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—— Abstract

In this paper, we extend the weak %—net theorem to a kinetic setting where the underlying set of

points is moving polynomially with bounded description complexity. We establish that one can
s - d(dF1) . .

find a kinetic analog N of a weak %—net of cardinality O(r~ 2 log? r) whose points are moving

with coordinates that are rational functions with bounded description complexity. Moreover,

each member of N has one polynomial coordinate.
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1 Introduction and Preliminaries

This paper deals with weak %-nets for convex sets. It is a central notion in discrete geometry.
We initiate the study of kinetic weak %—nets, and extend the classical weak %-net theorem to
a kinetic setting. Our main motivation is the recent result of De Carufel et al. [4] on kinetic
hypergraphs.

Before presenting our results, we need a few definitions and well known facts: A pair
(X,S8), where S C P(X), is called a set system or a hypergraph. A subset A C X is called
shattered if S|4 = 24. The largest size of a shattered subset from X with respect to S is
called the VC-dimension of (X,S). The concept of VC-dimension has its roots in statistics.
It first appeared in the paper of Vapnik and Chervonenkis in [10]. Nowadays, this notion
plays a key role in learning theory and discrete geometry. Given a set system (X,S), we
say that Y C X is a strong +-net if for each S € S with |S| > |X|/r we have SNY # 0.
Based on the concept of VC-dimension, Haussler and Welzl provided a link to strong nets by
proving that any set system with VC-dimension d has a strong 1-net of size O(drlogr) [7].

The intersection of all convex sets contaning X C R%, denoted by conv(X), is called the
convex hull of X. The affine hull of a finite set X, denoted by aff(X), is the intersection of
all affine subspaces containing X. It is well known that aff(X) = {30 | az; : Y1 =
land z; € X}. A set of points X = {x1,...,2,} is said to be affinely independent if for each
1 <4< n we have z; € aff(X \ {x;}). We refer to the convex hull of an affinely independent
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set S as (|S| — 1)-dimensional simplex spanned by S. A simplex S is spanned by P if it arises
from some subset of P.

1.1 Weak %-nets

We now study the notion of weak %-net in a kinetic setting. Let us first recall the concept of
weak %—net in the static case.

» Definition 1 (Weak 2-net). Let P C R? be a finite set of points and r > 1. A set N C R¢
is said to be a weak %—net for P if every convex set containing > %|P| points of P also
contains a point of .

The following theorem is one of the major milestones in modern discrete geometry:

» Theorem 2 (Weak 1-net Theorem [1, 5, 8]). Let 7 > 1 and d > 1 an integer. Then there
exists a least integer f(r,d) such that for every finite set P C R? there is a weak %—net of

size at most f(r,d).

The existence of f(r,d) was first proved by Alon et al. [1] with the bounds f(r,2) = O(r?)

and f(r,d) = O(r(dﬂ)(l_%)) for d > 3, where syq tends to 0 exponentially fast. Later,
better bounds on f(r,d) for d > 3 were obtained by Chazelle at al. in [5], who showed
that f(r,d) = O(r?log® r), where by is roughly 2¢~1(d — 1)!. The current best known
upper bound for d > 3 due to Matousek and Wagner [8] is f(r,d) = O(r%1og®? r), where
c(d) = O(d?logd), and f(r,2) = O(r?) [1]. The best known lower bound was provided by
Bukh, Matousek, and Nivasch [3], who showed that f(r,d) = Q(rlog? ' r) for d > 2.

Recently, some interesting connections were found between strong and weak nets. In
particular, Mustafa and Ray [9] showed how one can construct weak L-nets from strong
1 nets. They obtained a bound of O(r® log?r) in R?, O(r°log® r) in R?, and O(rd2 logd2 T)
for d > 4 on the size of weak %—nets.

A kinetic framework: The problem of finding strong %—nets has been recently considered

in a kinetic setting by De Carufel et al. [4]. Their work and extensive research in the static
1

case motivates us to consider the problem of weak :-net in a kinetic setting.

Let us define this setting: The dimension d > 1 is assumed to be fixed. A mowving point is
a function from Ry to R4 U {()} for some d > 1. A point p moving in R? is simply a moving
point whose codomain is R% U {()} and such that p(t) € R? for some ¢ > 0. In this paper, we
are interested in the case where this function is polynomial or rational, i.e., each coordinate
is a polynomial or a rational function. If one of the coordinates is not defined for some ¢,
then the moving point is not defined at ¢. For simplicity, we often use the term point for a
moving point if there is no confusion. In what follows, the dimension d is assumed to be fixed.
For a set P of moving points and a "time" ¢ € R, we denote by P(t) the set {p(t)|p € P}.
We say that a set P of moving points in R? has bounded description complexity /3 if for each
point p(t) = (p1(¢),...,pa(t)), each p;(t) is a rational function with both numerator and
denominator having degree at most .

We say that the function h with domain R is a moving affine subspace if for some integer
k and any t > 0, h(¢) is an affine subspace of dimension k or the emptyset. In the case
h(t) is not always equal to the emptyset, we also say that such a h has dimension k. If the
dimension is 1 or d — 1 we refer to the corresponding moving affine subspaces as moving line
and moving hyperplane, respectively. For simplicity, we often write moving subspace instead
of moving affine subspace. We now introduce some notations to define affine subspaces.
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We say that h is given by &1 = p1,...,xx = pp if h = {z € R% : for 1 <i < k, z; = p;}.

