
Recognizing Weakly Simple Polygons∗

Hugo A. Akitaya1, Greg Aloupis1, Jeff Erickson2, and
Csaba D. Tóth3

1 Department of Computer Science, Tufts University, Medford, MA, USA
2 Department of Computer Science, University of Illinois, Urbana-Champaign,

IL, USA
3 Department of Mathematics, California State University Northridge, Los

Angeles, CA, USA

Abstract
We present an O(n logn)-time algorithm that determines whether a given planar n-gon is weakly
simple. This improves upon an O(n2 logn)-time algorithm by Chang, Erickson, and Xu [4].
Weakly simple polygons are required as input for several geometric algorithms. As such, how to
recognize simple or weakly simple polygons is a fundamental question.

1998 ACM Subject Classification I.3.5 Computational Geometry and Object Modeling

Keywords and phrases weakly simple polygon, crossing

Digital Object Identifier 10.4230/LIPIcs.SoCG.2016.8

1 Introduction

A polygon is simple if it has distinct vertices and interior-disjoint edges that do not pass
through vertices. Geometric algorithms are often designed for simple polygons, but many
also work for degenerate polygons that do not “self-cross.” A polygon with at least three
vertices is weakly simple if for every ε > 0, the vertices can be perturbed by at most ε to
obtain a simple polygon. Such polygons arise naturally in numerous applications, e.g., for
modeling planar networks or as the geodesic hull of points within a simple polygon (Fig. 1).

Several definitions have been proposed for weakly simple polygons, each formalizing the
intuition that a weakly simple polygon does not cross itself. Some of these definitions were
unnecessarily restrictive or incorrect; see [4] for a detailed discussion. Ribó Mor [7] proved
that a weakly simple polygon with at least three vertices can be perturbed into a simple
polygon continuously while preserving the lengths of its edges, and maintaining that no
two edges properly cross. Chang et al. [4] gave an equivalent definition for simple polygons
in terms of the Fréchet distance (see Section 2), in which a polygon is perturbed into a
simple closed curve. The latter definition is particularly useful for recognizing weakly simple
polygons. Apart from perturbing vertices, it allows transforming edges into polylines (by
subdividing the edges with Steiner points which may be perturbed). The perturbation of a
vertex incurs only local changes, and need not affect the neighborhood of adjacent vertices.

It is easy to decide whether an n-gon is simple in O(n logn) time by a sweepline al-
gorithm [8]. Chazelle’s triangulation algorithm recognizes simple polygons in O(n) time,
because it only produces a triangulation if the input is simple [5]. Recognizing weakly simple
polygons is more subtle. Cortese et al. [6] achieved this in O(n3)-time. Chang et al. [4]
improved this to O(n2 logn) in general; and to O(n logn) for several special cases. They

∗ This work was partially supported by the NSF grants CCF-1408763, CCF-1422311, and CCF-1423615.

© Hugo A. Akitaya, Greg Aloupis, Jeff Erickson, and Csaba D. Tóth;
licensed under Creative Commons License CC-BY

32nd International Symposium on Computational Geometry (SoCG 2016).
Editors: Sándor Fekete and Anna Lubiw; Article No. 8; pp. 8:1–8:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SoCG.2016.8
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

8:2 Recognizing Weakly Simple Polygons

(a) (b) (c)

Figure 1 (a) A simple polygon P . (b) Eight points in the interior of P (solid dots); their geodesic
hull is a weakly simple polygon P ′ with 14 vertices. (c) A perturbation of P ′ into a simple polygon.

identified two features that are difficult to handle: A spur is a vertex whose incident edges
overlap, and a fork is a vertex that lies in the interior of an edge (a vertex may be both a fork
and a spur). For polygons with no forks or no spurs, Chang et al. [4] gave an O(n logn)-time
algorithm. In the presence of both forks and spurs, their solution is to eliminate forks by
subdividing all edges that contain vertices in their interiors, potentially creating a quadratic
number of vertices. We show how to manage this situation efficiently, while building on ideas
from [4, 6] and from Arkin et al. [2], and obtain the following main result.

I Theorem 1. Deciding whether a given n-gon is weakly simple takes O(n logn) time.

Our algorithm is detailed in Sections 3–5. It consists of three phases, simplifying the
input polygon by a sequence of reduction steps. First, the preprocessing phase applies
known methods such as crimp reductions and node expansions (Section 3). Second, the bar
simplification phase successively eliminates all forks (Section 4). Third, the spur elimination
phase eliminates all spurs (Section 5). We can also perturb any weakly simple polygon into
a simple polygon, in O(n logn) time, by reversing the sequence of operations.

2 Preliminaries

Here, we review definitions from [4] and [6]. We adopt terminology from [4].

Polygons and weak simplicity. An arc in R2 is a continuous function γ : [0, 1] → R2.
A closed curve is a continuous function γ : S1 → R2. A closed curve γ is simple (also
known as a Jordan curve) if it is injective. A (simple) polygon is the image of a piecewise
linear (simple) closed curve. Thus a polygon P can be represented by a cyclic sequence
of points (p0, . . . , pn−1), called vertices, where the image of γ consists of line segments
p0p1, . . . , pn−2pn−1, and pn−1p0 in this cyclic order. Similarly, a polygonal chain (alternatively,
path) is the image of a piecewise linear arc, and can be represented by a sequence of points
[p0, . . . , pn−1]. A polygon P = (p0, . . . , pn−1) is weakly simple if n = 2, or if n > 2 and for
every ε > 0 there is a simple polygon (p′0, . . . , p′n−1) such that |pip

′
i| < ε for all i = 0, . . . , n−1.

This definition is difficult to work with because a small perturbation of a vertex modifies the
neighborhoods of the two adjacent vertices. Chang et al. [4] gave an equivalent definition in
terms of the Fréchet distance: A polygon given by γ : S1 → R2 is weakly simple if for every
ε > 0 there is a simple closed curve γ′ : S1 → R2 such that distF (γ, γ′) < ε, where distF

denotes the Fréchet distance between two closed curves. The curve γ′ can approximate an
edge of the polygon by a polyline, and any perturbation of a vertex can be restricted to a
small neighborhood. With this definition, recognizing weakly simple polygons becomes a
combinatorial problem independent of ε, as explained below.

