–604, 1989.

2 Hee-Kap Ahn, Luis Barba, Prosenjit Bose, Jean-Lou De Carufel, Matias Korman, and Eu-
njin Oh. A linear-time algorithm for the geodesic center of a simple polygon. In Proceedings
of the 31st Symposium on Compututaional Geometry, SoCG, pages 209–223, 2015.

3 Boris Aronov, Steven Fortune, and Gordon Wilfong. The furthest-site geodesic Voronoi
diagram. Discrete & Computational Geometry, 9(3):217–255, 1993.

4 T. Asano and G.T. Toussaint. Computing the geodesic center of a simple polygon. Technical
Report SOCS-85.32, McGill University, 1985.

5 Cecilia Bohler, Rolf Klein, and Chih-Hung Liu. Forest-like abstract Voronoi diagrams in
linear time. In Proceedings of the 26th Canadian Conference on Computational Geometry,
CCCG, pages 133–141, 2014.

6 B Chazelle. A theorem on polygon cutting with applications. In Proceedings 23rd Annual
Symposium on Foundations of Computer Science, FOCS, pages 339–349, 1982.

7 Herbert Edelsbrunner and Ernst Peter Mücke. Simulation of simplicity: a technique to cope
with degenerate cases in geometric algorithms. ACM Transactions on Graphics, 9(1):66–
104, 1990.

8 John Hershberger and Subhash Suri. Matrix searching with the shortest-path metric. SIAM
Journal on Computing, 26(6):1612–1634, 1997.

9 Rolf Klein and Andrzej Lingas. Hamiltonian abstract Voronoi diagrams in linear time. In
Proceedings of the 5th International Symposium on Algorithms and Computation ISAAC,
pages 11–19, 1994.

10 J. S. B. Mitchell. Geometric shortest paths and network optimization. In Handbook of
Computational Geometry, pages 633–701. Elsevier, 2000.

11 Evanthia Papadopoulou. k-pairs non-crossing shortest paths in a simple polygon. Interna-
tional Journal of Computational Geometry and Applications, 9(6):533–552, 1999.

12 Richard Pollack, Micha Sharir, and Günter Rote. Computing the geodesic center of a
simple polygon. Discrete & Computational Geometry, 4(6):611–626, 1989.

13 Subhash Suri. Computing geodesic furthest neighbors in simple polygons. Journal of
Computer and System Sciences, 39(2):220–235, 1989.

SoCG 2016

	Introduction
	Outline

	Decomposing the boundary
	The apexed triangles
	The refined farthest-point geodesic Voronoi diagram

	Computing the farthest-point geodesic Voronoi diagram restricted to the boundary of the polygon
	Computing rFVD restricted to a transition edge
	An upper envelope and rFVD
	A procedure for computing U(sl)

	Decomposing the polygon into smaller cells
	Subdividing a t-path-cell into smaller cells
	Phase 1. Subdivision by a curve connecting at most t k+1 vertices
	Phase 2. Subdivision along an arc of rFVD
	Phase 3. Subdivision by a geodesic convex hull
	Analysis of the complexity

	Computing rFVD restricted to the boundary of a t-path-cell
	Computing Lab and Lba for all edges ab of gamma

	Computing rFVD in the interior of a base cell
	Definition for a new distance function
	An algorithm for computing rFVD cap T

	A set of sites on the boundary