Analogously, we say that a moving affine subspace h is given by x1 = p1,..., T = pg, where
each p; is a point moving in R, if A(t) is given by 1 = p1(t),...,zr = px(t). Similarly to
moving points, if a moving subspace h is given by x1 = p1,..., T = px, where each p; is a
point moving in R, and p;(t) is not defined for some ¢t > 0, then h(t) is not defined.
Finally, for a set P = {p1,...,p,} of points moving in R? and a vector space V C R%, we
say that P’ = {p},...,pl} is a projection of P onto V if pl(t) = projy (pi(t)) for all t > 0.

» Definition 3 (Kinetic Weak 1-net). Given a set P of n points moving in R?, we say that a
set of moving points N is a kinetic weak %—net for P if for any t € Ry and any convex set C

with C' N P(¢t) > n/r we have C' N N(¢) # 0.

We sometimes abuse the notation and write net or weak net instead of kinetic weak net.

In order to establish our result regarding kinetic weak nets, we need the following natural
general position assumption on the set P of moving points: We assume that for any ¢ > 0
the affine hull of any d-tuple of points in P(t) is a hyperplane, but no d + 2 points of P(t)
are contained in a hyperplane. The latter can easily be relaxed to no ¢(d) > d + 2 points in
a hyperplane.

Under these assumptions, we prove the following theorem that could be viewed as a
generalization of Theorem 2:

» Theorem 4 (Kinetic Weak %-net Theorem). For every pair of integers d > 1, 8 and every
r > 1, there exist a least integer c(r,d, 5) and g(d, B) such that for every finite set P of points
moving in R% with description complexity 3 there is a kinetic weak %-net of cardinality at
most ¢(r,d, 8) and description complezxity g(d, 8). Moreover, for fized d and 8 and r > 2, we
have c(r,d, B) = O(r% log?r).

Furthermore, in the case where the points of P move polynomially, the moving points of
the kinetic weak %—net have one polynomial coordinate. This is an important advantage of
our construction as many naturally defined moving points, obtained by intersecting moving
affine spaces, have no polynomial coordinates.

2 Weak ;-net in a Kinetic Setting

2.1 Points moving in R

In a kinetic setting, one needs to capture the combinatorial changes occurring with time.

The concept of kinetic hypergraph defined below was introduced in [4] by De Carufel et al.

» Definition 5 (Kinetic Hypergraph). Let P be a set of points moving in R? with bounded
description complexity and let R be a set of ranges. We denote by (P,S) the kinetic
hypergraph of P with respect to R. Namely, S € S if and only if there exists an R € R and
a "time" ¢ € Ry such that S(t) = RN P(t). We sometimes abuse the notation, and denote
by (P,R) the kinetic hypergraph (P,S).

Figure 1 illustrates the concept of a kinetic hypergraph for d = 1 and R being the family
of intervals. De Carufel et al. [4] also established the following important lemma to investigate
strong %—nets in a kinetic setting.

» Lemma 6 (De Carufel et al. [4]). Let R be a collection of semi-algebraic sets in R?, each
of which can be expressed as a Boolean combination of a constant number of polynomial
equations and inequalities of mazimum degree c, where ¢ is some constant. Let P be a family
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¢ @ @ > <@ @
pi(t) = —4—4t p2(t) = =2+ 3t p3(t) = —t pa(t) =244t

Figure 1 A family P = {pi1,p2,p3,pa} of points moving linearly along the the real line.
One can easily see that the kinetic hypergraph of P with respect to intervals is (P,2P \

{{p1,p2,pa}, {1, p3, pa}, {P1,pa}}).

of points moving polynomially in R® with bounded description complexity. Then the kinetic
hypergraph of P with respect to R has bounded VC-dimension.

Unfortunately, this is not enough for our purposes, since we need to assume that the
moving points can be described with coordinates which are rational functions. However, by
following a similar scheme it is not hard to prove the lemma below:

» Lemma 7. Let P be a finite set of points moving in R with bounded description complezity,
and let K = (P,S) be the kinetic hypergraph of P with respect to intervals. Then the
VC-dimension of K is O(1).

We start by defining the concept of primal shatter function.

» Definition 8. Let P be a finite set. For a set system X = (P,S) the primal shatter
function wx : {1,...,|P|} — N is defined by

= A : .
mx(m) PO {ANS:SeS}
First, we establish a link between the primal shatter function and the VC-dimension of a
set system. The lemma below is folklore:

» Lemma 9. Let P be a finite set, and X = (P,S) be a set system such that Tx(m) < cm”
(for k > 2 say), where c is some constant. Furthermore, let d be the VC-dimension of X.
Then d = O(klogk).

Proof. If d = 0, then there is nothing to show. Otherwise, mx(d) is defined, and we easily
see that ¢ > 2 since mx (1) = 2. Hence, by the definition of the primal shatter function and
the lower bound on ¢, the following inequalities are satisfied 2¢ < c¢d* < (cd)*. This implies
that d < kloged. Obviously, there is a ¢/ > 0 (depending only on ¢) such that

/g1 d
< <k.
cd? < loged — k
Hence,
d < klog —k? = klog — + 2klogk = O(klogk). <
c c

By some pretty elementary arguments one can establish the lemma below.