H.A. Akitaya, G. Aloupis, J. Erickson, and C.D. Tóth 8:3

(a) (c)(b)

Figure 2 (a) The bar decomposition for a weakly simple polygon P with 16 vertices (P is perturbed
into a simple polygon for clarity). (b) Image graph of P . (c) A combinatorial representation of P .

Bar decomposition and image graph. Two edges of a polygon P cross if their interiors
intersect at precisely one point. The edges of a weakly simple polygon cannot cross. In the
following, we assume that such crossings have been ruled out. Two edges of P overlap if their
intersection is a nondegenerate line segment. The transitive closure of the overlap relation is
an equivalence relation on the edges of P ; see Fig. 2(a) where equivalence classes are shaded.
The union of all edges in an equivalence class is called a bar. All bars of a polygon can be
computed in O(n logn) time [4]. The bars are line segments that are pairwise noncrossing
and nonoverlapping, and the number of bars is O(n).

The vertices and bars of P define a planar straight-line graph G, called the image graph
of P . We call the vertices and edges of G nodes and segments to distinguish them from the
vertices and edges of P . Every node that is not in the interior of a bar is called sober. The
set of nodes in G is {p0, . . . , pn−1} (note that P may have repeated vertices that correspond
to the same node); two nodes are connected by an edge in G if they are consecutive nodes
along a bar; see Fig. 2(b). Hence G has O(n) vertices and edges, and it can be computed in
O(n logn) time [4]. Note, however, that up to O(n) edges of P may pass through a node of
G, and there may be O(n2) edge-node pairs such that an edge of P passes through a node of
G. An O(n logn)-time algorithm cannot afford to compute these pairs explicitly.

Operations. We use certain elementary operations that modify a polygon and ultimately
eliminate forks and spurs. An operation that produces a weakly simple polygon iff it is
performed on a weakly simple polygon is called ws-equivalent. We shall use some known ws-
equivalent operations, and introduce several new ws-equivalent operations in Sections 3.3–5.

Combinatorial characterization of weak simplicity. To show that an operation is ws-
equivalent, it suffices to show the existence of ε-perturbations. We will use perfect matchings
to combinatorially represent ε-perturbations (independent of ε or any specific embedding).
This representation is a variation of the “strip system” introduced in [4].

Let P be a polygon and G its image graph. We construct a family of simple polygons as
follows. Let ε = ε(P) ∈ (0, 1), to be specified shortly. For every node u of G, draw a disk Du

of radius ε centered at u. Choose ε sufficiently small so that the disks are pairwise disjoint,
and no disk intersects a nonincident segment of G. Let the corridor Nuv of segment uv be
the set of points at distance at most ε2 from uv, outside of the disks Du and Dv, that is,
Nuv = {p ∈ R2 : dist(p, uv) ≤ ε2, p 6∈ Du ∪Dv}. Reduce ε further, so that all corridors are
pairwise disjoint, and also disjoint from any disk Dw, w 6∈ {u, v}. For every segment uv of G,
let the volume vol(uv) be the number of edges of P between u and v. For every segment uv,
draw vol(uv) parallel line segments between ∂Du and ∂Dv within Nuv. Finally, for every
disk Du, construct a plane straight-line perfect matching between the segment endpoints

SoCG 2016

8:4 Recognizing Weakly Simple Polygons

Figure 3 Two perturbations of a weakly simple polygon on 6 vertices (all of them spurs) that
alternate between two distinct points in the plane.

a bc dd a dd
⇒

a bc dd a dd
⇒

Figure 4 A crimp reduction replaces [a, b, c, d] with [a, d]. Top: image graph. Bottom: polygon.

on the boundary ∂Du (see Fig. 2(c) where the matchings are drawn with circular arcs for
clarity). The line segments in the corridors and the perfect matchings in the disks produce a
plane 2-regular graph Q. Denote by Φ(P) the family of all plane graphs constructed in this
way such that Q is connected and visits the disks in the same cyclic order as P . By Theorem
B.2 in [4], P is weakly simple iff Φ(P) 6= ∅. Every Q ∈ Φ(P) defines (and is defined by) a
linear order on overlapping edges of P .

Note that the above combinatorial representation, which will be used in our proofs, may
have Θ(n2) size, since each edge passing through a node u contributes one edge to a matching
in Du. We use this simple combinatorial representation in our proofs of correctness, but our
algorithm will not maintain it explicitly.

In the absence of spurs, a weakly simple polygon P defines a unique crossing-free perfect
matching in each disk Du [4] which defines a 2-regular graph Q. Consequently, to decide
whether P is weakly simple it is enough to check whether Q ∈ Φ(P). This is no longer the
case in the presence of spurs. In fact, it is not difficult to construct weakly simple n-gons
that admit 2Θ(n) combinatorially different perturbations into simple polygons; see Fig. 3.

3 Preprocessing

By a standard line sweep [8], we detect any edge crossing. We then simplify the polygon,
using some known steps from [2, 4], and some new. All of this takes O(n logn) time.

3.1 Crimp reduction
Arkin et al. [2] gave an O(n)-time algorithm for recognizing weakly simple n-gons where all
edges are collinear. They define the ws-equivalent crimp-reduction operation (see the full
paper [1] for details). A crimp is a chain of three consecutive edges [a, b, c, d] such that both
the first edge [a, b] and the last edge [c, d] contain the middle edge [b, c] (the containment
need not be strict). The crimp-reduction replaces the crimp with edge [a, d]; see Fig. 4.

Given a chain of two edges [a, b, c] such that [a, b] and [b, c] are collinear but do not
overlap, the merge operation replaces [a, b, c] with a single edge [a, c]. The merge operation
(as well as its inverse, subdivision) is ws-equivalent by the definition of weak simplicity in
terms of Fréchet distance [4]. If we greedily apply crimp-reductions and merge operations
(cf. Section 2), in linear time we obtain a polygon with the following two properties:
(A1) Every two consecutive collinear edges overlap (i.e., form a spur).
(A2) No three consecutive collinear edges form a crimp.

