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Abstract
We show that every connected Multiplicative Exponential Linear Logic (MELL) proof-structure
(with or without cuts) is uniquely determined by a well-chosen element of its Taylor expansion:
the one obtained by taking two copies of the content of each box. As a consequence, the relational
model is injective with respect to connected MELL proof-structures.
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1 Introduction

Given a syntax S endowed with some rewrite rules, and given a denotational model D for
S (i.e. a semantics which associates with every term t of S an interpretation JtKD that is
invariant under the rewrite rules), we say that D is injective with respect to S if, for any
two normal terms t and t′ of S, JtKD = Jt′KD implies t = t′. In categorical terms, injectivity
corresponds to faithfulness of the interpretation functor from S to D. Injectivity is a natural
and well studied question for denotational models of λ-calculi and term rewriting systems
(see [10, 18]). In the framework of Linear Logic (LL, [11]) this question, addressed in [19],
turned out to be remarkably complex: contrary to what happens in the λ-calculus, there
exist semantics of LL that are not injective, such as the coherent model which is injective
only with respect to some fragments of LL (see [19]). After the first partial positive results
obtained in [19], it took a long time to obtain some improvements: in [5], the injectivity
of the relational model is proven for MELL (the multiplicative-exponential fragment of LL,
sufficiently expressive to encode the λ-calculus) proof-structures that are connected, and
eventually in [3] the first complete positive result is achieved, since the author proves that
the relational model is injective for all MELL proof-structures.

Ehrhard [6] introduced finiteness spaces, a denotational model of LL (and λ-calculus)
which interprets formulas by topological vector spaces and proofs by analytical functions: in
this model the operations of differentiation and Taylor expansion make sense. Ehrhard and
Regnier [7, 8, 9] internalized these operations in the syntax and thus introduced differential
linear logic DiLL0 (which encodes the resource λ-calculus, see [8]), where the promotion rule
(the only one in LL which is responsible for introducing the !-modality and hence for creating
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20:2 Computing Connected Proof(-Structure)s From Their Taylor Expansion

resources available at will, marked by boxes in LL proof-structures) is replaced by three
new “finitary” rules introducing the !-modality which are perfectly symmetric to the rules
for the ?-modality: this allows a more subtle analysis of the resources consumption during
the cut-elimination process. At the syntactic level, the Taylor expansion decomposes a LL
proof-structure/λ-term in a (generally infinite) formal sum of DiLL0 proof-structures/resource
λ-terms, each of which contains resources usable only a fixed number of times. Roughly
speaking, each element of the Taylor expansion TR of a LL proof-structure/λ-term R is a
DiLL0 proof-structure/resource λ-term obtained from R by replacing each box/argument B
in R with nB copies of its content (for some nB ∈ N), recursively.

In the light of the differential approach, it is clear (and well-known) that the resource
λ-term of order 1 in the Taylor expansion of a λ-term (which is obtained by taking exactly one
copy of the argument of each application) is enough to entirely determine the λ-term: if two
λ-terms t1 and t2 have the same element of order 1 in their Taylor expansion, then t1 = t2.
One can formulate the results of [5] and [3] by saying that, given two LL proof-structures
R1 and R2, if there exists an appropriate DiLL0 proof-structure, whose order depends on R1
and R2, which occurs in the Taylor expansions of both R1 and R2, then R1 = R2. We prove,
in the present paper, for connected MELL, a result which is very much in the style of the
one just mentioned for the λ-calculus: if two connected MELL proof-structures R1 and R2
(with or without cuts) have the same element of order 2 in their Taylor expansions (which is
obtained by taking exactly two copies of the content of each box), then R1 = R2 (i.e. the
element of order 2 of the Taylor expansion of a connected MELL proof-structure is enough
to entirely determine the proof-structure). Since it is known (see [12] for details) that the
elements of the Taylor expansion of a LL proof-structure/λ-term are essentially the elements
of its interpretation in the relational model, we immediately obtain another proof of the
injectivity of the relational model for connected MELL proof-structures.

It is widely acknowledged, in the LL community, that the subsystem of LL corresponding
to the λ-calculus enjoys all the possible good properties, while many of them are lost in the
general MELL fragment. Our result seems to suggest the following hierarchy:
1. full MELL, for which there does not seem to be a way to bound “a priori” the complexity of

the element of the Taylor expansion allowing to distinguish two different proof-structures;
2. connected MELL (containing the λ-calculus) for which the element of order 2 of the Taylor

expansion of a proof-structure is enough to entirely determine the proof-structure;
3. the λ-calculus, for which the element of order 1 of the Taylor expansion of a λ-term is

enough to entirely determine the λ-term.

Outline. After laying out precise definitions of proof-structure (§2) and Taylor expansion
(§3), in §4 we show how a connected MELL proof-structure can be univocally computed by
the point of order 2 of its Taylor expansion. Finally, in §5 we infer from this the injectivity
of the relational model for connected MELL.

I Notation. We set LMELL = {1,⊥,⊗,`, !, ?, ax, cut}. The set FMELL of MELL formulas is
generated by the grammar: A,B,C ::= X | X⊥ | 1 | ⊥ | A ⊗ B | A ` B | !A | ?A , where
X ranges over an infinite set of propositional variables. The linear negation is involutive,
i.e. A⊥⊥ = A, and defined via De Morgan laws 1⊥ = ⊥, (A ⊗ B)⊥ = A⊥ ` B⊥ and
(!A)⊥ = ?A⊥.

Let A be a set: P(A) is the power set of A,
⋃
A is the union of A, A∗ is the set of

finite sequences over A. If A is ordered by ≤, for any a ∈ A we set ↓A a = {b ∈ A | b ≤ a}.
The empty sequence is denoted by ( ). Given a finite sequence a = (a1, . . . , an) with n ∈ N,
we set |a| = n and, if n > 0, a– = (a1, . . . , an−1); if moreover b = (b1, . . . , bm), we set
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a·b = (a1, . . . , an, b1, . . . , bm); if n = 1 (resp. m = 1), then a1 ·b (resp. a·b1) stands for a·b.
We write a v b if a·c = b for some finite sequence c. Let f : A → B be a partial function
(without “partial”, a function is always total): dom(f) and im(f) are the domain and image
of f; the partial function f : P(A) → P(B) is defined by f(A′) = {f(a) | a ∈ A′ ∩ dom(f)}
for any A′ ⊆ A.

2 A non-inductive syntax for proof structures

It is well-known that for LL proof-nets there is no “canonical” representation: every paper
about them introduces its own syntax for proof-nets, and more generally for proof-structures,
depending on the purposes of the paper.1 The first aim of the syntax for proof-structures
that we present here is to give a rigorous and compact definition of the following notions:
(1) equality between proof-structures; (2) Taylor expansion of a proof-structure. The first
point naturally leads us to adopt a low-level syntax with generalized ?- and !-links, similarly
to [5]. This choice can be made compatible with the second point by giving a completely
non-inductive definition of proof-structures, which is in keeping with the intuition that a
proof-structure is a directed graph, plus further information about the borders of boxes. We
have also taken care of minimizing the information required to identify a proof-structure,
especially the borders of its boxes.

We use terminology of interactions nets [13, 8], even if properly speaking our objects are
not interaction nets. So, for instance, our cells correspond to links in [2, 14, 19]. Our syntax is
inspired by [15, 16, 17, 20, 4, 5]. The main technical novelties with respect to them are that:

there are no wires (the same port may be auxiliary for some cell and principal for another
cell), so axioms and cuts are cells, and our ports corresponds to edges in [2, 14, 19];
boxes do not have an explicit constructor or cell, hence boxes and depth of a proof-structure
are recovered in a non-inductive way.

As in [15, 16, 17] and unlike [4, 5], our syntactic objects are typed by MELL formulas:
we have opted for a typed version only to keep out immediately the possibility of “vicious
cycles” (see Fact 3). All the results in this paper can be adapted also to the untyped case.

Pre-proof-structures and isomorphisms. We define here our basic syntactical object: pre-
proof-structure (pps for short). All other syntactical objects, in particular proof-structures
corresponding to the fragments or extensions of LL that we will consider (DiLL-, MELL- and
DiLL0-proof structures), are some special cases of pps. Essentially, a pps Φ is a directed labeled
graph GΦ called the ground-structure (gs for short) of Φ, plus a partial function boxΦ defined
on certain edges (or nodes). The gs of Φ represents a “linearised” proof-structure, i.e. Φ
without the border of its boxes; the partial function boxΦ marks the borders of the boxes of Φ.
Examples of pps are in Fig. 1. Unlike [17, 5], our syntactical objects are not necessarily
cut-free (nor with atomic axioms). Cut-elimination is not defined since it is not used here.