» Lemma 10. Let P be a set of n > 1 points moving in R with bounded description
complexity 5. Then the number of hyperedges in the kinetic hypergraph K = (P,S) with
respect to intervals is at most cgn* for some cg > 0.

It is easy to see that the bound on the number of hyperedges above is also valid for
induced hypergraphs having at least one vertex. Consider an induced hypergraph (X, S|x) of
(P,S), and let A =SNX be a hyperdge of (X,S|x) arising from some S € S. By definition,
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there is an interval [a,b] and a t > 0 such that P(¢) N [a,b] = S(t). We now show that
[a,b] N X (¢) = A(t). Clearly, A(t) C [a,b] otherwise for some a € A we have a(t) € S(t)
implying a € S, hence A(t) C [a,b] N X (t). Let us prove that [a,b] N X (¢) C A(t). Take an
x(t) € X(t) N [a,b], then clearly x € S implying x € SN X = A, so z(t) € A(t).

This proves that the induced hypergraph (X, S|x) is contained in the kinetic hypergraph
of X with respect to intervals, hence the bound of Lemma 10 holds for induced hypergraphs
that have at least one vertex.

Proof of Lemma 7. The lemma is an immediate corollary of Lemma 9 combined wirh
Lemma 10 and the reasoning above. |

Together with the well known strong %—net theorem mentioned in Section 1, Lemma 7
implies:

» Lemma 11. Let P be a finite set of points moving in R with bounded description complexity.
Then the kinetic hypergraph of P with respect to intervals has a strong %—net (for r > 2 say)
of size O(rlogr).

For technical reasons, we need the two lemmas above without any general position assumption.

Hence, for any ¢t > 0 more than two moving points from P can coincide at t. Later on, we
shall use Lemma 11 in order to find weak %—nets in a kinetic setting.

2.2 Points moving in R4

The proof of Theorem 12 below is inspired by a construction from Chazelle et al. [6].

The arguments we use are also valid when the set P consists of points with bounded
description complexity. However, as explained in the first section, when the motion is
polynomial the construction we present has an important feature: One coordinate is a
polynomial. In particular, when d = 2 the construction below gives a kinetic weak %—net N
of size only O(r*log?r) and the first coordinate of each point in N is a polynomial. Note
that in the static setting, the best known upper bound on the function f(r,2), defined in
Section 1, is O(r?), so our bound is only an O(rlog® ) factor of it.

We recall the general position assumption made in Section 1: Given a set of moving
points P in R?, for any ¢ > 0 the affine hull of any d-tuple of points in P(t) is a hyperplane,
and no d + 2 points of P(t) are contained in a hyperplane.

» Theorem 12 (Weak %—net in a Kinetic Setting). Let P be a set of n points moving

polynomially in R? with bounded descripi%z’on) complexity 8. Then there exists a kinetic
d(d+1

weak +-net (for r > 2 say) N of size O(r~ 2 log? ) and bounded description complexity.

Moreover, the first coordinate of each point of N is a polynomial.

Proof. The case d = 1 is implied by Lemma 11, so we can assume that d > 2. The method
below works for n > cr, where c is a sufficiently large constant whose existence is proved
later. If n < cr, then the theorem holds trivially, since one defines the kinetic weak %—net to
be P.

We start by defining N and other structures we need throughout the proof. Later, we
show that N is indeed a kinetic weak %-net for P. The claims regarding the size and the
description complexity of N will follow easily from its definition. First, we need to introduce
the concept of moving subspace of step j for 1 < j < d. It will be some specific moving
subspace of dimension d — j. Moreover, a moving subspace of step 7 4+ 1 arises from some
moving subspace of step 4, hence these structures will be defined iteratively. In what follows,
we use parameters \i,...,Ag with 0 < \; < 1, whose values are specified later.

59:5

SoCG 2016



59:6

Weak 1/r-Nets for Moving Points

Call the projection of P onto xj-axis P;. Note that P; has description complexity (.
Choose a strong %—net N for the kinetic hypergraph of P; with respect to intervals. Lemma
11 guarantees that one can select Ny with |Ny| < byrr/Aj logr /A1, where by depends on 3.
For each point p of Ny, we consider the moving hyperplane such that at any ¢ > 0 it is
orthogonal to z1-axis and passes through p(¢). The moving affine subspaces of step 1 are
exactly these moving hyperplanes arising from Nj.

The construction of moving subspaces of step at least 2 is more involved. Assume that we
have constructed the moving affine subspaces up to step j satisfying 1 < j < d — 1. For each
moving subspace h of step j, we define F}, to be the set consisting of moving points p™* for
all (j + 1)-tuples X of P. The position of p™X at t > 0 is given by p™X (¢t) = aff(X (t)) N h(t)
if this intersection contains a single point. A moving point p¥ is not necessarily uniquely
defined, but this not a problem for our purposes. One can define it with description complexity
f(7+ 1) for some increasing function f : {1,...,d} — N such that f(1) = 8. The technical
proof of this fact is provided later in Lemma 17.