H.A. Akitaya, G. Aloupis, J. Erickson, and C.D. Tóth 8:5

Du

⇒ ⇒

Figure 5 Node expansion. (Left) Changes in the image graph. (Right) Changes in P (the vertices
are perturbed for clarity); new nodes are shown as squares.

Db

Figure 6 The old-bar-expansion converts a non-weakly simple polygon to a weakly simple one.

I Lemma 2. Let C = [ei, . . . , ek] be a chain of collinear edges in a polygon with properties
(A1) and (A2). Then the sequence of edge lengths (|ei|, . . . , |ek|) is unimodal (all local maxima
are consecutive); and no two consecutive edges have the same length, except possibly the
maximal edge length that can occur at most twice.

Proof. For any j such that i < j < k, consider |ej |. If |ej−1| and |ej+1| are at least as large,
then the three edges form a crimp, by (A1). However, this contradicts (A2). This proves
unimodality, and that no three consecutive edges can have the same length. In fact if |ej | is
not maximal, one neighbor must be strictly smaller, to avoid the same contradiction. J

3.2 Node expansion
Compute the bar decomposition of P and its image graph G (defined in Section 2, see Fig. 2).
For every sober node of the image graph, we perform the ws-equivalent node-expansion
operation, described by Chang et al. [4][Section 3] (Cortese et al. [6] call this a cluster
expansion). Let u be a sober node of the image graph and Du be the disk centered at u
with radius sufficiently small so that Du intersects only the segments incident to u. For each
segment ux incident to u, create a new node ux at the intersection point ux ∩ ∂Du. Then
modify P by replacing each subpath [x, u, y] passing through u by [x, ux, uy, y]; see Fig. 5. If
a node expansion produces an edge crossing, report that P is not weakly simple.

3.3 Bar expansion
Chang et al. [4][Section 4] define a bar expansion operation, referred in this paper as old-bar-
expansion. For a bar b of the image graph, draw a long and narrow ellipse Db around the
interior nodes of b, and replace each maximal path that intersects with Db by a straight-line
edge. If b contains no spurs, old-bar-expansion is known to be ws-equivalent [4]. Otherwise, it
can produce false positives, hence it is not ws-equivalent; see Fig. 6 for an example.

New bar expansion operation. Let b be a bar in the image graph with at least one interior
node; see Fig. 7. Let Db be an ellipse whose major axis is in b such that Db contains all
interior nodes of b (all nodes in b except its endpoints), but does not contain any other
node of the image graph and does not intersect any segment that is not incident to some
node inside Db. Similar to old-bar-expansion, the operation new-bar-expansion introduces
subdivision vertices on ∂Db, but all interior vertices of b remain at their original positions.

SoCG 2016

8:6 Recognizing Weakly Simple Polygons

Db Db

⇒

Figure 7 The changes in the image graph caused by new-bar-expansion.

Du
⇒

v

⇒
C(v)

@Db ⇒
u

⇒
u

u* C(u*)

Figure 8 Formation of new clusters around (left) a sober node and (right) a node on the boundary
of an elliptical disk. The roots of the induced trees are colored blue.

For each segment ux between a node u ∈ b ∩Db and a node x 6∈ b, create a new node ux

at the intersection point ux ∩ ∂Db and subdivide every edge [u, x] to a path [u, ux, x]. For
each endpoint v of b, create two new nodes, v′ and v′′, as follows. Node v is adjacent to a
unique segment vw ⊂ b, where w ∈ b ∩Db. Create a new node v′ ∈ ∂Db sufficiently close
to the intersection point vw ∩ ∂Db, but strictly above b; and create a new node v′′ in the
interior of segment vw∩Db. Subdivide every edge [v, y], where y ∈ b, into a path [v, v′, v′′, y].
Since the new-bar-expansion operation consists of only subdivisions (and slight perturbations
of the edges passing through the end-segments of the bars), it is ws-equivalent.

Terminology. Here, we classify each path in Db. All nodes u ∈ ∂Db lie either above or
below b. We call them top and bottom nodes, respectively. Let P denote the set of maximal
paths p = [ux

1 , u1, . . . , uk, u
y
k] in Db. The paths in P can be classified based on the position

of their endpoints. A path p is called a
cross chain if ux

1 and uy
k are top and bottom nodes respectively;

top chain (resp., bottom chain) if both ux
1 and uy

k are top nodes (resp., bottom nodes);
pin if p = [ux

1 , u1, u
x
1] (note that every pin is a top or a bottom chain);

V-chain if p = [ux
1 , u1, u

y
1], where x 6= y and p is a top or a bottom chain.

Let Pin ⊂ P be the set of pins, and V ⊂ P the set of V-chains. Let Mcr be the set of longest
edges of cross chains in P (by Lemma 2, each cross chain contributes one or two edges).
Every weakly simple polygon has the following property.
(A3) No edge in Mcr lies in the interior of any other edge of P .
We can test property (A3) in O(n logn) time at preprocessing (for each bar, sort all edges by
their endpoints, and compute Mcr). If property (A3) fails, we report that P is not weakly
simple. The operations introduced in Section 2 maintain properties (A1)–(A3) in bars.

3.4 Clusters
As a preprocessing for spur elimination (Section 5), we group all nodes that do not lie inside
a bar into clusters. After node-expansion and new-bar-expansion, all such nodes lie on a
boundary of a disk (circular or elliptical). For every sober node u, we create deg(u) clusters
as follows. Refer to Fig. 8. The node expansion has replaced u with new nodes on ∂Du.
Subdivide each segment in Du with two new nodes. For each node v ∈ ∂Du, form a cluster
C(v) that consists of v and all adjacent (subdivision) nodes inside Du. For each node u on
the boundary of an elliptical disk Db, subdivide the unique edge outside Db incident to u
with a node u∗. Form a cluster C(u∗) containing u and u∗.

H.A. Akitaya, G. Aloupis, J. Erickson, and C.D. Tóth 8:7

Db Db

⇒

Figure 9 The changes in the image graph caused by a bar simplification.