I Definition 1 (Pre-proof-structure, ports, cells, ground-structure, fatness). A pre-proof-struc-
ture (pps for short) is a 9-tuple Φ = (PΦ, CΦ, tcΦ,Ppri

Φ ,Paux
Φ ,Pleft

Φ , tpΦ, Cbox
Φ , boxΦ) such that:

PΦ and CΦ are finite sets, their elements are resp. the ports and the cells (or links) of Φ;

1 Following [11], a proof-net is a proof-structure sequentializable (i.e. corresponding to a derivation)
in LL sequent calculus: proof-nets can be (partly or completely, depending on the fragment of LL)
characterized among proof-structures via “geometric” correctness criteria, see for instance [1, 19].
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Y Y ⊥ ?Z 1 ⊥ 1 X X⊥

ax

cut

?

`
Y ` Y ⊥

?

??Z
?

???Z

!p

!(Y ` Y ⊥)

11 ⊥ ax

!p

!1

?

?X
?

?!1
(a) A pps Φ.

p :1 ⊥

1 ⊥

!p

q : !1
?

?!1

?

?⊥
!p

!?⊥
(b) Two pps, Ψ1 (on the left)
and Ψ2 (on the right).

⊥ 1

1

⊥

1

1

?

?⊥
?

??⊥

!p

!1

!p

!1

(c) A pps X.

⊥ 1 X X⊥

⊥ 1

?

?⊥
!p

!?⊥

?

?1
!p

!?1

ax

!p

!X
!p

!!X

?p

?X⊥

!p

!?X⊥

(d) Two pps, Ξ (on the left) and Ξ ′
(on the right).

Figure 1 Some examples of pps that are not DiLL-ps. See Def. 1 and 8.

tcΦ is a function from CΦ to LMELL; for every l ∈ CΦ, tcΦ(l) is the label, or type, of l; for
every t, t′ ∈ LMELL, we set CtΦ = {l ∈ CΦ | tcΦ(l) = t} (whose elements are the t-cells, or
t-links, of Φ) and Ct,t

′

Φ = CtΦ ∪ Ct
′

Φ ;
Ppri
Φ : CΦ →P(PΦ) is a function such that

⋃
im(Ppri

Φ ) = PΦ and moreover, for all l, l′ ∈ CΦ,
if l 6= l′ then Ppri

Φ (l) ∩ Ppri
Φ (l′) = ∅,

if tcΦ(l) ∈ {1,⊥,⊗,`, !, ?} then card(Ppri
Φ (l)) = 1,

if tcΦ(l) = ax (resp. tcΦ(l) = cut) then card(Ppri
Φ (l)) = 2, (resp. card(Ppri

Φ (l)) = 0);
for any l ∈ CΦ, the elements of Ppri

Φ (l) are the principal ports, or conclusions, of l in Φ;
Paux
Φ : CΦ →P(PΦ) is a function such that, for all l, l′ ∈ CΦ,
if l 6= l′ then Paux

Φ (l) ∩ Paux
Φ (l′) = ∅,

if tcΦ(l)∈{1,⊥, ax} then card(Paux
Φ (l))=0; if tcΦ(l)∈{⊗,`, cut} then card(Paux

Φ (l))=2;
for any l ∈ CΦ, the elements of Paux

Φ (l) are the auxiliary ports, or premises, of l in Φ;
Pleft
Φ : C⊗,`Φ → PΦ is a function such that Pleft

Φ (l) ∈ Paux
Φ (l) for any l ∈ C⊗,`Φ ;

tpΦ : PΦ → FMELL is a function (we write p : A and we say that A is the type of p, when
tpΦ(p) = A) such that, for any l ∈ CΦ, one has

if tcΦ(l) = ax (resp. tcΦ(l) = cut) and Ppri
Φ (l) = {p1, p2} (resp. Paux

Φ (l) = {p1, p2}), then
tpΦ(p1) = A and tpΦ(p2) = A⊥, for some A ∈ FMELL,
if tcΦ(l) = A ∈ {1,⊥} and Ppri

Φ (l) = {p}, then tpΦ(p) = A,
if tcΦ(l) = � ∈ {⊗,`}, Ppri

Φ (l) = {p}, Paux
Φ (l) = {p1, p2} and Pleft

Φ (l) = p1, then
tpΦ(p) = tpΦ(p1)� tpΦ(p2),
if tcΦ(l) = ♦ ∈ {!, ?}, Ppri

Φ (l) = {p} and Paux
Φ (l) = {p1, . . . , pn} (with n ∈ N), then

tpΦ(p) = ♦A and tpΦ(pi) = A for all 1 ≤ i ≤ n, for some A ∈ FMELL;
Cbox
Φ ⊆ {l ∈ C!

Φ | card(Paux
Φ (l)) = 1}, the elements of Cbox

Φ are the box-cells of Φ; for any
l ∈ Cbox

Φ , its (unique) premise is denoted by pridΦ(l) and called the principal door or
pri-door of the box of l (in R); we set Doors!

Φ =
⋃

Paux
Φ (Cbox

Φ );2

boxΦ :
(⋃

Paux
Φ (C?,cut

Φ ) ∪ Doors!
Φ

)
→ Cbox

Φ is a partial function such that Doors!
Φ ⊆

dom(boxΦ) and boxΦ(pridΦ(l)) = l for all l ∈ Cbox
Φ .3

We set: Paux
Φ =

⋃
im(Paux

Φ ), whose elements are the auxiliary ports of Φ; P free
Φ = PΦrPaux

Φ ,
whose elements are the free ports, or conclusions, of Φ; and Cfree

Φ = {l ∈ CΦ | Ppri
Φ (l) ⊆ P free

Φ },
whose elements are the free, or terminal, cells of Φ.4

2 Hence, Doors!
Φ = {pridΦ(l) | l ∈ Cbox

Φ } , the set of premises of all box-cells of Φ.
3 So, boxΦ is defined on Doors!

Φ and maps the (unique) premise of a box-cell l into l itself.
4 Thus, a cell l of a pps Φ is in Cfree

Φ iff either l is a ax-cell and both its conclusions are in P free
Φ , or l is a

cut-cell, or l is neither an ax- nor a cut-cell and its unique conclusion is in P free
Φ .
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For any pps Φ, the ground-structure (gs for short) of Φ is the 7-tuple GΦ = (PΦ, CΦ, tcΦ,
Ppri
Φ ,Paux

Φ ,Pleft
Φ , tpΦ).

A pps Φ is fat (resp. strongly fat) if card(Paux
Φ (l))≥1 (resp. card(Paux

Φ (l))≥2) for all l ∈ C!
Φ.

Let us make some comments on Def. 1. Let Φ be a pps.

The function Pleft
Φ fixes an order on the two premises of any ⊗- and `-cell of Φ; the

premises of the other types of cells are unordered, as well as the conclusions of the ax-cells.
The conditions

⋃
im(Ppri

Φ ) = PΦ and “for all l, l′ ∈ CΦ, if l 6= l′ then Ppri
Φ (l)∩Ppri

Φ (l′) = ∅ =
Paux
Φ (l)∩Paux

Φ (l′)” mean that every port is conclusion of exactly one cell and premise of at
most one cell; the elements of P free

Φ are the ports of Φ that are not premises of any cell.
No condition is required for card(Paux

Φ (l)) when l ∈ C!,?
Φ : l can have n ∈ N premises since

we use generalized ?- and !-cells for (co-)contraction, (co-)weakening and (co-)dereliction.
The gs GΦ of Φ is obtained from Φ by forgetting boxΦ and Cbox

Φ . In a way, GΦ encodes
the “geometric structure” of Φ (see below).

For any pps Φ, the fact that boxΦ is defined on Doors!
Φ is not needed but it simplifies

the definition of the function boxext
PΦ (Def. 6), an extension of boxΦ that will be useful in the

sequel. Provided that some suitable conditions are fulfilled (Def. 8), any box-cell l of Φ is the
starting point to compute the box associated with l partial function boxΦ allows to recover
the border of this box. In general, not all !-cells of Φ with exactly one premise are box-cells.

I Notation. For any pps Φ we set DoorsΦ = dom(boxΦ) and Doors?
Φ = DoorsΦ∩

⋃
Paux
Φ (C?

Φ),
Doorscut

Φ = DoorsΦ∩
⋃

Paux
Φ (Ccut

Φ ) and Cbord
Φ = Cbox

Φ ∪{l ∈ C?
Φ | ∃ p ∈ Doors?

Φ∩Paux
Φ (l)}. From

now on, • /∈ CΦ (in particular, • /∈ Cbox
Φ ) for any pps Φ.

With the gs GΦ of any pps Φ is naturally associated a directed labeled graph G(GΦ): its
nodes are the cells of Φ, labeled by their type; its oriented edges are the ports of Φ, labeled
by their type; a premise (resp. conclusion) of a cell l is incoming in (resp. outgoing from) l.