Next, for each moving subspace h of step j call the projection of F} onto z;41-axis P.
Note that P}, also has description complexity f(j + 1). Choose a strong i‘jﬂ -net Ny, for the
kinetic hypergraph of P}, with respect to intervals. Again, Lemma 11 ensures that one can
select Nj, with |Np,| < bj1r7 T /X j11logr? T /X1, where bj 41 depends on f(j + 1).

If N}, consists of ¢, ..., qs, then the moving affine subspaces of step j 4+ 1 induced by h
are i~11- given by x1 = xp1,..., T; = Thj, Tj41 = q; for 1 <i < s, where xj, 1 is the moving
point giving the k-th coordinate of h. The set of moving subspaces of step j + 1 is the union
of moving subspaces induced by h among all moving subspaces h of step j.

We define the kinetic weak %—net N to be the union of the moving subspaces of step d.
This makes sense, since the moving subspaces of step d have each coordinate specified by
some function, so those are moving points. The size of N is at most

2 7‘2 ’I“d d

r r r d(d+1)
by— log —by—log — ...bg—log — = O(r— 2 log?r).
1/\1 g>\1 2>\2 g>\2 d/\d g/\d ( g’r)
Moreover, for each v = (v1,...,vq) of N, the moving point v; has description complexity

f(@). Since f is an increasing function, the moving point v has description complexity f(d).

We start by briefly outlining main ideas of the proof for d > 3. The case d = 2 is much
easier, and does not require the inductive step presented below.

Let t > 0 and let C be a convex set containing > n/r points of P(t). We start by showing
that if one chooses an appropriate value for A1, then for some moving subspace h of step 1
the set h(t) intersects "a lot" of segments spanned by C' N P(t).

Next, the inductive step comes. We assume that \; were defined up to some 1 < j < d—2,
and some moving subspace h of step j (of dimension d — j) is such that h(t) intersects a
"large" number of j-simplices spanned by C'N P(t). We start finding a static affine subspace
s contained in h(t) of dimension d — j — 1 such that s intersects a "large" number of (j + 1)-
simplices spanned by C'N P(t). These (j 4+ 1)-simplices are obtained from the j-simplices
intersecting h(t). Then we show that with an appropriate choice of Aj;1, there are two
moving subspaces hi, hg of step j + 1 induced by h such that hq(t) and ha(t) are "close" to
s, and therefore at least one of them also intersects a "large" number of (j + 1)-simplices
spanned by C'N P(t), which completes the inductive step.

This way, we establish that one can define \; for 1 < i < d — 1, so that for some moving
line I of step d — 1 "a lot" of (d — 1)-simplices spanned by C' N P(t) are intersected by 1(¢).
In particular, from the definition of Fj the segment C NI(¢) is such that for "many" moving
points p € F; the point p(t) belongs to it. Hence, the projection of C' Ni(¢) (call it I) onto
x4-axis leads to a "heavy" hyperedge in the kinetic hypergraph of P, with respect to intervals
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(because P, is the projection of F;). For an appropriate choice of A4, there is a point ¢ of the
net N; such that ¢(¢) must be in I. Finally, by construction of N the moving point whose
first d — 1 coordinates are given by [ and the last one by ¢ is in N, so ¢(t) is in C and we are
done.

We now proceed with a detailed proof. Let us show that the set N we defined is indeed a
kinetic weak %-net for P for an appropriate choice of \;.

Let t > 0 and let C be any convex set containing at least n/r points from P(t). It is
sufficient to assume that C contains exactly n/r points of P(¢) (we choose any n/r points of
C N P(t), and disregard the remaining ones). We will define the parameters \; so that C
must contain a point of N(¢). It is important to notice that these parameters do not depend
on C or t.

For technical reasons, for 1 < j < d — 1 we also prove the existence of ;n/T!/rit1
j-simplices spanned by C'N P(t) and intersecting h(t) for some moving subspace h of step j
exactly once in their relative interior, where v; > 0 are iteratively defined later. Clearly, this
implies for each simplex above that the affine hull of the j + 1 points of P(t) spanning it
intersects h(t) exactly once as well. In particular, if h(t) intersects y;ni+1/ri+1 j-simplices
spanned by C' N P(t) once in their relative interior, then for at least v;n/™!/ri*1 points
p € Fy, we have p(t) € CNA(t). This implication is crucial for our purposes, and will be used
in order to prove that N is a kinetic net once the parameters \; are specified.

We prove the existence of v; and define A; for 1 < j < d — 1 by induction. Then, we
define Ag and show that the values A; imply that N is a kinetic weak %-net.

» Lemma 13. If \; = 1/4 and n > 4r(2d + 2), then there exists a moving hyperplane h of
step 1 such that h(t) intersects at least n?/16r* segments spanned by C' N P(t) once and in
their relative interior.