Cluster Invariants. For every cluster C(u):
(I1) C(u) induces a tree T [u] in the image graph rooted at u.
(I2) Every maximal path of P in C(u) is of one of the following two types:

(a) both endpoints are at the root of T [u] and the path contains a single spur;
(b) one endpoint is at the root, the other is at a leaf, and the path contains no spurs.

Additionally, each leaf node ` satisfies the following:
(I3) ` has degree one or two in the image graph of P ;
(I4) there is no spur at `;
(I5) no edge passes through ` (i.e., there is no edge [a, b] such that ` ∈ ab but ` 6∈ {a, b}).

Initially, every cluster trivially satisfies (I1) and (I2.b) and every leaf node satisfies
(I3)–(I5) since it was created by a subdivision. The operations in Section 4 maintain these
invariants.

Dummy vertices. Although the operations described in Sections 4 and 5 introduce nodes
in clusters, the image graph will always have O(n) nodes and segments. A vertex at a cluster
node is called a benchmark if it is a spur or if it is at a leaf node; otherwise it is called a
dummy vertex. Paths traversing clusters may contain Θ(n2) dummy vertices in the worst
case, however we do not store these explicitly. By (I1), (I2) and (I4) a maximal path in a
cluster can be uniquely encoded by one benchmark vertex: if it goes from a root to a spur at
an interior node s and back, we record only [s]; and if it traverses T [u] from the root to a
leaf `, we record only [`].

4 Bar simplification

In this section we introduce three new ws-equivalent operations and show that they can
eliminate all vertices from each bar independently (thus eliminating all forks). The bar
decomposition is pre-computed, and the bars remain fixed during this phase (even though
all edges along each bar are eliminated). We give an overview of the effect of the operations
(Section 4.1), define them and show that they are ws-equivalent (Sections 4.2 and 4.3), and
then show how to use these operations to eliminate all vertices from a bar (Section 4.4).

4.1 Overview
After preprocessing in Section 3, we may assume that P has no edge crossings and satisfies
(A1)–(A3). We summarize the overall effect of the bar simplification subroutine for a given
expanded bar.

Changes in the image graph G. Refer to Fig. 9. All nodes in the interior of the ellipse Db

are eliminated. Some spurs on b are moved to new nodes in the clusters along ∂Db. Segments
inside Db connect two leaves of trees induced by clusters.

SoCG 2016

8:8 Recognizing Weakly Simple Polygons

⇒

⇒

⇒
(a)

(b)

(c)

Figure 10 The changes in the polygon caused by a bar simplification.

u
v⇒ ⇒

u
v

w

v*

u
v

w

v*
u

v

Figure 11 Left: Spur-reduction(u, v). Right: Node-split(u, v, w).

Changes in the polygon P. Refer to Fig. 10. Consider a maximal path p in P that lies in
Db. The bar simplification will replace p = [u, . . . , v] with a new path p′. By (I3)–(I4), only
nodes u and v in p lie on ∂Db. If p is the concatenation of p1 and p2(= p−1

1), then p′ will be
a spur in the cluster containing u (Fig. 10(a)). If p has no such decomposition, but its two
endpoints are at the same node, u = v, then p′ will be a single edge connecting two leaves in
the cluster containing u (Fig. 10(b)). If the endpoints of p are at two different nodes, p′ is
an edge between two leaves of the clusters containing u and v respectively (Fig. 10(c)).

4.2 Primitives
The operations in Section 4.3 rely on two basic steps, spur-reductions and node splits (see
Fig. 11). The proof of their ws-equivalence is available in the full paper [1]. Together with
merge and subdivision, these operations are called primitives.

spur-reduction(u, v). Assume that every vertex at node u has at least one incident edge
[u, v]. Replace any path [u, v, u], with a single-vertex path [u].
node-split(u, v, w). Assume segments uv and vw are consecutive in radial order around v,
and not collinear with an adjacent segment; and P contains no spurs of the form [u, v, u]
or [w, v, w]. Create node v∗ in the interior of the wedge ∠(u, v, w) sufficiently close to v;
and replace every path [u, v, w] with [u, v∗, w].

4.3 Operations
We describe three operations: pin-extraction, V-shortcut, and L-shortcut. The first two
eliminate pins and V-chains, respectively, and the third simplifies chains in P with two or
more vertices in the interior of Db, removing one vertex at a time.

H.A. Akitaya, G. Aloupis, J. Erickson, and C.D. Tóth 8:9

⇒

⇒u

v

w

u

v

w
w∗

u

v
w

u

v

w
w∗

Figure 12 pin-extraction. Changes in the image graph (top), changes in the polygon (bottom).

⇒

⇒
v1

u

v2 v1

u

v2

w1 w2 w1 w2
v∗1v

∗
2

v1

u

v2

w1 w2
v1

u

v2

w2
v∗1 v

∗
2

w1

Figure 13 V-shortcut. Changes in the image graph (top), changes in the polygon (bottom).

Pin-extraction and V-shortcut operations. These operations are combinations of primitives
and, therefore, they are ws-equivalent. (I1)–(I5) are maintained by construction, and (A1)–
(A3) are also maintained within each bar. Proofs are available in the full paper [1].

pin-extraction(u, v). Assume that P satisfies (I1)–(I5) and contains a pin [v, u, v] ∈ Pin.
By (I3), node v is adjacent to a unique node w outside of Db. Perform the following three
primitives: (1) subdivision of every path [v, w] into [v, w∗, w]; (2) spur-reduction(v, u). (3)
spur-reduction(w∗, v). See Fig. 12 for an example.
V-shortcut(v1, u, v2). Assume that P satisfies (I1)–(I5) and [v1, u, v2] ∈ V. Furthermore,
P contains no pin of the form [v1, u, v1] or [v2, u, v2], and no edge [u, q] such that segment
uq is in the interior of the wedge ∠(v1, u, v2).
By (I3), nodes v1 and v2 are each adjacent to unique nodes w1 and w2 outside of Db,
respectively. The operation executes the following primitives sequentially: (1) node-
split(v1, u, v2), which creates u∗; (2) node-split(u∗, v1, w1) and node-split(u∗, v2, w2); which
create v∗1 , v∗2 ∈ ∂Db; (3) merge every path [v∗1 , u∗, v∗2] to [v∗1 , v∗2]. See Fig. 13 for an
example.