In the graphical representation of a pps Φ, a dotted arrow is depicted from a premise q of
a ?-cell or cut-cell to the premise of a box-cell l when q ∈ box−1

Φ (l). In pictures, the label of
a box-cell is marked as !p, and the names or types of ports and cells are sometimes omitted.

I Definition 2 ((Pre-)order on the ports of a pre-proof-structure). Let Φ be a gs. The binary
relation <1

Φ on PΦ is defined by: p <1
Φ q if there exists l ∈ CΦ such that p ∈ Ppri

Φ (l) and
q ∈ Paux

Φ (l). The preorder relation ≤Φ on PΦ is the reflexive-transitive closure of <1
Φ. When

p ≤Φ q we say that q is above p. We write p <Φ q if p ≤Φ q and p 6= q.

In a pps Φ, the binary relation ≤Φ has a geometric meaning (note that Cbox
Φ and boxΦ, as

well as tcΦ, Pleft
Φ and tpΦ, play no role in Def. 2): for any p, q ∈ PΦ, if p ≤Φ q then in the direc-

ted graph G(GΦ) there is a directed path from q to p that does not cross any ax- or cut-cell.

I Remark (Predecessor of a port). Let Φ be a pps. For all p ∈ Paux
Φ r Paux

Φ (Ccut
Φ ), there is

a unique q ∈ PΦ (denoted by predΦ(p), the predecessor of p) such that q <1
Φ p; moreover

predΦ(p) 6= p. Indeed, by hypothesis p is a premise of some cell of Φ, but the only cells with
more than one conclusion are the ax-cells, which have no premises; so, p is a premise of a cell
of Φ having just one conclusion q; also, tpΦ(p) is a proper subformula of tpΦ(q), thus p 6= q.

I Fact 3 (Tree-like order on ports). Let Φ be a pps: ≤Φ is a tree-like order relation on PΦ.

According to Fact 3, a pps Φ cannot have “vicious cycles” like for example a cell l such
that Ppri

Φ (l) ∩ Paux
Φ (l) 6= ∅ (i.e. a port cannot be both a premise and a conclusion of a cell l).

FSCD 2016
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(a)
P(PΦ)
ϕP ��

CΦPaux
Φ

oo
Ppri
Φ

//

ϕC
��

P(PΦ)
ϕP��

P(PΨ ) CΨ
Paux
Ψoo

Ppri
Ψ //P(PΨ )

CΦ tcΦ
//

ϕC ��

LMELL

CΨ
tcΨ

;; PΦ tpΦ
//

ϕP ��

FMELL

PΨ
tpΨ

:: C⊗,`Φ Pleft
Φ

//

ϕC ��

PΦ
ϕP
��

C⊗,`Ψ

Pleft
Ψ // PΨ

(b)
DoorsΦ

ϕP
��

boxΦ
// Cbox
Φ

ϕC ��
DoorsΨ

boxΨ // Cbox
Ψ

Figure 2 Commutative diagrams for isomorphism of gs (Fig. 2a) and of pps (Fig. 2b). See Def. 4.

The names of ports and cells of a pps (ports and cells being nothing but their names) will
be important to define the labeled Taylor expansion (Def. 11), a more informative variant of
the usual Taylor expansion (Def. 15). Nevertheless, a precise answer to the question “When
two pps can be considered equal?” leads naturally to the notion of isomorphism between
pps (Def. 4), inspired by the notion of isomorphism between graphs: intuitively, two pps are
isomorphic if they are identical up to the names of their ports and cells.

I Definition 4 (Isomorphism on ground-structures and pre-proof-structures). Let Φ, Ψ be pps.
An isomorphism from GΦ to GΨ is a pair ϕ = (ϕP , ϕC) of bijections ϕP : PΦ → PΨ and

ϕC : CΦ → CΨ such that the diagrams in Fig. 2a commute. We write then ϕ : GΦ ' GΨ .
An isomorphism from Φ to Ψ is a pair ϕ = (ϕP , ϕC) of bijections ϕP : PΦ → PΨ and

ϕC : CΦ → CΨ such that ϕ : GΦ ' GΨ , im(ϕC�Cbox
Φ

) = Cbox
Ψ , im(ϕP�DoorsΦ) = DoorsΨ and the

diagram in Fig. 2b commutes. We write then ϕ : Φ ' Ψ .
If there is an isomorphism from Φ to Ψ , we say: Φ and Ψ are isomorphic and we write Φ ' Ψ .

The relation ' is an equivalence on the set of pps. Equivalence classes for ' share the
same graphical representation up to the order of the premises of their !- and ?-cells: any such
representation can be seen as a canonical representative of an equivalence class.

I Remark. Let Φ and Ψ be some pps with ϕ = (ϕP , ϕC) : GΦ ' GΨ . We have:
1. card(Paux

Φ (l)) = card(Paux
Ψ (ϕC(l))) for every l ∈ CΦ, in particular Φ is fat (resp. strongly

fat) iff Ψ is fat (resp. strongly fat); moreover, P free
Ψ = ϕP(P free

Φ ) and Cfree
Ψ = ϕC(Cfree

Φ );
2. for every p, q ∈ PΦ, p ≤Φ q implies ϕP(p) ≤Ψ ϕP(q) (ϕP is non-decreasing).

DiLL-, DiLL0- and MELL-proof-structures. A pps Φ is a very “light” structure and in
order to associate with any l ∈ Cbox

Φ the sub-pps of Φ usually called the box of l, some
conditions need to be satisfied: for example, boxes have to be ordered by a tree-like order
(nesting), cut- and ax-cells cannot cross the border of a box, etc. We introduce here some
restrictions to pps in order to define proof-structures corresponding to some fragments or
extension of LL: MELL, DiLL and DiLL0. Full differential linear logic (DiLL) is an extension
of MELL (with the same language as MELL) provided with both promotion rule (i.e. boxes)
and co-structural rules (the duals of the structural rules handling the ?-modality) for the
!-modality: DiLL0 and MELL are particular subsystems of DiLL, respectively the promotion-
free one (i.e. without boxes) and the one without co-structural rules. Our interest for DiLL
is just to have an unitary syntax subsuming both MELL and DiLL0 without considering
cut-elimination: for this reason, unlike [16, 20], our DiLL-ps are not allowed to contain a
set of DiLL-ps inside a box.

I Definition 5 (DiLL0-proof-structure). A DiLL0-proof structure (DiLL0-ps or diffnet for short)
is a pps Φ with Cbox

Φ = ∅. The set of DiLL0-ps is denoted by PSDiLL0 , and ρ, σ, . . . range over it.

So, a DiLL0-ps ρ is a pps without box-cells: in this case, boxρ is the empty function. Thus,
any DiLL0-ps ρ can be identified with its gs Gρ.
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To define the conditions that a pps has to fulfill to be a DiLL-ps, we first extend the partial
function boxΦ to a function boxext

PΦ that associates with every port p of Φ the “deepest” box-cell
(if any) whose box contains p; it returns a dummy element • if p is not contained in any box.

I Definition 6 (Extension of boxΦ). Let Φ be a pps. The extension of boxΦ is a function
boxext
PΦ: PΦ → Cbox

Φ ∪ {•} defined as follows: for any p ∈ PΦ,

boxext
PΦ(p) =

{
boxΦ(max≤Φ(↓PΦ p ∩ DoorsΦ)) if ↓PΦ p ∩ DoorsΦ 6= ∅
• otherwise.

For every pps Φ, the function boxext
PΦ is well-defined since , for all p ∈ PΦ, the set

↓PΦ p∩DoorsΦ is finite and totally ordered by ≤Φ, according to Fact 3: therefore the greatest
element of ↓PΦ p ∩ DoorsΦ exists as soon as ↓PΦ p ∩ DoorsΦ 6= ∅.

In a pps Φ, computing boxext
PΦ from boxΦ is simple. Given a port p of Φ, consider the

maximal downwards path starting from p in the directed graph G(GΦ): the first time the
path bumps into a port q ∈ DoorsΦ (if any), we set boxext

PΦ(p) = boxΦ(q) ; if the path does
not bump into any q ∈ DoorsΦ, then boxext

PΦ(p) = •.

I Definition 7 (Preorder on box-cells of a pre-proof-structure). Let Φ be a pps. The binary
relation ≤Cbox

Φ
on Cbox

Φ is defined by: l ≤Cbox
Φ
l′ (say l′ is above l) iff there are p, p′ ∈ DoorsΦ

such that p ≤Φ p′, boxΦ(p) = l and boxΦ(p′) = l′. We write l <Cbox
Φ
l′ if l ≤Cbox

Φ
l′ and l 6= l′.

The binary relation ≤Cbox
Φ
∪{•} on Cbox

Φ ∪ {•} is defined by: l ≤Cbox
Φ
∪{•} l

′ if either l ≤Cbox
Φ
l′

or l = •. We write l <Cbox
Φ
∪{•} l

′ when l ≤Cbox
Φ
∪{•} l

′ and l 6= l′.