Proof. Among moving subspaces h of step 1 with the property that > n/4r points of C'N P(t)
have a strictly smaller z;-coordinate than the intersection of h(t) with zi-axis, choose a
moving space with the smallest intersection point with z;-axis at ¢t and denote it by h. The
moving subspace h exists, since the above defined set of moving subspaces is easily seen to
be nonempty. Indeed, let z be the largest real such that at most n/4r points of C' N P(t)
have their z1-coordinate in | — 0o, z[. Then, since from the general position assumption at
most d 4+ 1 points of C'N P(t) can share the same x;-coordinate, we deduce that there are at
least n/r —n/4r —d — 1 > n/4r points of C'N P(t) whose x;-coordinate is in ]z, co[. Since
Ny is a strong ﬁ—net for the kinetic hypergraph of P; with respect to intervals, there should
be a point w € Ny such that w(t) €]z, oo[ implying the existence of a moving subspace of
step 1 whose intersection with z;-axis at ¢ is w(t). Hence, the above set of moving subspaces
is indeed nonempty, so h exists.

Let = denote the intersection point of h(t) with zq-axis. We now show that we also have
at least n/4r points of C' N P(t) having a strictly bigger x1-coordinate than x. Indeed, using
one more time the hypothesis that no d + 2 points are contained in a hyperplane, we deduce
that the number of points of C'N P(t) having their x;-coordinate smaller or equal to z is at
most 2n/4r + 2(d + 1) < 3n/4r. To see this, let h(t) be a predecessor of h(t), i.e., a moving
hyperplane of step 1 at ¢t whose intersection point with x1-axis is the biggest one among those
having an intersection point with zi-axis strictly smaller than h(t). The existence of such
a hyperplane is again implied by the the definition of N;. Indeed, we have > n/4r points
p € Py such that p(t) €] — oo, z[, so there is a point w € N; such that w(t) €] — oo, z[. Thus,
there is a moving hyperplane of step 1 with its z-coordinate equal to w(t), which implies the
existence of A(t). Similarly, by our choice of A(t), it is easily seen that at most n/4r points
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Figure 2 The elements from P(t) and elements of N(t) are black and red dots, respectively. The
red lines are moving affine subspaces of step 1 at ¢. The line h(t) splits C' N P(t) into two parts of
cardinality > n/4r. At least one point from the net NV induced by h must be in C at ¢.

of C'N P(t) are strictly between h(t) and h(t). In summary, by the choice of h, at most n/4r
points of C'N P(t) have their z1-coordinate strictly smaller than the intersection of h(t) with
x1-axis, at most n/4r are strictly between h(t) and h(t), and at most d + 1 points lie on each

of h(t), h(t).

Hence, both open halfspaces delimited by h(t) contain > n/4r points of C'N P(t). This
means that at least n?/16r2 segments spanned by C' N P(t) intersect h(t) once and in their
relative interior, so the lemma follows. <

The lemma above implies that if we define \; = 1/4, then we can set v, = 1/16. If
d = 2, then set Ay = 1/8. Indeed, let h be the moving subspace guaranteed by Lemma 13.
By definition of Fj, there exist at least n?/16r? > (%) /8r% = |F},|/8r% points p of F}, such
that p(t) € C N h(t). Since Py is the projection of F}, onto xs-axis, there exist > |Py|/8r?
points p’ of Py, such that p/(t) belongs to the projection of the segment C'N h(t) onto xo-axis.
Hence, since Ny, is a strong ﬁ—net for the kinetic hypergraph of P, with respect to intervals,
the projection of C'N h(t) onto xe-axis must contain a point v(t) of Ny (t). By definition of
N, the moving point ¢ = (,1,v) is in N, so C N N(¢t) # 0 and the case d = 2 follows, see
Figure 2 for an illustration. Hence, one can assume that d > 3.

In higher dimensions the analysis requires more effort. We need the following lemma
implicitly established by Chazelle et al. in [6]. For the sake of completeness, the technical
proof is postponed to the end of this section.

» Lemma 14 (Chazelle et al. [6]). Let d > 3 and P C R? be a set of n/r points such that any
d points of P are affinely independent. Assume that we have an affine subspace h given by

T =ai,...,x; =a; with1<j<d—2, and a set S of at least a;n? ™' /riTL (j + 1)-tuples
of P with aj > 0 such that the corresponding simplices intersect h exactly once. Then
given n > 4(j + 1)r/a;, there is an ajr1 > 0 and an affine subspace 1 = as,...,x; =

aj,Tj+1 = ajy1 intersecting at least ajp1n? T2 /riT2 (j41)-simplices spanned by (j+2)-tuples
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from P. Moreover, each such (j + 2)-tuple has the form {p1,...,pjx1} U{p1,...pj,q1} for
{p1,..pjsa}, {p1,- - -pj @} € S Finally, aji1 € [{p1,...pj+1}{p1, ... pj,q1}], where by
abuse of notation {p1,...pj41} is the projection of the intersection point of the corresponding
J-simplex with h onto x;,1-awis.

Assume that we have defined \;, y; for i < j, where 1 < j < d— 2. Let h be a moving
subspace of step j such that at least v;n/T!/ri*1 j-simplices spanned by C N P(t) intersect
h(t) once in their relative interior. Let us assume that n > 4(j + 1)r/v;. In what follows, we
use the same notation as in the statement of Lemma 14. By this lemma (used with «; = 7,
the affine subspace h(t), and the set of points C N P(t)), we get a point a,1; contained in at
least aj 111/ T2 /riT2 intervals [{p1(t),...pj+1 (&)}, {p1(t),...pj(t),q1(t)}] as in the statement
of Lemma 14. This is true, because we distinguish two intervals that do not arise from the
same pair of (j + 1)-tuples. We sometimes refer to the projection {p1(¢),...,pj+1(t)} as a
vertex.