L-shortcut operation. The purpose of this operation is to eliminate a vertex of a path that
has an edge along a given bar. Before describing the operation, we introduce some notation.
For a node v ∈ ∂Db, let Lv be the set of paths [v, u1, u2] in P such that u1, u2 ∈ int(Db).
Each path in P is either in Pin, in V or has two subpaths in some Lv. Recall that Mcr is
the set of longest edges of cross chains in P. Denote by L̂v ⊂ Lv the set of paths [v, u1, u2],
where [u1, u2] is not in Mcr. We partition Lv into four subsets: a path [v, u1, u2] ∈ Lv is in
1. LT R

v (top-right) if v is a top vertex and x(u1) < x(u2);
2. LT L

v (top-left) if v is a top vertex and x(u1) > x(u2);

SoCG 2016

8:10 Recognizing Weakly Simple Polygons

⇒

⇒u1

v

u1

v

v

u1

umax
v∗

v∗

u1

v

umin

w w

w w

umin

umin umin

umax

umax umax

Figure 14 L-shortcut. Changes in the image graph (top), changes in the polygon (bottom).

3. LBR
v (bottom-right) if v is a bottom vertex and x(u1) < x(u2);

4. LBL
v (bottom-left) if v is a bottom vertex and x(u1) < x(u2).

We partition L̂v into four subsets analogously. We define the operation L-shortcut for paths
in LT R

v ; the definition for the other subsets can be obtained by suitable reflections.

L-shortcut(v, TR). Assume that P satisfies (I1)–(I5), v ∈ ∂Db and LT R
v 6= ∅. By (I3), v is

adjacent to a unique node u1 ∈ b and to a unique node w /∈ Db. Let U denote the set of
all nodes u2 for which [v, u1, u2] ∈ LT R

v . Let umin ∈ U and umax ∈ U be the leftmost and
rightmost node in U , respectively. Further assume that P satisfies:
(B1) no pins of the form [v, u1, v];
(B2) no edge [p, u1] such that segment pu1 is in the interior of the wedge ∠(v, u1, u2);
(B3) no edge [p, q] such that p ∈ ∂Db is a top vertex and q ∈ b, x(u1) < x(q) < x(umax).

(See the full paper [1] for an justification of these assumptions.) Do the following.
(0) Create a new node v∗ ∈ ∂Db to the right of v sufficiently close to v.
(1) For every path [v, u1, u2] ∈ LT R

v where u1u2 is the only longest edge of a cross
chain, create a crimp by replacing [u1, u2] with [u1, u2, u1, u2].

(2) Replace every path [w, v, u1, umin] by [w, v∗, umin].
(3) Replace every path [w, v, u1, u2], where u2 ∈ U , by [w, v∗, umin, u2].
See Fig. 14.

I Lemma 3. L-shortcut is ws-equivalent and maintains (I1)–(I5).

Proof Sketch (see [1] for a full proof). W.l.o.g., assume L-shortcut(v, TR) is executed.
Phase (1) is ws-equivalent by [2]. The rest of the operation is equivalent to subdivid-
ing every path in LT R

v where u2 6= umin into [v, u1, umin, u2], node-split(v, u1, umin) (which
creates u∗1), node-split(w, v, u∗1) (which creates v∗) and merging every path [v∗, u∗1, umin]
to [v∗, umin]. Except for node-split(v, u1, umin), all primitives satisfy their constraints and
therefore are ws-equivalent. It remains to show that (B1)–(B3) ensure that this primitive
is ws-equivalent. Let P ′ be obtained from P after node-split(v, u1, umin). If P ′ is weakly
simple, by changing its embedding we can move u∗1 arbitrarily close to u1 without affecting
weak simplicity, hence P is weakly simple. It remains to show that if P is weakly simple,
there exists Q ∈ Φ(P) such that the paths in LT R

v are the topmost paths in the linear order
induced by Q. Indeed, if there is one edge [p, q] above one path in LT R

v , by (B1)–(B3), it
must be part of a path [p, q, r] such that q is a spur and x(umax) < x(p) and x(umax) < x(r).
Then, it can always be moved below the lowest edge [u2, u3] adjacent to a path in LT R

v

without introducing any crossing (similar to crimp reduction; see Fig. 15). Phase (1) ensures
that this is always possible, since after that phase every path in LT R

v has an adjacent edge

H.A. Akitaya, G. Aloupis, J. Erickson, and C.D. Tóth 8:11

u1 umax u1 umaxumin umin

Figure 15 If P1 is weakly simple, we can change the linear order of the edges as shown.

Figure 16 Life cycle of a cross chain in the while loop of bar-simplification. The steps applied,
from left to right, are: (4), (3), (4), (6).

on b. Notice that phases (2) and (3) restore (A2) in the bar. Therefore we can “shorten”
the lengths of paths in LT R

v to create a simple polygon Q′ ∈ Φ(P ′), hence P ′ is weakly
simple. J

4.4 Bar simplification algorithm
In this section, we show that the three operations (pin-extraction, V-shortcut, and L-shortcut)
can successively remove all spurs of the polygon P from a bar b.

Algorithm bar-simplification(P, b).
While P has an edge along b, perform one operation as follows.
(i) If Pin 6= ∅, pick an arbitrary pin [v, u, v] and perform pin-extraction(u, v).
(ii) Else if V 6= ∅, then let [v1, u, v2] ∈ V be a path where |x(v1) − x(v2)| is minimal, and

perform V-shortcut(v1, u, v2).
(iii) Else if there exists v ∈ ∂Db such that L̂v

T R
6= ∅, do:

(a) Let v be the rightmost node where LT R
v 6= ∅.

(b) If LT L
v′ = ∅ for all v′ ∈ ∂Db, x(v) < x(v′) and x(u′1) < x(umax), where u′1 is the

unique neighbor of v′ on b, do L-shortcut(v, TR).
(c) Else let v′ be the leftmost node such that x(v) < x(v′) and LT L

v′ 6= ∅. If LT L
v′ satisfies

(B3) do L-shortcut(v′, TL), otherwise halt and report that P is not weakly simple.
(iv) Else if there exists v ∈ ∂Db such that LT L

v 6= ∅, repeat steps (iiia-c) with left–right and
TR–TL interchanged. (Note the use of Lv instead of L̂v. The same applies to (vi)).