In any pps Φ, ≤Cbox
Φ

is a preorder on Cbox
Φ , since ≤Φ is a preorder on PΦ. The preorder

≤Cbox
Φ
∪{•} is the extension of ≤Cbox

Φ
obtained by adding • as least element.

In Fig. 1d, Ξ is a pps such that ≤Cbox
Ξ

is not an order on Cbox
Ξ ; Ξ ′ is a pps such that ≤Cbox

Ξ′

is an order but not a tree-like order on Cbox
Ξ′ . A condition that a pps Φ must fulfill to be a

DiLL-ps is just that ≤Cbox
Φ

is a tree-like order (or equivalently, ≤Cbox
Φ
∪{•} is a rooted tree-like

order whose root is •): this essentially amounts to the nesting of boxes (see [12] for details).

I Definition 8 (DiLL-proof-structure and MELL-proof-structure). A DiLL-proof-structure
(DiLL-ps for short) is a pps Φ such that:
1. ≤Cbox

Φ
is a tree-like order on Cbox

Φ ;
2. boxext

PΦ(p)=boxext
PΦ(q) for all l∈Cax

Φ with Ppri
Φ (l)={p, q} and all l∈Ccut

Φ with Paux
Φ (l)={p, q};

3. for all p ∈ Doors!
Φ ∪ Doors?

Φ, one has boxΦ(p) 6= boxext
PΦ(predΦ(p));

4. for all l ∈ Cbox
Φ ∪{•} and p ∈Doors!

Φ, if l <Cbox
Φ
∪{•} boxΦ(p) then l ≤Cbox

Φ
∪{•} boxext

PΦ(predΦ(p)).

A MELL-proof-structure (MELL-ps for short) is a DiLL-ps Φ such that Cbox
Φ = C!

Φ. The set
of DiLL-ps (resp. MELL-ps) is denoted by PSDiLL (resp. PSMELL) and R,S, . . . range over it.

In Def. 8, condition 2 means that a cut-cell (resp. ax-cell) cannot cross the border of
a box, i.e. its premises (resp. conclusions) belong to the same boxes; the pps Φ in Fig. 1a
does not fulfill condition 2. Condition 3 in Def. 8 entails that two ports on the border of the
same box cannot be above each other (in the sense of ≤Φ); the pps Ψ1 and Ψ2 in Fig. 1b do
not fulfill condition 3. Condition 4 in Def. 8 implies that the border of a box cannot have
more than one !-cell: when the premise of a !-cell l′ belongs to the box associated with a
box-cell l 6= l′, then l′ is itself contained in the box of l. The pps X in Fig. 1c does not fulfill
condition 4, even if it satisfies conditions 1-3. See [12] for more details.
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X X⊥ 1 ⊥ 1 ⊥

⊥ ⊥

ax ax ⊥

⊥ ⊥

1

cut`
X `X⊥

?

?⊥

!p

!1
!p

!!1

!

!(X `X⊥)

X X⊥ 1 ⊥ 1 ⊥

⊥ ⊥

ax ax ⊥

⊥ ⊥

1

cut`
X `X⊥ !

!1

!

!

!!1

! ?

?⊥

!

!(X `X⊥)

(a) S ∈ PSDiLL r (PSMELL ∪PSDiLL0).

1

⊥

1

⊥
!p

!1

1

⊥

1

⊥
!

!1

!

(b) R1 ∈ PSMELL r PSDiLL0 .

1

⊥

1

⊥
!

!1
(c) R2 ∈ PSDiLL0 r PSMELL.

Figure 3 Some examples of DiLL-ps. In R1 (Fig. 3b) Cbox
R1 = {l} and boxR1 is the empty function. In

R2 (Fig. 3c) Cbox
R2 = ∅, so boxR2 is the empty function. Both S (Fig. 3a) and R1 (Fig. 3b) are in two dif-

ferent presentations: the “arrow-like” one (on the left) and the “inductive-like” one (on the right).

In [12] we show that the information encoded in a DiLL-ps R is enough to associate a
box Rl with any box-cell l of R. So, as usual for LL, Rl can be graphically depicted (instead
of using dotted arrows to pick out box−1

R (l) ) by a rectangular frame containing all ports in
inboxR(l) (see Def. 9). Some examples of DiLL-ps are in Fig. 3.

I Definition 9 (Content of the box, depth). Let R be a DiLL-ps.
For any l ∈ Cbox

R , the content of the box of l is inboxR(l) = {q ∈ PR | l ≤Cbox
R

boxext
PR(q)}.

The function boxext
CR : CR → Cbox

R is defined by: for every l ∈ CR r Ccut
R (resp. l ∈ Ccut

R ), we
set boxext

CR(l) = boxext
PR(p) where p ∈ Ppri

R (l) (resp. p ∈ Paux
R (l)).5

For every p ∈ PR and l ∈ CR, the depths of p and l in R are defined as follows:
depthPR(p) = card(↓Cbox

R
(boxext

PR(p))) and depthCR(l) = card(↓Cbox
R

(boxext
CR(l))). The depth of R

is the natural number depth(R) = sup{depthPR(p) | p ∈ PR}.

Given a DiLL-ps R, for any box-cell l in R, inboxR(l) represents the set of ports contained
in the box of l. According to Definition 9, the meaning of boxext

PR is clear: for any port p of
R, ↓Cbox

R
(boxext

PR(p)) = {l ∈ Cbox
R | p ∈ inboxR(l)} is the set of boxes in R containing p, and if

boxext
PR(p) = • then p has depth 0 (no box in R contains p), otherwise boxext

PR(p) is the deepest
box-cell in R whose box contains p; the depth of p in R is the number of nested boxes in R
containing p. According to Def. 9, for any box-cell l, depthPR(pridR(l)) = depthCR(l) + 1.

In a DiLL-ps R the ports in Doors!
R ∪ Doors?

R are the ones in the border of some box:
more precisely, for any p ∈ Doors!

R ∪ Doors?
R, p is in the border of the box of every box-cell

l of R such that boxext
PR(predR(p)) <Cbox

R
∪{•} l ≤Cbox

R
boxext
PR(p). By conditions 1 and 3-4 in

Def. 8, (the premise of) a box-cell is in the border of exactly one box: for any l ∈ Cbox
R

with Ppri
R (l) = {p}, one has boxext

PR(p) <Cbox
R
∪{•} l and there is no l′ ∈ Cbox

R ∪ {•} such that
boxext
PR(p) <Cbox

R
∪{•} l

′ <Cbox
R
∪{•} l. This does not hold in general for ?-cells in Cbord

R , since we
use generalized ?-links: a premise of a ?-cell can cross the border of several boxes, see for
instance one of the premises of the ?-cell whose conclusion is of type ?⊥ in Fig. 3a.

3 Computing the Taylor expansion of a DiLL-proof-structure

The Taylor expansion of a MELL-ps, or more generally a DiLL-ps, R is a (usually infinite) set
of DiLL0-ps: roughly speaking, each element of the Taylor expansion of R is obtained from R

by replacing each box B in R with nB copies of its content (for some nB ∈ N), recursively on
the depth of R. Note that nB depends not only on B but also on which “copy” of the contents

5 For every l ∈ CR, boxext
CR(l) is well-defined by condition 2 in Def. 8. Note that, for any l ∈ Cbox

R , boxext
CR(l)

is the immediate predecessor of l in the tree-like order ≤Cbox
R
∪{•}.
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of all boxes containing B we are considering. Usually, the Taylor expansion of MELL-ps
[15, 17] is defined globally and inductively: with every MELL-ps R is directly associated its
Taylor expansion (the whole set!) by induction on the depth of R. We adopt an alternative
approach, which is pointwise and non-inductive: visually, it is exemplified by Fig. 4.

We introduce here Taylor-functions: a Taylor-function of a DiLL-ps R ascribes recursively
a number of copies for each box of R. Any element of the Taylor expansion of R can be
built from (at least) one element of the proto-Taylor expansion T proto

R of R, T proto
R being the

set of Taylor-functions of R. We build in this way a more informative version of the Taylor
expansion of R, the labeled Taylor-expansion TR of R: one of the advantages of our pointwise
and non-inductive approach is that it is easy to define the correspondence between ports and
cells of any element ρ of the Taylor expansion of R and ports and cells of R (an operation
intuitively clear but very awkward to define with the global and inductive approach), and
to differentiate the various copies in ρ of the content of a same box in R. For this purpose,
any port (or cell) of any DiLL0-ps in the labeled Taylor expansion of R is of the shape (p, a),
where p is the corresponding port (or cell) of R and the finite sequence a has to be intended
as a list of indexes saying in which copy of the content of each box (p, a) is. These indexes
are a syntactic counterpart of the ones used in the definition of k-experiment of PLPS in [5,
Def. 35]. The information encoded in any element of the labeled Taylor expansion will be
useful to prove some fundamental lemmas in §4. The usual Taylor expansion of a DiLL-ps R
(whose elements do not contain this information, Def. 15) is then the quotient of TR modulo
isomorphism, i.e. modulo renaming of ports and cells of any DiLL0-ps in TR.

