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Abstract
We study the geometry of sliding window embeddings of audio features that summarize percep-
tual information about audio, including its pitch and timbre. These embeddings can be viewed
as point clouds in high dimensions, and we add structure to the point clouds using a cover tree
with adaptive thresholds based on multi-scale local principal component analysis to automatic-
ally assign points to clusters. We connect neighboring clusters in a scaffolding graph, and we
use knowledge of stratified space structure to refine our estimates of dimension in each cluster,
demonstrating in our music applications that choruses and verses have higher dimensional struc-
ture, while transitions between them are lower dimensional. We showcase our technique with
an interactive web-based application powered by Javascript and WebGL which plays music syn-
chronized with a principal component analysis embedding of the point cloud down to 3D. We
also render the clusters and the scaffolding on top of this projection to visualize the transitions
between different sections of the music.
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1 Music Features

We are interested in automatically finding structure in musical audio data by first converting
it to a point cloud and then invoking geometric tools we have developed for building structure
on top of point clouds sampled from stratified spaces. Musical audio data is typically sampled
around 44100 hz, so its raw form is often unwieldy, though it is possible to summarize some
of the most important perceptual information at a much lower data rate which is more
amenable to structural analysis. A variety of lossy audio features have been hand-designed
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Figure 1 Audio features on top of a 23 second excerpt of “Let It Be” by The Beatles. The top
figure shows the log Short-Time Fourier Transform, the middle figure shows chroma features, and the
bottom figure shows MFCC features. These features were computed with the help of the “librosa”
library in Python (https://github.com/bmcfee/librosa). [5]
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Figure 2 Features are extracted in short time 30ms windows of audio called analysis windows,
and the features in blocks of these windows are summarized in texture windows.

on top of the Short-Time Fourier Transform (SFTF) to pull out perceptual information
about small chunks of audio in non-overlapping 30 millisecond “analysis windows,” and a
sequence of these features may then be used in place of the original audio. Two important
complementary sets of such features are the Mel-Frequency Cepstral Coefficients (MFCC)
[4] and chroma features [1]. MFCC retains coarse information about the entire smoothed
spectrum of each time frequency window, while chroma summarizes pitch in 12 equivalence
classes of frequencies across all octaves in a time frequency window, one feature for each
halfstep in the Western scale. (Note that other spacings are also possible.) There are a
number of other features in addition to chroma and MFCC that can be used to summarize
information from the STFT. For an overview of these “timbral features,” see [6].

If each feature is viewed as a dimension, then the features in each time frequency window
can be thought of as a point in some Euclidean space. But since all of these features are
computed over very short time windows, it is possible that many windows will be similar
even in very different sections of the song. This problem is readily addressed by using much
larger overlapping blocks of analysis windows called “texture windows” to capture more time
evolution of sound in each audio chunk, as in [6]; see Figure 2. We simply take the mean
and standard deviation of each feature over all of the analysis windows in a texture block.
In particular, we take 5 timbral features, 12 MFCC coefficients, and 12 chroma features in
each analysis window, for a total of 29 features, which we then summarize over 7 second

https://github.com/bmcfee/librosa
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blocks with their mean and standard deviation (233 30ms analysis windows for each 7 second
texture window). We also add one “low energy” feature [6] for a total of 59 features so that
the points live in R59. Finally, since we are fusing a collection of heterogeneous features, we
normalize each dimension so that its standard deviation is 1 over the data cloud.

2 Geometric Models

Now that we have a scheme for turning audio into a point cloud, we turn to techniques we
have developed for inferring stratified space structure from sampled points. More details can
be found in [2], but we briefly summarize our techniques here. We first build a cover tree [3]
on our point cloud X, which is a multi-scale way of organizing the point cloud. Each node
in the tree is associated with a particular “center,” which is a point in X. Each level l of the
tree has an associated subset Xl of X and a radius Rl = R0/2l so that the union of the balls
of radius 2Rl centered at points in Xl cover all of the points in X. This condition makes it
so that the subset of points at each level l goes from coarse to fine (and eventually includes
all points in X). To ensure that the tree is balanced and that the collection of points of X

at each level are evenly distributed, it is also the case that two centers at a particular level
are each at least 2Rl apart from each other.

For a more parsimonious representation of our data, we choose a subtree of the cover
tree so that the leaf nodes summarize geometrically homogeneous regions. In order to
automatically choose which nodes to keep, we perform a version of principal component
analysis (PCA) on the set of points within a certain radius of each center point at each level,
and we do this at many radii. This process is known as multi-scale local PCA (MLPCA).
Using a criterion based on the “eigenmetric” introduced in [2], for each node, we decide
to either continue moving down the tree constructing subtrees, or to stop subdividing if
the associated points have sufficiently similar eigenvalue profiles at multiple scales. The
result of this adaptive process is a set of nodes at varying levels whose member points are
geometrically similar to one another.

Our next step is to build a scaffolding graph on the resulting nodes, so that an edge is
drawn between two nodes if the Euclidean distance between them is below some distance
threshold. The distance threshold can be chosen automatically or manually in various ways;
see [2]. Then, we use a local dimension estimation process based on MLPCA to estimate
the intrinsic dimension locally near each one of the clusters. Namely, for each cluster, we
perform PCA on the set of all points in that cluster together with all points in neighboring
clusters connected to it in the scaffolding graph. Then, we compute the square roots of the
eigenvalues we obtain from PCA, and use the largest gap between successive eigenvalues as
an indication of what to choose as an initial dimension guess for that cluster. This initial
guess may not be accurate, so we use knowledge from stratified space theory to inform and
refine our local dimension estimate. A description of this refinement process may be found in
[2]. Although this is the technique we chose to use in [2] and the one we used to create the
examples in our Javascript demo, we point out that our framework for building the geometric
models is flexible enough so that one can instead employ any local dimension estimation
method of one’s choice.

3 Javascript Demo

We created a GUI in Javascript/WebGL that enables interactive exploration of the geo-
metric models we built, which can be run live at http://www.ctralie.com/Research/
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Figure 3 A screenshot from our Javascript GUI depicting our 3D visualization of the embedding
of Michael Jackson’s “Bad.” The large green point indicates the visualization is at the beginning of
the song, and this point moves through the model as the song plays.

GeometricModels. We show a projection of the 59 dimensional point cloud onto the sub-
space determined by the first three principal components. Although information is lost in the
projection (e.g., in the examples we made available, about 60% of the variance is explained
by the first three principal components), we can still render the geometric model that we
computed in high dimensions, as well as the dimension estimates of each cluster. The GUI
plays music synchronized with the geometric model, highlighting the point that has its first
analysis window at the current time as it goes along, which causes it to trace out a trajectory
through the geometric model over time.

Figure 3 shows a screenshot of our GUI on Michael Jackson’s “Bad,” with labels superim-
posed to mark different sections of the song. White line segments show edges in the scaffolding
graph, i.e., connections between different clusters found in the cover tree. Each cluster is
colored by its dimension estimate; specifically, green is dimension 1, blue is dimension 2,
red is dimension 3, cyan is dimension 4, and tan is dimension 6. We notice in this example
that the verses, interlude, and the chorus demonstrate areas of higher dimensionality, and
transitions between them are clearly visible as 1 dimensional paths. Additionaly, a bridge, or
a deviation from the main pattern of the song, constitutes its own cluster.
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