(v) Else if there exists v ∈ ∂Db such that L̂v

BL
6= ∅, repeat steps (iiia-c) using BL and BR

in place of TR and TL, respectively, and left-right interchanged.
(vi) Else if there exist v ∈ ∂Db such that LBR

v 6= ∅, repeat steps (iiia-c) using BR and BL
in place of TR and TL respectively.

After the loop ends, perform old-bar-expansion (cf. Section 3.3) in the ellipse Db;
Return P (end of algorithm).

Informally, bar-simplification “unwinds” each polygonal chain in the bar, while extracting
pins and V-chains as they appear, by alternating between steps (3) to (6) (see Fig. 16).
Step (3) uses L̂v

T R
(instead of Lv

T R) to avoid an infinite loop.

SoCG 2016

8:12 Recognizing Weakly Simple Polygons

I Lemma 4. The operations performed by bar-simplification(P, b) are ws-equivalent, and
maintain properties (A1)–(A3) and (I1)–(I5) inside Db. The algorithm either removes all
nodes from the ellipse Db, or reports that P is not weakly simple. The L-shortcut operations
performed by the algorithm create at most two crimps in each cross-chain in P.

Proof. We show that the algorithm only uses operations that satisfy their preconditions,
and reports that P is not weakly simple only when P contains a forbidden configuration.

Steps (1)–(2). Since every pin can be extracted from a polygon satisfying (I1)–(I5), we
may assume that Pin = ∅. Suppose that V 6= ∅. Let [v1, u, v2] ∈ V be a V-chain such that
|x(v1)− x(v2)| is minimal. Since Pin = ∅, the only obstacle for condition (B1) is an edge
[u, q] such that segment uq is in the interior of the wedge ∠(v1, u, v2) (or else the image graph
would have a crossing). This edge is part of a path [p, u, q]. Node q must be on ∂Db between
v1 and v2, otherwise paths [p, u, q] and [v1, u, v2] cross. However, p 6= q, otherwise [p, u, q]
would be a pin. Consequently, [p, u, q] is a V-chain where |x(p) − x(q)| < |x(v1) − x(v2)|,
contrary to the choice of [v1, u, v2] ∈ V . This confirms that V-shortcut(v1, u, v2) satisfies (B1).
Henceforth, assume that Pin = ∅ and V = ∅.

Step (3)–(4). By symmetry, we consider only step (3). We distinguish between two cases.

Case 1: the conditions of (2) are satisfied. We need to show that L-shortcut(v, TR)
satisfies (B1)–(B3). Since Pin = ∅, condition (B1) is met. Suppose there is an edge [p, u1]
such that segment pu1 is in the interior of the wedge ∠(v, u1, umin). Clearly, p ∈ ∂Db is a top
node. Then edge [p, u1] is part of a path [p, u1, q]. However, q must be in the closed wedge
∠(v, u1, umin) otherwise there would be a node-crossing at u1. Also, q cannot be a top vertex
on ∂Db since Pin = V = ∅, and q cannot be on b by the choice of node v. This confirms
(B2). We argue similarly for (B3). Suppose there is an edge [p, q] such that p ∈ ∂Db is a top
vertex and q ∈ b, x(u1) < x(q) < x(umax). This edge is part of a path [p, q, r]. Node r must
be on or above b, otherwise there would be a node-crossing at q. It cannot be a top vertex,
since Pin = V = ∅. It cannot be to the left of q, otherwise the conditions of (2) are satisfied;
and it cannot be to the right of q, otherwise LT R

p 6= ∅ with x(v) < x(p), contrary to the
choice of v. This confirms that L-shortcut(v, TR) satisfies (B2)–(B3) and can be performed.

Case 2: the conditions of (2) are not satisfied. Let the path [v′, u′1, u′min] ∈ LT L
v′ be

selected in L-shortcut(v′, TL) by the algorithm. Condition (B2) is satisfied similar to Case 1.
If (B3) fails, there is an edge [p, q] such that p ∈ ∂Db is a top vertex and q ∈ b, x(u′max) <
x(q) < x(umax) (Recall that left and right are interchanged in LT L). Edge [p, q] is part of a
path [p, q, r], where r ∈ b, similar to Case 1. This implies [p, q, r] ∈ LT R

p ∪ LT L
p . If x(v) <

x(p) < x(v′), then either LT R
p 6= ∅, which contradicts the choice of v, or LT L

p 6= ∅, which
contradicts the choice of v′. Consequently, x(p) ≤ x(v). This implies x(u′max) < x(p) ≤ x(v),
so the paths [v, u1, umax] and [v′, u′1, u′max] cross. Therefore the algorithm correctly finds that
P is not weakly simple.

Steps (5)–(6). If steps (1)–(4) do not apply, then L̂v

T R
∪ LT L

v = ∅. That is, for every
path [v, u1, u2] ∈ LT R, we have [u1, u2] ∈Mcr. In particular, there are no top chains. The
operations in (5)–(6) do not change these properties. Consequently, once steps (5)–(6) are
executed for the first time, steps (3)–(4) are never executed again. By a symmetric argument
steps (5)–(6) eliminate all paths in L̂v

BL
∪ LBR

v . If the while loop terminates, every edge in

H.A. Akitaya, G. Aloupis, J. Erickson, and C.D. Tóth 8:13

b is also in Mcr and LT L
v ∪ LBR

v = ∅. Consequently, by Lemma 2, b contains no spurs and
old-bar-expansion is ws-equivalent. This eliminates all nodes in the interior of Db.