Set J = {zj, ;,,(t) h i~s a moving subspace induced by h}. We recall that zj, ; () is
the j + 1-th coordinate of h(t). Let y1 be the biggest a € J smaller or equal to aj4+1 (if no
such a exists, take —o0). Similarly, let yo be the smallest a € J bigger or equal to a;41(if no
such a exists, take c0). The following lemma shows that by an appropriate choice of Aj41,
not many intervals as above can lie strictly between y; and ys.

» Lemma 15. If \j11 = 2a;41/3(j + 1), then at most aj1n+2/3r72 intervals as above
are contained in yi,y2[ on xji1-axis.

Proof. By contradiction, assume that > a;1n/"2/3r7*2 intervals are contained in Jyi, yo|.

In what follows, we distinguish two vertices arising from different (j 4+ 1)-tuples. Counted

with multiplicities, there are at least 2cv;1n7 12 /3ri+2 vertices {p1(t),...,pj+1(t)} in Jy1,ya].

Each vertex {pi(t),...,pj+1(¢)} is counted at most (j + 1)n/r times, since there are at
most j + 1 choices of {p;, (t),...,pi;(t)} C{p1(t),...,pj+1(t)} and at most n/r choices for
q(t) so that [{pi(t),...,pj+1(t)}, {ps (t),...,pi;(t),q(t)}] is an interval as above. Hence,
there are at least > 2a;11n/ ™1 /3(j + 1)r7T! distinet vertices in Jy1,y2[, a contradiction
with the value of Aj11. To see this, we recall that each vertex {p1(t),...,p;+1(¢)} is the
projection of p/{P1Pi+1}(t) onto xj41-axis for plAptpitil € By Since the number of
vertices {p1(t),...,pj+1(t)} in Jy1,y2[ is at least > 2a; 11/ T1/3(j + 1)rI+L, the number of
plipipisil € By such that the projection of pf{PrPiti}(¢) onto x4 1-axis is in Jy;, ya| is
obviously also > 2a;1n/ ™! /3(j + 1)r7 ™!, Hence, by definition of P, the number of p € P,
such that p(t) €]yi,yo[ is at least

20t Njpnd Tt )‘jJrl(jil) _ Aj| Bl

3(j 4+ )ritl i+l ritl VNS

Thus, since Ny, is a strong %—net for the kinetic hypergraph of P, with respect to intervals,
there should be a point w € Ny, such that w(t) is in ]y, y2[. This means that there is a
moving affine subspace induced by h whose x;1-coordinate at t w(t) is strictly between y;
and yo, which contradicts the definition of y; or ys. <

Let us set Aj4+1 = 2a;41/3(j + 1). By the pigeonhole principle and the lemma above, y;
or y2 belongs to at least aj1n/T2/3r7 2 intervals as above (say w.l.o.g. v1). Let us denote
by h1 a moving subspace induced by h such that the ,11-coordinate of k() is y;. Thus, at
least aj11n/T2/3r72 (j + 1)-simplices spanned by C' N P(t) intersect h1(t). One needs to
be careful, since some of these simplices may intersect hq(t) more than once or not in their
relative interior. However, assuming that n > ¢, /37, where ¢, /3 is as in Lemma 16, one
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can apply this lemma to conclude that at least aj+1nj+2 /6172 of them intersect hq(t) only
once and in their relative interior. Hence, setting vj41 = a;11/6 completes the induction.
Note that we still need to define \y. Let us set Ay = 74_1. It remains us to see that
the resulting N is a kinetic weak %—net for P. From the definition of v4_1 = Ay, we know
that some affine subspace h(t) where h is a moving space of step d — 1, i.e., a moving line
of step d — 1, must intersect at least Agn?/r? > \q(5)/r? = Xg|Fp|/r? (d — 1)-simplices
spanned by C' N P(t) once in their relative interior. By definition of Fj,, this implies that
there exist > \g|F},|/r? points p of F}, such that p(t) belongs to the segment C' N A(t). Since
Py, is the projection of F}, onto wg-axis, there exist > A\g|Py,|/r? points p’ of P, such that
P’ (t) belongs to the projection of the segment C N h(t) onto x4-axis. Hence, since Ny, is a
strong %—net for the kinetic hypergraph of P, with respect to intervals, the projection of
C N h(t) onto x4-axis must contain a point v(t) of Np(t). By definition of N, the moving
point ¢ = (xp1,...,Thd—1,v) is in N and obviously belongs to C. Thus, N is a kinetic weak
1

+-net for P, and the theorem follows. |

We now establish the remaining technical lemmas.

» Lemma 16. Let 1 < j < d—1 and P C R? be a set of n/r points such that no d+2 of them
lie in a hyperplane. Assume that we have a set S of an?*1/ri+l (j + 1)-tuples from P such
that the convex hull of each of them intersects a given affine subspace V' of dimension d — j.
Then there exists co such that if n > car, then there are at least an/™1/2ri+L (j + 1)-tuples
from S such that their convexr hulls intersect V' exactly once and in their relative interior.