I Definition 10 (Taylor-function of a DiLL-proof-structure). Let R be a DiLL-ps. A Taylor-
function of R is a function f : Cbox

R ∪ {•} →Pfin(N∗) such that:
1. (depth compatibility) f(•) = {( )} and |a| = depthPR(pridR(l)), for any l∈Cbox

R and a∈ f(l);
2. (vertical downclosure) for all l, l′ ∈ Cbox

R such that l ≤Cbox
R
l′, with k = depthPR(pridR(l)) and

k′= depthPR(pridR(l′)) (so k ≤ k′), if (n1, . . . , nk, . . . , nk′) ∈ f(l′) then (n1, . . . , nk) ∈ f(l).
The proto-Taylor expansion of R is the set T proto

R of Taylor-functions of R.

Note that the notion of Taylor-function of a DiLL-ps R relies only on the tree-like order
on Cbox

R , hence we could define the Taylor-function of any tree. By the vertical downclosure
condition, any Taylor-function of a DiLL-ps R can be naturally presented as a tree-like order
which is an “level-by-level expansion” of the tree-like order on Cbox

R : see Fig. 4a–4c.
Our approach in defining the elements of the Taylor expansion of a DiLL-ps R separates the

analysis of the number of copies to take for each (copy of) box of R (every Taylor-function of R
contains this information, which is the most important one) from the operation of copying the
content of each box (given by the function τR defined below). Indeed, with any Taylor-function
of R one can associate a unique element of the (labeled) Taylor expansion of R (Def. 11).

I Definition 11 (Labeled Taylor expansion). Let R be a DiLL-ps. The function τR : T proto
R →

PSDiLL0 associates with any f ∈ T proto
R a DiLL0-ps τR(f) defined by: Cbox

τR(f) = ∅, boxτR(f) is
the empty function, and

PτR(f) = {(p, a) | p ∈ PR and a ∈ f(boxext
PR(p))}

CτR(f) = {(l, a) | l ∈ CR and a ∈ f(boxext
CR(l))}

tcτR(f)((l, a)) = tcR(l) for every (l, a) ∈ CτR(f)

Ppri
τR(f)((l, a)) = {(p, a) | p ∈ Ppri

R (l)} for every (l, a) ∈ CτR(f)

Paux
τR(f)((l, a)) = {(p, b) | p∈Paux

R (l), a v b ∈ f(boxext
PR(p))} for any (l, a)∈CτR(f)
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Pleft
τR(f)((l, a)) = (Pleft

R (l), a) for every (l, a) ∈ C⊗,`τR(f)

tpτR(f)((p, a)) = tpR(p) for every (p, a) ∈ PτR(f)

The labeled Taylor expansion of R is the set of DiLL0-ps TR = im(τR).

The proof that τR(f) is a DiLL0-ps for any DiLL-ps R and any Taylor-function f of R, is
left to the reader. The set TR (as well as T proto

R ) is infinite iff depth(R) > 0.
Note that when l ∈ Cbord

R , the condition a v b when defining Paux
τR(f)((l, a)) in Def. 11 plays

a crucial role: for instance, given the MELL-ps R as in Fig. 4a and the Taylor-function f of
R as in Fig. 4c, the premises of the !-cell (l1, (1)) of τR(f) (whose conclusion is (r1, (1)) in
Fig. 4d) are (p1, (1, 1)), (p1, (1, 2)), (p1, (1, 3)), and not (p1, (2, 1)), since (1) 6v (2, 1).
I Remark (Canonicity). Given a DiLL-ps R and f ∈ T proto

R , we say that f is canonical if
(horizontal downclosure) for every l ∈ Cbox

R , if (n1, . . . , nm) ∈ f(l) then n1, . . . , nm ∈ N+

and (n1, . . . , nm−1, k) ∈ f(l) for any 1 ≤ k ≤ nm.
A ρ ∈ TR is canonical if ρ = τR(f) for some canonical f ∈ T proto

R . In any canonical DiLL0-ps
of TR the various copies of the content of a box are numbered sequentially starting from 1.
It can easily be shown that for any ρ ∈ TR, there is a canonical σ ∈ TR such that ρ ' σ.

The next example shows how to compute an element ρ of the labeled Taylor expansion of a
DiLL-ps R starting from R and a Taylor-function of R. It shows also the information encoded
in ρ with respect to R: the correspondence between ports (and cells) of ρ and ports (and cells)
of R, and the differentiation of the various copies in ρ of the content of a same box in R.

I Example 12. Let R be the MELL-ps as in Fig. 4a (the tree-like order on Cbox
R is in Fig. 4b)

and f be the Taylor-function of R as in Fig. 4c. The DiLL0-ps τR(f) ∈ TR obtained from f by
applying Def. 11 is in Fig. 4d. Note that the ports (p2, (1, 2)) and (p2, (2, 1)) are two ports
of τR(f) corresponding to the port p2 of R: more precisely, (p2, (1, 2)) (resp. (p2, (2, 1))) is in
the second (resp. first) copy of the content of the box of l1 which is in the first (resp. second)
copy of the content of o. Analogously for the other ports and cells of τR(f).

I Definition 13 (Forgetful functions). Let R ∈ PSDiLL and ρ ∈ TR. The forgetful functions
forgetρ,RP : Pρ → PR and forgetρ,RC : Cρ → CR are defined by: forgetρ,RP ((p, a)) = p and
forgetρ,RC ((l, b)) = l for all (p, a) ∈ Pρ and (l, b) ∈ Cρ.

By forgetting the indexes associated with the ports and cells of ρ ∈ TR, the functions
forgetρ,RP and forgetρ,RC make explicit the correspondence (neither injective nor surjective)
between ports and cells of ρ and ports and cells of R, implicitly given in Def. 11.

Given f ∈ T proto
R such that ρ = τR(f) ∈ TR, the functions f ◦ boxext

PR and f ◦ boxext
CR are

some kind of “inverses” of forgetρ,RP and forgetρ,RC , respectively: with every port and cell of R,
they associate the set of indexes of their corresponding ports and cells of ρ. In other words,
for every port p and cell l of R, f(boxext

PR(p)) and f(boxext
CR(l)) are the sets of the “tracking

numbers” of the copies of (the content of the boxes containing) p and l in ρ.

I Example 14. Let R be the MELL-ps as in Figure 5a and let f and g be the Taylor-functions
of R defined in Fig. 5b-5c. Obviously, f 6= g, τR(f) 6= τR(g) (indeed, (p, (2, 2)) ∈ PτR(f)rPτR(g),
see Fig. 5d-5e) but τR(f) ' τR(g) (and τR(f), τR(g) ∈ TR).

For any DiLL-ps R, it can be shown that the function τR is injective. However, Example 14
shows that there may exist two different Taylor-functions of R whose images via τR are
different but isomorphic: the labeled Taylor expansion of a DiLL-ps may contain several
elements which are isomorphic and differ from each other only by the name of their ports and
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p1 : ⊥ p2 : ⊥ q1 : 1 q2 : ⊥ q3 : 1 q4 : ⊥

r3 :⊥ s4 :⊥

ax ⊥

⊥ ⊥

⊥ ⊥ 1

cut

!

r2 : !1

!
!

r1 : !⊥

!

!

s2 : !!1

! ?

s3 :?⊥

?

s1 :?!⊥

(a) A MELL-ps R, where o (resp. l1;l2) is the box-cell
with conclusion s2 : !!1 (resp. r1 : !⊥; r2 : !1.)

o

l1 l2

(b) The tree-like order on Cbox
R .

f(l2) = {(2, 1), (2, 2), (3, 1)}
f(l1) = {(1, 1), (1, 2), (1, 3), (2, 1)}

f(o) = {(1), (2), (3)}
o

(1, 1) (1, 2) (1, 3)

l1 l2

(1)

l1

(2, 1) (2, 1)

l2

(2, 2)

(2)

(3, 1)

l1 l2

(3)

(c) A Taylor-function f of R (defined on the left), also in its tree-like presentation (on the right).

(p1,(1,1)) (p1,(1,2)) (p1,(1,3)) (p1,(2,1)) (p2,(1,1)) (p2,(1,3)) (q1,(2,1)) (q2,(2,1)) (q3,(2,1)) (q1,(2,2)) (q2,(2,2)) (q3,(2,2)) (q1,(3,1)) (q2,(3,1)) (q3,(3,1))

(p2,(1,2)) (p2,(2,1)) (q4,(2,1)) (q4,(2,2)) (q4,(3,1))

(r1, (3))

(r3, (1)) (r3, (2)) (r3, (3)) (r2, (1))
(s4, ( ))

ax ax ax

⊥ ⊥ ⊥

⊥ ⊥ ⊥

⊥

⊥ ⊥ ⊥ ⊥

!