Termination. Each pin-extraction and V-shortcut operation reduces the number of vertices
of P within Db. Operation L-shortcut(v,X), X ∈ {TR, TL,BR,BL}, either reduces the
number of interior vertices, or produces a crimp if edge [u1, u2] is a longest edge of a cross-
chain. For termination, it is enough to show that, for each cross-chain c ∈ P, the algorithm
introduces a crimp at most once in steps (3)–(4), and at most once in steps (5)–(6). W.l.o.g.,
consider step (3). We apply an L-shortcut in two possible cases. We show that it does not
introduce crimps in Case 2. In step (3), we only perform L-shortcut(v′, TL) if (B3) is satisfied
and x(u′1) < x(umax). So for all [v′, u′1, u′2] ∈ LT L

v′ , we have x(u1) < x(u′2). Suppose, for
contradiction, that [u′1, u′2] is the only longest edge of some cross chain (and hence L-shortcut
would introduce a crimp). Then, [u′1, u′2] ∈Mcr is inside [u1, umax], contradicting (A3).

Consider Case 1. Notice that L-shortcut(v, TR) is executed only if there exists a top node
p with x(p) < x(u1) such that L̂p

T R
6= ∅. Suppose that L-shortcut(v, TR) introduces a crimp

in the path [v, u1, u2] ∈ LT R
v . This operation removes this subpath of a cross chain from LT R

v ,
but introduces [v∗, u2, u1] into LT L

v∗ . By the time the algorithm executes L-shortcut(v∗, TL),
we know that for every top vertex p with x(p) < x(u1), L̂p

T R
= LT L

p = ∅. This implies
that, after L-shortcut(v∗, TL) is performed, although a path [v∗∗, u1, u2] is introduced in LT R

v∗∗ ,
L-shortcut(v∗∗, TR) can never be performed. The same arguments apply to steps (5)–(6). J

I Lemma 5. Algorithm bar-simplification(P, b) takes O(m logm) time, where m is the
number of vertices in b.

Proof. pin-extraction, V-shortcut, and L-shortcut each make O(1) changes in the image graph.
pin-extraction and V-shortcut decrease the number of vertices inside Db. Each L-shortcut does
as well, but they may jointly create 2|P| = O(m) crimps, by Lemma 3. So the total number of
operations is O(m). When [v, u1, u2] ∈ LT R

v and u2 6= umin, L-shortcut replaces [v, u1, u2] by
[v∗, umin, u2]: [u1] shifts to [u2], but no vertex is eliminated. In the worst case, one L-shortcut
modifies Θ(m) paths, so in Θ(m) operations the total number of vertex shifts is Θ(m2). Our
implementation does not maintain the paths in P explicitly. Instead, we use set operations.
We maintain the sets Pin, V , and LX

v , with v ∈ ∂Db and X ∈ {TR, TL,BR,BL}, in sorted
lists. The pins [v, u, v] ∈ Pin are sorted by x(v); the wedges [v1, u, v2] ∈ V are sorted by
|x(v1)−x(v2)|. In every set LX

v , the first two nodes in the paths [v, u1, u2] ∈ LX
v are the same

by (I3), and so it is enough to store vertex [u2]; these vertices are stored in a list sorted by
x(u2). We also maintain binary variables to indicate for each path [v, u1, u2] ∈ LX

v whether
it is part of a cross chain, and whether [u1, u2] is the only longest edge of that chain.

Steps (1)-(2) remove pins and V-chains, taking linear time in the number of removed
vertices, without introducing any path in any set. Consider L-shortcut(v, TR), executed in
one of steps (3)–(4) which can be generalized to other occurrences of the L-shortcut operation.
The elements [v, u1, umin] ∈ LT R

v are simplified to [v∗, umin]. For each of these paths, say
that the next edge along P is [umin, u3]. Then, the paths [v∗, umin, u3] are inserted into
either Pin ∪ V if u3 ∈ ∂Db is a top vertex, or LT L

v∗ if u3 ∈ b. We can find each chain
[v, u1, umin] ∈ LT R

v in O(1) time since LT R
v is sorted by x(u2). Finally, all other paths

[v, u1, u2] ∈ LT R
v , where u2 6= umin, become [v∗, umin, u2] and they form the new set LT R

v∗ .
Since we store only the last vertex [u2], which is unchanged, we create LT R

v∗ at no cost.
This representation allows the manipulation of O(m) vertices with one set operation.

The number of insert and delete operations in the sorted lists is proportional to the number

SoCG 2016

8:14 Recognizing Weakly Simple Polygons

of vertices that are removed from the interior of Db, which is O(m). Each insertion and
deletion takes O(logm) time, and the overall time complexity is O(m logm). J

5 Spur-elimination

When there are no forks in the polygon, we can decide weak simplicity using [4][Theorem 5.1],
but a naïve implementation runs in O(n2 logn) time: successive applications of spur-reduction
would perform an operation at each dummy vertex. Here, we show how to eliminate spurs in
O(n logn) time. After the bar simplification phase, each vertex of P belongs to a cluster.

Formation of Groups. Recall that by (I1) each cluster induces a tree. We first modify the
image graph, transforming each tree into a binary tree by adding children to nodes with
degree higher than 3. This does not affect the benchmark representation and is ws-equivalent
(it can be reversed by node-splits and merges). By construction, if a segment uv connects
nodes in different clusters, both u and v are leaves or both are root nodes. We define a group
Guv as the set of two clusters C(u) and C(v) if their roots are connected by the segment uv.

Recall that we only store benchmark vertices in each cluster. We denote by [u1; . . . ;uk]
(using semicolons) a path inside a group defined by the benchmark vertices u1, . . . , uk. Let
B be the set of paths between two consecutive benchmark vertices in Guv. By invariants
(I1), (I2) and (I4), every path in B has one endpoint in T [u] and one in T [v] and every spur
in Guv is incident to two paths in B.

Overview. Assume that G is a partition of the nodes of the image graph into groups
satisfying (I1)–(I5). We consider one group at a time, and eliminate all spurs from one cluster
of that group. When we process one group, we may split it into two groups, create a new
group, or create a new spur in an adjacent group (similar to pin-extraction in Section 4). The
latter operation implies that we may need to process a group several times. Termination is
established by showing that each operation reduces the total number of benchmark vertices.