Proof. We can assume that o > 0, otherwise there is nothing to show. Assume that the
convex hulls of at least an*1/2r9+1 (j + 1)-tuples from S intersect the affine subspace
V more than once or on their relative boundary. We will show that for n > c,r, where
Cq 1s large enough, we obtain a contradiction. When the convex hull of a (j + 1)-tuple A
intersects V' more than once, one can take two intersection points z; and zs with the affine
subspace V and follow the line passing through x1, z2 until the relative boundary of conv(A)
is intersected. Hence, since the line through z1,z5 is in V, in both cases the relative boundary
of conv(A) must be intersected. Clearly, this means that there is a subset of j points from A
whose convex hull intersects V. Each such j-tuple can be counted at most n/r times. Hence,
there are at least an’/2r7 distinct j-tuples arising from elements of S as above.

We define S; to be the set of j-tuples above, i.e., those whose convex hulls intersect V.
Set v; = «/2. If j > 2, then in order to obtain a contradiction we consider the following
iterative procedure. Assume that S; was defined for some 2 < i < j and contains at least
y;n?/rt i-tuples whose convex hulls intersect V. We say that S; is good if it has a subset
of at least v;n’/2r® i-tuples, denoted by G;, such that the convex hull of no (i — 1)-tuples
which are (i — 1)-subsets of the i-tuples from G; intersects the affine space V. Otherwise,
we say that the set S; is bad, and define S;_1 to be the set of (i — 1)-tuples whose convex
hulls intersect V and each of them is contained in some i-tuple from S;. Clearly, the size
of S;_1 is at least y;n*~1/2ri=1 since an (i — 1)-tuple can appear in at most n/r i-tuples
of S;. Finally, we set v;_1 = ~;/2. For some i the procedure must stop with a good S;.
Indeed, if we had to compute Sy, then this means that we have a set of points from P of
cardinality at least y1m/r such that each point belongs to V. This means that for n large
enough (n > (d+ 2)r/y1), we get a set of at least d + 2 points contained in V. That is, an
affine subspace of dimension at most d — 1, a contradiction.

Hence, we can assume that S; is good for some ¢ > 2. Let G; be as above. Define a graph
G whose vertices are the different (i — 1)-tuples each contained in some i-tuple from G;. For
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each i-tuple from G; choose two different (i — 1) subsets and connect them by an edge. The
number of edges is at least y;n’/2r?, since an edge determines the i-tuple it arises from.
Clearly, there is a vertex of degree at least ~;n’/2r? (WT) > ~;n/2r. Take one such

i—1
(i — 1)-tuple {p1,...,pi—1}. This means that the affine space given by aff(V,p1,...,p;—1) of
dimension at most d — 1 contains at least i — 1 + v;n/2r points, i.e., p1,...,p;—1 and the

points of the union of all neighbours of {p1,...,p;—1} in G. Indeed, let p be the intersection
point of conv({p1,...,p;} with V, where p; belongs to some neighbour of {py,...,p;—1} in

G. We show that aff({p1,...,pi—1,p})=aff({p1,...,pi—1,p:}). If p; is in aff({p1,...,pi-1}),
then the equality is clear. If not, then aff({pi,...,pi—1,p}) has dimension strictly bigger

than aff({p1,...,p;—1}) while being contained in aff({p1,...,pi—1,pi}), so the equality holds.

Hence, for n large enough (n > (d+ 1)2r/v;) we get a contradiction, since strictly more than
d+ 2 points are in the affine subspace aff({V,p1,...,p;—1}) whose dimension is at most d — 1,
in particular, the points are contained in a hyperplane. <

» Lemma 17. Let P be a set of points moving polynomially in R with bounded description
complexity 8. Let {p1,...,pj+1} be a (j+1)-tuple from P and h some moving affine subspace
of step j, as defined in the proof of Theorem 12. Then one can define a moving point p such
that for each t > 0 when the intersection of aff({p1(¢),...,pj+1(t)}) and h(t) is a single point,
it is equal to p(t). Moreover, p has description complexity f(j+ 1), where f:{1,...,d} - N
is some increasing function with f(1) = B.

Proof. The case where for each ¢ > 0 the intersection of aff({pi(t),...,pj+1(t)}) and h(t) is
empty or contains more than one point is trivial, since one can define p to be static.

Hence, one can assume that for some ¢ > 0 the intersection above contains a single point.

We prove the lemma by induction on the step. Observe that the function defining the first
coordinate of a moving subspace of step ¢ is obtained by projection of some point from P,
hence has description complexity 8 = f(1).

Asssume that the lemma holds for moving points arising from moving subspaces of step at
most j—1, where 0 < j—1 < d—2. Let p1,...,p;j4+1 be any (j+1)-tuple of points from P and
h any moving subspace of step j and given by x1 = x4.1,...,%; = T5;. Then it follows from
the definition of z, ; (see Theorem 12), the induction hypothesis, and the observation above
that x, ; has description complexity f(7). Assume h(t) and aff({p1(¢),...,p;+1(t)}) intersect
in a unique point p(t). Then we can write p(t) = a1 (£)p1(t) + ... + j+1(t)pj+1(¢) and from
the general position assumption the points p1(t),...,p,;+1(¢) are affinely independent, so
a point of aff({p1(¢),...pj+1(¢)}) is uniquely determined by an affine combination of the
points p;(t). An immediate consequence from the unicity of «;(¢) is the following matricial

equivalence:
@l @\ ) wa(t)
[m@b [Pj+1.(t)]j : B xh,;‘(t)
1 1 aj—i—l(t) 1
<

al.(t) i@l - O\ wna()