!

⊥

⊥

⊥

⊥

1 1 1

cut cut cut

!

(r2, (2))

!

(r2, (3))

!

(r1, (1))

!

(r1, (2))

!

(s2, ( ))

?

(s3, ( ))

?

(s1, ( ))

(d) The DiLL0-ps τR(f) ∈ TR (the types of the ports are omitted).

Figure 4 From a MELL-ps R (Fig. 4a) to an element of the labeled Taylor expansion of R
(Fig. 4d), via a Taylor-function of R (Fig. 4c). See also Example 12.

cells. Moreover, the Taylor expansion is not closed by isomorphism: from ρ ∈ TR for some
DiLL-ps R and σ ' ρ, it does not follow that σ ∈ TR (and there might even exist a DiLL-ps
S 6' R with σ ∈ TS). Indeed, although ρ and σ are isomorphic as DiLL0-ps, all information
about R available in ρ thanks to the names of its ports and cells might very well be lost in σ.

The definition of Taylor expansion of a MELL-ps coming from [9] and used in [15, Def. 9]
and [17, Def. 5] forgets all the information encoded in the names of ports and cells of each
element of our labeled Taylor expansion.

I Definition 15 (Taylor expansion of a DiLL-proof-structure). Let R be a DiLL-ps. The Taylor
expansion of R is T 'R =

{
{τ ∈ PSDiLL0 | τ ' ρ} | ρ ∈ TR

}
.

Let R be a DiLL-ps: the binary relation ≈R on PSDiLL0 defined by “τ ≈R τ ′ iff there
is ρ ∈ TR such that τ ' ρ ' τ ′” is a partial equivalence relation, and, for any ρ ∈ TR,
{τ ∈ PSDiLL0 | τ ' ρ} is a partial equivalence class on PSDiLL0 modulo ≈R. Morally, T 'R is
the quotient of TR modulo isomorphism, i.e. modulo renaming of ports and cells of each
element of TR: any element of T 'R can be seen as an element of TR where all the information
encoded in the names of its ports and cells is forgotten. Clearly, if R ' S then T 'R = T 'S .

Let us stress the differences between TR and T 'R of a DiLL-ps R. Given a (co-)contraction
cell l of ρ ∈ TR (i.e. l ∈ C!,?

ρ and card(Paux
ρ (l)) ≥ 2), it is possible to distinguish if l is a “real”

(co-)contraction (i.e. the corresponding !- or ?-cell l′ of R has at least 2 premises) or not (and
then l′ is in the border of some box and has only one premise which is in Doors!

R ∪Doors?
R):

only in the first case there are two premises (p, a) and (q, b) of l with p 6= q. We can make
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p : 1

1

!

q : !1

!

!

r : !!1

!

(a) R ∈ PSMELL

l

o o

(1) (2)

(1, 1) (2, 1) (2, 2)

f(o) = {(1, 1), (2, 1), (2, 2)}
f(l) = {(1), (2)}

(b) f ∈ T proto
R .

l

o o

(1) (2)

(1, 1) (1, 2) (2, 1)

g(o) = {(1, 1), (1, 2), (2, 1)}
g(l) = {(1), (2)}

(c) g ∈ T proto
R .

(p, (1, 1)) (p, (2, 1)) (p, (2, 2))

1 1 1

!

(q, (1))

!

(q, (2))

!

(r, ( ))

(d) τR(f) ∈ TR

(p, (1, 1)) (p, (1, 2)) (p, (2, 1))

11 1

!

(q, (2))

!

(q, (1))

!

(r, ( ))

(e) τR(g) ∈ TR

Figure 5 A MELL-ps R (Fig. 5a) where o (resp. l) is the box-cell with conclusion q : !1 (resp. r : !!1),
and two different but isomorphic elements τR(f) (Fig. 5d) and τR(g) (Fig. 5e) of TR. See Example 14.

p :⊥ q :⊥ r :1
⊥ ⊥ 1

?

t :?⊥

!

u : !1

!!

s : !⊥

!

(a) R ∈ PSMELL.

p :⊥ q :⊥ r :1
⊥ ⊥ 1

?

t :?⊥

!

u : !1

!!

s : !⊥

!

(b) S ∈ PSMELL.

l o

(1) (2) (1) (2)

f(l) = {(1), (2)} = f(o)

(c) f ∈ T proto
R ∩ T proto

S .

(p, (1)) (p, (2)) (q, (1)) (q, (2)) (r, (1)) (r, (2))
⊥ ⊥ ⊥ ⊥ 1 1

!

(s, ( ))

?

(t, ( ))

!

(u, ( ))
(d) τ ∈ TR ∩ TS .

Figure 6 Two non-isomorphic MELL-ps R (Fig. 6a) and S (Fig. 6b), where l (resp. o) is the
box-cell of R and S with conclusion s : !⊥ (resp. u : !1). The DiLL0-ps τ ∈ TR ∩ TS (Fig. 6d) is (the
2-diffnet of R and S) generated by the Taylor-function f of R and S (Fig. 6c), i.e. τR(f) = τ = τS(f).

this distinction via the information encoded in the names of ports and cells of ρ ∈ TR, but in
general we are not able to do that in (any representative of) an element of T 'R .

Nevertheless, the information encoded in the labeled Taylor expansion of a DiLL-ps has
some limitations: in general, a DiLL-ps R is not completely characterized by any ρ ∈ TR
(even if ρ is R-fat or strongly R-fat, see Def. 16 below), i.e. the fact that ρ ∈ TR ∩ TS for
some DiLL-ps R and S does not imply R ' S. For instance, the DiLL0-ps τ in Fig. 6d is an
element of both TR and TS , where R and S are as in Fig. 6a and 6b, respectively.

Elements of special interest of the (labeled) Taylor expansion of a DiLL
proof-structure

I Definition 16 (R-fatness, k-diffnet of a DiLL-ps). Let R ∈ PSDiLL, ρ ∈ TR and k ∈ N.
ρ is R-fat (resp. strongly R-fat) if, for every (l, b) ∈ C!

ρ such that l ∈ Cbox
R , one has

card(Paux
ρ ((l, b))) ≥ 1 (resp. card(Paux

ρ ((l, b))) ≥ 2).
ρ is a k-diffnet of R if card(Paux

ρ ((l, b))) = k for any (l, b)∈C!
ρ such that l∈Cbox

R .
The element of order k of T 'R is the ρ0 ∈ T 'R such that ρ ∈ ρ0 for some k-diffnet ρ of R.

Given a DiLL-ps R and ρ ∈ TR: ρ is R-fat (resp. strongly R-fat) when ρ is obtained by
taking at least one (resp. two) copies of the content of any box in R; ρ is a k-diffnet of R when
ρ is obtained by taking exactly k copies of the content of every box in R . Any k-diffnet of R
with k ≥ 1 (resp. k ≥ 2) is R-fat (resp. strongly R-fat). Given k ∈ N, all k-diffnets of R are
isomorphic and there is a unique canonical k-diffnet of R; moreover, there is a unique element
of order k in T 'R : the set of all DiLL0-ps isomorphic to any k-diffnet of R. Following [5,
Def. 16–17], it can be shown that the LPS of R is univocally determined by any R-fat ρ ∈ TR.

I Fact 17 (Isomorphism of gs). Let R,S ∈ PSDiLL and ρ (resp. σ) be a 1-diffnet of R
(resp. S).
1. The functions forgetρ,RP and forgetρ,RC are bijective, and (forgetρ,RP , forgetρ,RC ) : Gρ ' GR.
2. Suppose ϕ1 : ρ ' σ. Let ϕP : PR → PS and ϕC : CR → CS be functions defined by

ϕP = forgetσ,SP ◦ ϕ1P ◦ (forgetρ,RP )−1 and ϕC = forgetσ,SC ◦ ϕ1C ◦ (forgetρ,RC )−1.
Then, ϕP and ϕC are bijective and (ϕP , ϕC) : GR ' GS.
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The fact that ρ ∈ TR for some DiLL-ps R and σ ' ρ do not imply that σ ∈ TR (and there
may exist a DiLL-ps S 6' R such that σ ∈ TS).

Indeed, all the information about R encoded in the names of ports and cells of ρ is lost in
σ, since σ is “the same as ρ up to the names of ports and cells”. In general looking at σ one is
not able to recognize where the border of the boxes in R are. Fact 17.2 only says that if R,S
are DiLL-ps and ρ (resp. σ) is the 1-diffnet of R (resp. S) with ϕ1 : ρ ' σ, then ϕ1 induces an
isomorphism ϕ from the gs GR of R to the gs GS of S, but in general ϕ does not make the
diagram in Fig. 2b (Def. 4) commute. This is not surprising, since a 1-diffnet of a DiLL-ps R
is essentially the gs of R (Fact 17.1), i.e. R having forgotten the border of boxes in R.