Algorithm spur-elimination(P,G).
While P contains a spur, do:
1. Choose a group Guv ∈ G that contains a spur, w.l.o.g. contained in T [u].
2. While T [u] contains an interior node, do:

a. If u contains no spurs and is incident to only two edges uv and uw, eliminate u with a
merge operation. The node w is the new root of the tree.

b. If u contains spurs, eliminate them as described below.
c. If u contains no spurs, split Guv into two groups along a chain of segments starting

with uv as described below. Rename a largest resulting group to Guv.

The detailed description of steps 2b and 2c, as well as the analysis of the algorithm
and the supporting data structures are in the full paper [1]. Here we give a brief summary.
Step 2b first replaces every path of the form [t1;u; t2] by a path [t1; t2] (Fig. 17(a)–(b)). The
resulting new path [t1; t2] passes through the lowest common ancestor of t1 and t2, denoted
lca(t1, t2). Notice that t1 and t2 belong to T [v], therefore [t1; t2] does not satisfy (I2). We
complete Step 2b by a sequence of “repair” operations that restore (I2). One is analogous to
pin-extraction, moving a spur from a leaf of T [v] into an adjacent group (Fig. 17(b)–(c)). The
other is analogous to V-shortcut: it creates a new group for each node ` where ` = lca(t1, t2)
for some path [t1; t2] that violates (I2). The set of all [t1; t2] for which lca(t1, t2) = ` induces

H.A. Akitaya, G. Aloupis, J. Erickson, and C.D. Tóth 8:15

z

⇒ ⇒

z*

u

v

z

u

v=`

z

u

v=`

G`{`+

T [̀]
`{ `+

(a) (b) (c)

Guv Guv Guv

tmax

tmin

Figure 17 (a) u contains spurs. (b) After eliminating spurs, T [v] does not satisfy (I2). (c) The
analogues of pin-extraction and V-shortcut. Leaf nodes are shown black.

⇒ Gu{v { Gu+ v⇒

u
u{ u+

C0

u{

v

u+

v{ v

(a) (b)

Guv

Figure 18 Splitting group Guv. (a) Changes in the image graph. (b) Changes in the polygon.

a tree T [`], in which t1 and t2 are in the left and right subtree of `, respectively. We then
remove all such paths from T [v] and create a new group that satisfies (I1)–(I5).

Step 2c splits Guv into two groups along a chain of segments C0 (Fig. 18(a)–(b)). The
tree T [u] naturally splits into the left and right subtrees, T [u−] and T [u+], but splitting T [v]
is a nontrivial task. B is partitioned into B− and B+, paths with one endpoint in T [u−]
and T [u+], respectively. C0 represents the shared boundary between B− and B+ and can be
found in O(log |B|) time. W.l.o.g., |B−| < |B+|. We build a tree T [v−] induced by B− and
adjust T [v] so that it is induced by B+. This is accomplished in O(|B−|) time by deleting
from T [v] nodes unique to T [v−]. The spurs connected to one path in B− and one in B+

are replaced by a pair of benchmarks on the boundary of the two groups. By a heavy path
decomposition argument, the overall time spent in this step is O(n logn).

6 Conclusion

We presented an O(n logn)-time algorithm for deciding whether a polygon with n vertices is
weakly simple. The problem has a natural generalization for planar graphs [4]. It is an open
problem to decide efficiently whether a drawing of a graph H is weakly simple, i.e., whether
a drawing P of H is within ε Fréchet distance from an embedding Q of H, for all ε > 0.

We can also generalize the problem to higher dimensions. A polyhedron can be described
as a map γ : S2 → R3. A simple polyhedron is an injective function. A polyhedron P is
weakly simple if there exists a simple polyhedron within ε Fréchet distance from P for all
ε > 0. This problem can be reduced to origami flat foldability. The results of [3] imply

SoCG 2016

8:16 Recognizing Weakly Simple Polygons

that, given a convex polygon P and a piecewise isometric function f : P → R2 (called
crease pattern), it is NP-hard to decide if there exists an injective embedding of P in three
dimensions λ : P → R3 within ε Fréchet distance from f for all ε > 0, i.e., if f is flat foldable.
Given P and f , we can construct a continuous function g : S2 → P mapping each hemisphere
of S2 to P (g−1(x), for a point x ∈ P , maps to two points in different hemispheres of S2).
Then, the polyhedron γ = g ◦ f is weakly simple if and only if f is flat foldable. Therefore, it
is also NP-hard to decide whether a polyhedron is weakly simple.

References
1 Hugo A. Akitaya, Greg Aloupis, Jeff Erickson, and Csaba D. Tóth. Recognizing weakly

simple polygons. Preprint, 2016. arXiv:1603.07401.
2 Esther M. Arkin, Michael A. Bender, Erik D. Demaine, Martin L. Demaine, Joseph S.B.

Mitchell, Saurabh Sethia, and Steven S. Skiena. When can you fold a map? Computational
Geometry, 29(1):23–46, 2004.

3 Marshall Bern and Barry Hayes. The complexity of flat origami. In Proc. 7th ACM-SIAM
Sympos. on Discrete Algorithms, pages 175–183, 1996.

4 Hsien-Chih Chang, Jeff Erickson, and Chao Xu. Detecting weakly simple polygons. In
Proc. 26th ACM-SIAM Sympos. on Discrete Algorithms, pages 1655–1670, 2015.

5 Bernard Chazelle. Triangulating a simple polygon in linear time. Discrete Comput. Geom.,
6(3):485–524, 1991.

6 Pier Francesco Cortese, Giuseppe Di Battista, Maurizio Patrignani, and Maurizio Pizzonia.
On embedding a cycle in a plane graph. Discrete Math., 309(7):1856–1869, 2009.

7 Ares Ribó Mor. Realization and counting problems for planar structures. PhD thesis, Freie
Universität Berlin, Department of Mathematics and Computer Science, 2006.

8 Michael Ian Shamos and Dan Hoey. Geometric intersection problems. In Proc. 17th IEEE
Sympos. Foundations of Computer Science, pages 208–215, 1976.

http://arxiv.org/abs/1603.07401

	Introduction
	Preliminaries
	Preprocessing
	Crimp reduction
	Node expansion
	Bar expansion
	Clusters

	Bar simplification
	Overview
	Primitives
	Operations
	Bar simplification algorithm

	Spur-elimination
	Conclusion