@l o Pl £5(0)

aj+1(t) 1 1 1
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It follows from the Cramer’s rule that the moving point «;, whose position at any ¢ > 0
is a;(t) given by the equation above, has description complexity depending only on j and
f(7). Hence, the moving point p whose position at ¢ is oy (¢)p1(t) + ... + aj41(t)pj41(t) also
has description complexity depending only on j and f(j) that we denote by f(j+ 1) (w.lLo.g.
f(G+1)> f(j)). This completes the proof. <

Proof of Lemma 14. Define the hypergraph on P whose hyperedges are the different (j +1)-
tuples of S. Iteratively remove a j-tuple A from ("]/T) and remove the (j + 1)-tuples
containing it from § if the number of the remaining elements from S containing A is at
most a;nd Tt /2pit (n]/r) Call 8’ the remaining set of (j + 1)-tuples. This procedure cannot
remove more than a;n’ ! /2r7+! hyperedges, so the resulting hypergraph is not empty and
each j-tuple contained in some element from &’ is contained in

a;jnitt ajn  a'n

> _ "
oriti(*r) T 2r

elements from &', where we set o/ = «;/2.

We now project the intersections of simplices corresponding to (j + 1)-tuples from S’
with h onto the z;;-axis. For the sake of simplicity, the projection of the intersection
point induced by the tuple {pi,...,pj41} will still be denoted by {pi,...,pj+1}. Two

projections {p1,...,p;+1} and {q1,...,¢j+1} give an interval of type 1 if there is a sequence
{p1,--,pj+1}s {p1,--spio @}, -5 {a1, - - ., gj41}, where each member of the sequence is an
element of S’ and the points p1,...,p;jt1,41,...,¢;+1 are all distinct.

The following procedure gives a lower bound on the number of such intervals (we distin-
guish two intervals arising from different pairs of (j 4+ 1)-tuples): Choose any {p1,...,pj+1}
in §’. Take any ¢; such that {p1,...,pj,q1} is in &’ with ¢; different from p;y;1. Then take
any ¢o such that g is different from p;, pj+1 and {p1,...,pj—1,¢1,¢2} is in S’ etc. The lower
bound below follows

[ (@'n/r —j = 1) |8 (a'n/2r)
2(j + 1)! = 20+ 1)

given o'n/2r > j + 1. Indeed, starting from {pi,...,pj+1} an interval [{p1,...,pj11},
{q1,...,qj4+1}] is counted at most once for each permutation of ¢i,...,¢gj4+1. Thus from the
one dimensional selection lemma, see [2], we know that there exists a point a;;1 contained
in at least

S Pl(n /2y /2 + DI _ 1 [(@/n/2ry P o

4|57 T4 RGN T e

intervals, where we set o/ = o/2/12/227+6[(j 4 1)!]2.

Clearly, if a point is contained in an interval [{p1,...,pj41}, {¢1,...,¢j+1}], it must also
be contained in some interval [{p1,...ps;q1,-- - Gj—s+1},{P1,---Ps—1, 41, ... ¢j—s+2}]. This
latter kind of intervals is refered to as type 2. Moreover, an interval of type 2 can be counted
at most (j + 1)(jn/r)? times. Indeed, there are at most j + 1 possible positions for such
an interval in a chain as above (used to define type 1 intervals), at most j possibilities
of choosing a point that is replaced in a (j + 1)-tuple while a subchain is extended, and
at most n/r candidates to replace such a point. Hence, a;i1 is contained in at least
a'n2+2 [r2+2 (5 4 1) (jn/r)) = o/"n/ T2 /ri*2 intervals of type 2, where o/’ = o' /(j + 1)j7.

Each interval of type 2 containing the point a;41 corresponds to a (j+ 1)-simplex spanned
by P intersecting the affine subspace given by 1 = a1,...,2;41 = a;j4+1. Finally, it is easy
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to see that a spanned (j 4 1)-simplex arises from at most (j + 2)(j + 1) intervals of type 2.
Hence, there exist at least o”’n/*2/(j +2)(j + 1)r72 (j + 1)-simplices arising from intervals
of type 2 pierced by a;4+1, and the lemma follows. <

3 Open problems

This paper naturally leads to some questions. Can we restrict ourselves to points moving
polynomially in order to find a kinetic net? More precisely:

» Problem 1. Let d > 2,3 be integers and r > 1. Is there a pair c¢(d, B,r), g(d, B) such that
for any finite set P of points moving polynomially with bounded description complexity B in
R? there exists a kinetic weak %-net for P of cardinality at most c(d, 5,r) and description
complexity g(d, ) whose points move polynomially?

Let d > 1, 8 be fixed integers and ¢(d, 8,7) be as in theorem 4. We didn’t prove any lower
bound on ¢(d, 3,7), so the current best lower bounds coincide with those in the static case
which are Q(rlog?' ), see [3]. This leads to the following research direction.

» Problem 2. Close the gap between the lower and upper bounds on c(d, B,r).
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