4 Connected case: computing a MELL-ps from its Taylor expansion

We show here our main result (Thm. 23): a connected (in the sense of Def. 19) MELL-ps
R is completely characterized by any γ ∈ T 'R strongly fat.6 The idea is that, by means
of the “geometry” of γ (the same in all elements of γ, since they are isomorphic), we can
recover the information about R encoded in the names of ports and cells of some suitable
ρ ∈ TR ∩ γ: in particular, we can identify the “real” contraction cells from the “fake” ones.
A key-tool for this approach is the notion of ?-accessibility (Def. 18): it allows to separate
the different copies of the content of a box, so it plays at a syntactic level the same role
played by bridges in [5, Def. 73]. Intuitively, in a pps Φ, q is a ? -accessible port from p

if there is a path in G(GΦ) seen as undirected graph (see page 5) starting upward from p

and ending in q, paying attention that, when crossing downward a cell l with type ? (here
“upward” and “downward” are in the sense of the order relation ≤Φ of Def. 2), we require
that all the premises of l are reachable by a path starting upward from p.

I Definition 18 (?-path, ?-accessibility). Let Φ be a pps. A ?-path on Φ (from p0 to pn) is a
finite sequence (p0, . . . , pn) of ports of Φ defined by induction as follows:
(i) (p) is a ?-path for any p ∈ PΦ;
(ii) if ~p = (p0, . . . , pn) is a ?-path where pn ∈ Ppri

Φ (l) for some l ∈ CΦ, then ~p·q is a ?-path,
for any q ∈ (Ppri

Φ (l) ∪ Paux
Φ (l)) r {pn};

(iii) if ~p = (p0, . . . , pn) is a ?-path with pn ∈ Paux
Φ (l) r {p0} for some l ∈ CΦ such that

tcΦ(l) 6= ?, then ~p·q is a ?-path, for any q ∈ (Ppri
Φ (l) ∪ Paux

Φ (l)) r {pn};
(iv) if ~p = (p0, . . . , pn) is a ?-path with pn ∈ Paux

Φ (l) r {p0} for some l ∈ C?
Φ, if for any r ∈

Paux
Φ (l) there is a ?-path from p0 to r, then ~p·q is a ?-path, for any q ∈ (Ppri

Φ (l) ∪ Paux
Φ (l)) r {pn}.

For every p ∈ PΦ, the set of the ?-accessible ports from p in Φ is defined as acces?
Φ(p) :=

{q ∈ PΦ | there is a ?-path in Φ from p to q}.

We require p0 6= pn in rules 3-4 so that in any ?-path on Φ of the form p·~r ·p·q, either
p <1

Φ q, or p and q are the two conclusions of a same ax-cell (?-paths “start upwards”).
According to Def. 18, given a pps Φ and p ∈ PΦ, the set of ?-accessible ports from p in Φ
is upward-closed (rule 2): if q ∈ acces?

Φ(p) and q ≤R q′ then q′ ∈ acces?
Φ(p);

is “often” downward-closed (rules 3-4): if q ∈ acces?
Φ(p) and q′ /∈ acces?

Φ(p) with q ∈ Paux
Φ (l)

and q′∈ Ppri
Φ (l) for some l ∈ CΦ, then p ∈ Paux

Φ (l), or l ∈ C?
Φ and Paux

Φ (l) 6⊆ acces?
Φ(l);

crosses ax-cells and cut-cells (rules 2-3): if l ∈ Cax
Φ then either Ppri

Φ (l) ⊆ acces?
Φ(p) or

Ppri
Φ (l)∩acces?

Φ(p) = ∅; if l ∈ Ccut
Φ then either Paux

Φ (l) ⊆ acces?
Φ(p) or Paux

Φ (l)∩acces?
Φ(p) = ∅.

6 According to Def. 1, (strong) fatness is not defined for a set of pps, but this notion can be extended to
a set of isomorphic pps thanks to Remark 2.1.
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The set Cbox
Φ and the partial function boxΦ play no role in Def. 18: in other words, ?-paths

and ?-accessibility can be equivalently defined in the gs GΦ of Φ.
Note that ?-accessibility cannot be defined as a binary symmetric relation on the ports of

a pps Φ: in general, q ∈ acces?
Φ(p) does not imply that p ∈ acces?

Φ(q), as exemplified by the
MELL-ps S in Fig. 8c.
I Remark. Recalling Remark 2.2, one can easily see that, if Φ and Ψ are pps such that
ϕ : GΦ ' GΨ , then for every p ∈ PΦ one has: ϕP(acces?

Φ(p)) = acces?
Ψ (ϕP(p)).

We now define the geometric key-notion of box-connectedness: a DiLL-ps is box-connected
if, seen as an undirected graph, what is inside any box is recursively connected, that is
(following [19, 5]), for any two ports p and q on the border of a same box, p and q are
connected by a path crossing only ports with depth at least the depth of p (and q). Formally,
our definition relies instead on ?-paths, which are a tool used in the proof of Lemma 20.

I Definition 19 (?-path inside a box, box-connectedness). Given R ∈ PSDiLL and l ∈ Cbox
R , a

?-path ~p = (p0, . . . , pn) in R is inside the box of l if pi ∈ inboxR(l) for all 0 ≤ i ≤ n.
A DiLL-ps R is box-connected if, for any l ∈ Cbox

R and p ∈ inboxR(l), there is a ?-path in
R from pridR(l) to p inside the box of l.

For example, the DiLL-ps R1 and R2 in Fig. 3b-3c, and R and S in Fig. 7a-7b are box-con-
nected; the DiLL-ps R and S in Fig. 4a and 3a are not box-connected. Clearly, any DiLL0-ps,
or more generally, any DiLL-ps R such that Doors?

R = ∅ = Doorscut
R , is box-connected.

We stress that the box-connectedness condition (a crucial hypothesis in our main result)
is quite general and not ad hoc. Indeed, it can be proven that: any ACC7 DiLL-ps having
neither ⊥-cells nor weakenings (i.e. ?-cells with no premises) inside boxes is box-connected.
In particular, any derivation in MELL sequent calculus without mix-rules, nor ⊥-rules nor
weakening rules corresponds to a box-connected MELL-ps. Also, any MELL-ps which is the
translation of an untyped λ-term (according to the call-by-name type identity o = !o( o) is
box-connected. Finally, box-connectedness is preserved under cut-elimination.

Box-connection and Taylor expansion. Given a box-connected DiLL-ps R and a strongly
R-fat ρ ∈ TR, all information encoded in the indexes of ports and cells of ρ can be recovered in
a “ geometric” way via ?-accessibility, without looking at the names of ports and cells of ρ: by
Lemma 20, in ρ the copy with index a of the content of the box associated with a box-cell l of
R is exactly the set of ?-accessible ports from the premise (pridR(l), a) of the !-cell (l, a–) of ρ.

I Lemma 20 (Geometric characterization of the copies of a box in an element of the labeled
Taylor expansion). Let R be a DiLL-ps, ρ ∈ TR and (p, a) ∈ Pρ with p = pridR(l) for some
l ∈ Cbox

R .8 Let P l,aρ = {(q, a·b) ∈ Pρ | b ∈ N∗ and q ∈ inboxR(l)}. If R is box-connected and ρ
is strongly R-fat , then P l,aρ = acces?

ρ((p, a)) and thus inboxR(l) = forgetρ,RP (acces?
ρ((p, a))).

In the proof of Lemma 20, the hypothesis of box-connectedness (resp. strong R-fatness)
ensures that the ?-accessible ports from (pridR(l), a) in ρ contain at least (resp. at most) all
the content of the copy with index a of the content of the box associated with the box-cell l
of R. In Fig. 6, τ is a 2-diffnet of both R and S (so τ is strongly R- and S-fat) but R and S
are not box-connected, and indeed (setting A1

p = acces?
τ ((p, (1))) and A1

r = acces?
τ ((r, (1)))):

7 See [19, Def. A.6, Rmk. A.7] for the definition of ACC for MELL-ps, which can easily be adapted to
DiLL-ps: ?-cells (resp. !-cells which are not box-cells) are considered as generalized `-cells (resp. ⊗-cells).

8 This implies that (l, a–) ∈ C!
ρ and (p, a) ∈ Paux

ρ ((l, a–)), according to Def. 9–11.
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Figure 7 Two non-isomorphic box-connected MELL-ps R (Fig. 7a) and S (Fig. 7b), having in
their respective Taylor expansions T 'R and T 'S the same element τ1 of order 1 (Fig. 7c), but two
different elements ρ2 (Fig. 7d) and σ2 (Fig. 7e) of order 2, respectively.

in R (Fig. 6a), one has inboxR(l) = forgetτ,RP (A1
p) but inboxR(o) 6⊆ forgetτ,RP (A1

r);

in S (Fig. 6b), one has inboxS(o) = forgetτ,SP (A1
r) but inboxR(l) 6⊆ forgetτ,SP (A1

p).
In Fig. 7, (any representative of) τ1 (Fig. 7c) is a 1-diffnet of S (hence τ1 is not strongly
S-fat) and the ?-accessible ports from the premise of the !-cell of τ1 cover more than the
content of the box of box-cell of S: only in σ2 (Fig. 7e), taking two copies of the content of
the box, the ?-accessible ports correspond exactly to the content of the box.

A consequence of Lemma 20 and Remark 4 is Cor. 21 given two box-connected MELL-ps
R and S, and ρ ∈ TR and σ ∈ TS strongly fat, any isomorphism ϕ between ρ and σ “preserves”
the copies of the content of a box (Cor. 21.1) and the depth of ports and cells (Cor. 21.2).

I Corollary 21 (Boxes and copies preservation). Let R,S ∈ PSMELL, ρ ∈ TR and σ ∈ TS with
ϕ = (ϕP , ϕC) : ρ ' σ. If R and S are box-connected and ρ and σ are strongly fat, then for
any (p, a), (p′, a′) ∈ Pρ and (q, b), (q′, b′) ∈ Pσ with ϕP((p, a)) = (q, b) and ϕP((p′, a′)) =
(q′, b′):
1. (copies preserv.) boxext

PR(p) = boxext
PR(p′) and a = a′ iff boxext

PS(q) = boxext
PS(q

′) and b = b′;
2. (depth preserv.) depthPR(p) = depthPS(q) (and depthPR(p′) = depthPS(q

′)).

Cor. 21.2 says that if a port of ρ corresponds to a port of R contained in n ∈ N boxes,
then its image in σ via ϕ corresponds to a port of S contained in n boxes, and conversely.
Cor. 21.1 means that if two ports of ρ are in the same copy of the content of a box in R,
then their images in σ via ϕ are in the same copy of a box in S , and conversely. The idea
of the proof of Cor. 21.1 is that if two ports of ρ are in the same copy of a box in R, then
(Lemma 20) they are ?-accessible from the same premise of a !-cell of ρ and thus, since
?-accessibility is preserved by isomorphism (Remark 4), their images via ϕ are ?-accessible
from the same premise of a !-cell of σ, hence (Lemma 20 again) they are in the same copy of
a box in S. The proof of Cor. 21.2 is similar. A fact analogous to Cor. 21 holds for cells.

I Remark (Box-cells preservation). LetR,S ∈ PSMELL, ρ ∈ TR and σ ∈ TS with ϕ = (ϕP , ϕC) :
ρ ' σ. Let a ∈ N∗ and l ∈ Cbox

R : if (pridR(l), a) ∈ Pρ then there are o∈Cbox
S and b∈N∗ such

that ϕP((pridR(l), a)) = (pridS(o), b) and ϕC((l, a–)) = (o, b–), as in a MELL-ps !-cells and
box-cells coincide. Analogously for every b ∈ N∗ and o ∈ Cbox

S with (pridS(o), b) ∈ Pσ.

Remark 4 is false in general if R or S is a DiLL-ps: given R ∈ PSDiLLrPSMELL and ρ ∈ TR
as in Fig. 8a–8b, it is easy to find ϕ = (ϕP , ϕC) : ρ ' ρ with ϕC

(
(l, ( ))

)
= (o, ( )), i.e. ϕ maps

the !-cell of ρ corresponding to the box-cell of R into the !-cell of ρ not corresponding to the box-
cell of R. For this reason Cor. 21 holds only for MELL-ps and not for DiLL-ps, in general.

Cor. 21 (together with Fact 17) is crucial in the proof of the next lemma, which shows
how to build an isomorphism φ between two box-connected MELL-ps R and S starting from
an isomorphism ϕ between ρ ∈ TR and σ ∈ TS strongly fat: roughly speaking, φ is just the
restriction of ϕ to only one copy (e.g. the first one) in ρ of the content of each box of R.
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Figure 8 A box-connected DiLL-ps R (Fig. 8a, with Cbox
R = {l} and C!

R r Cbox
R = {o}) and a

2-diffnet ρ (Fig. 8b) of R (see also Remark 4). Moreover, a box-connected MELL-ps S (Fig. 8c).

I Lemma 22 (Building isomorphism). Let R,S∈PSMELL, ρ∈TR and σ∈TS. Suppose ρ and σ
are strongly fat and canonical, and ϕ = (ϕP , ϕC) : ρ ' σ. Let φP : PR → PS and φC : CR → CS
be functions defined in Eq. (1). If R and S are box-connected, then φ = (φP , φC) : R ' S.

φP(p) = forgetσ,SP (ϕP((p, a))) for every p ∈ PR where (p, a) ∈ Pρ with a ∈ {1}∗;

φC(l) = forgetσ,SC (ϕC((l, a))) for every l ∈ CR where (l, a) ∈ Cρ with a ∈ {1}∗.
(1)

I Theorem 23. Let R and S be some box-connected MELL-ps. Let ρ0 ∈ T 'R and σ0 ∈ T 'S
be strongly fat. If ρ0 = σ0 then R ' S.

Proof. According to Def. 15, ρ0 = σ0 implies that there are ρ ∈ TR ∩ ρ0, σ ∈ TS ∩ σ0 and
ϕ = (ϕP , ϕC) : ρ ' σ. By Remark 3, we can suppose without loss of generality that ρ and σ
are canonical. By hypothesis, ρ and σ are strongly fat. By Lemma 22, there is φ : R ' S. J

We point out that Thm. 23 holds for any ρ0 ∈ T 'R strongly fat, in particular when ρ0
is the element of order 2 of the Taylor expansion of R, i.e. ρ0 is obtained from R (up to
isomorphism, see Def. 15-16) by taking exactly 2 copies of the content of each box in R. If R
or S is not box-connected, or ρ0 is not strongly fat, then in general R 6' S, see Fig. 6-7.

5 Conclusion: injectivity of the relational model

Thm. 23 has a semantic counterpart: the injectivity of relational semantics for box-connected
MELL-ps. The relational model is the simplest model of MELL; it can be seen as a degenerate
case of Girard’s coherent semantics [11], where formulas are interpreted as sets and proofs
as relations between them. It is more or less well-known that, given a MELL-ps R, there
is a correspondence between certain equivalence classes on its relational interpretation JRK
and elements of its Taylor expansion T 'R (see [12] for a detailed proof): in particular, two
cut-free MELL-ps with atomic axioms have the same relational semantics iff they have the
same Taylor expansion. Thus, from Thm. 23 it follows that:

I Corollary 24 (Injectivity for box-connected MELL). Let R and S be cut-free MELL-ps with
atomic axioms and conclusions of the same type.
1. If R and S are box-connected, and if JRK = JSK, then R ' S.
2. If R and S are sequentializable in MELL sequent calculus without mix-rules, ⊥-rules and

weakening-rules, and if JRK = JSK, then R ' S.

Using different techniques, De Carvalho [3] proves the following, more general, theorem:

I Theorem 25 (De Carvalho [3], injectivity for full MELL). Let R and S be cut-free MELL-ps
with atomic axioms and conclusions of the same type. If JRK = JSK, then R ' S.
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The injectivity proven in [5, Cor. 55] is the same as our Cor. 24.2,9 even if the technique
used in [5] allows to recover the LPS (see [5, Def. 16-17 and Cor. 52]) of any cut-free MELL-ps
R with atomic axioms from its relational semantics JRK: this eventually yields a slightly
more general injectivity result than our Cor. 24.1.10 As stressed in §??, our Thm. 23 (and our
proof of Cor. 24) differs a lot from the proofs of Thm. 25 and [5, Cor. 52,54-55]: [3, 5] rely on
the presence, in the interpretations of MELL-ps, of points with arbitrarily large complexity,
depending on the two MELL-ps one wishes to discriminate. On the other hand, our result
allows to discriminate any two different box-connected, cut-free MELL-ps with atomic axioms
using a point of the relational semantics with fixed complexity (the order 2).

As a concluding remark, we believe that some kind of “converse” of Thm. 23 holds, which
can be stated as follows: if R is a MELL-ps such that the element of order 2 of T 'R does not
belong to T 'S for any MELL-ps S 6' R, then R is “connected”. Strictly, such a statement
is wrong if we interpret “connected” as box-connected or connected graph in the sense of
[5, Cor. 54]. However, we conjecture that a slight modification of these two notions yields a
notion of connectedness for which Thm. 23 and its aforementioned converse (so as Cor. 24.1
and [5, Cor. 54]) hold. These results would strengthen the hierarchy outlined in §??.
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