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Abstract
We investigate operational and denotational semantics for computational and concurrent systems
with mobile names which capture their computational properties. For example, various properties
of fixed networks, such as shortest or longest path, transition probabilities, and secure data flows,
correspond to the “sum” in a semiring of the weights of paths through the network: we aim
to model networks with a dynamic topology in a similar way. Alongside rich computational
formalisms such as the λ-calculus, these can be represented as terms in a calculus of solos with
weights from a complete semiring R, so that reduction associates a weight in R to each reduction
path.

Taking inspiration from differential nets, we develop a denotational semantics for this calculus
in the category of sets and R-weighted relations, based on its differential and compact-closed
structure, but giving a simple, syntax-independent representation of terms as matrices over R. We
show that this corresponds to the sum in R of the values associated to its independent reduction
paths, and that our semantics is fully abstract with respect to the observational equivalence
induced by sum-of-paths evaluation.
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1 Introduction

Calculi based on name mobility [20, 23, 11] are well established as an elegant and expressive
formalism for describing computation and communication in a broad range of concurrent
systems. Semantics for these calculi, such as labelled transition systems, typically focus
on local properties of processes – in particular, bisimulation equivalence. In this article we
introduce resource-sensitive operational and denotational semantics for mobility which can
capture quantitative properties of the whole system being modelled for a variety of potential
resources (cost, security level, probability, . . . ). Potentially, this will allow algorithmic
reasoning principles developed for models such as weighted graphs to be extended to more
dynamic systems.

1.1 Related Work
We will describe operational and denotational interpretations of the solos calculus [17] –
that is, the fusion calculus [23] without any sequentialization in the form of input or output
prefixing. The solos calculus presents name mobility in a particularly pure form, without any
explicit notion of causal or temporal dependency, with an elegant graphical representation
via solo diagrams [22]. However, Laneve and Victor [17] have shown that sequentialization
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protocols may be written in the calculus using name-passing, recovering the expressive
power of the π-calculus, for example, and establishing the solos calculus as an elegant and
economical syntax for describing mobility in highly distributed systems.

We take inspiration from work by Ehrhard and Laurent [7], who have developed an
interpretation of the solos calculus in the formal graphical language of differential nets [10],
establishing a striking connections between name mobility and the differential structure [4]
which underlies our model. There are some significant differences: our semantics includes
replication (unlike the differential net semantics) but also the acyclic terms [7], which have
some pathological behaviours.

We develop and extend work by Manzonetto, McCusker, Pagani and the author [16],
which introduced operational and denotational semantics for nondeterministic functional
programs with weights from a continuous semiring R. Each terminating reduction path in
the operational semantics may be associated with a value in R by multiplying the weights
ecountered, giving an interpretation of programs as a sum in R of the weights of their
reduction paths. The corresponding denotational model in the category of free R-modules
has differential structure, although this is not reflected in the syntax, leading to a failure of full
abstraction. By moving to the solos calculus – with its close connection to differential structure
– this paper develops an analogous, but fully abstract interpretation for a broader class of
programs. (We show that there is a sound interpretation of R-weighted nondeterministic
λ-terms in the solos calculus over R.)

Our semantics of a concurrent process calculus with mobility which represents terms as
sums of their independent reduction paths is adumbrated by the work of Beffara [2], which
captures directly this notion of independent path in the (finitary) πI-calculus, and uses it to
give a trace semantics which is observed to possess many of the algebraic properties which
we use to define our model (e.g. the processes over a given set of free names form a semiring).
Our compositional construction of a semantics of this kind is therefore complementary, and
opens up the question of defining a formal relationship with the trace semantics. Similarly,
the representation of replication as a formal power series is foreshadowed by Boreale and
Gadducci [5].

1.2 Contribution

In this paper we develop a new semantic account of the solos calculus, by weighting terms and
reduction paths with values from a complete semiring R. Our main results are operational
and denotational semantics for a “unidirectional” fragment of the calculus in which each
closed term is interpreted as the sum in R of the weights of its reduction paths. We show that
the unidirectional fragment is sufficiently expressive to capture reduction behaviour in the
full calculus, and to evaluate sums-of-paths for an R-weighted non-deterministic λ-calculus.

Our denotational semantics interprets terms in the category of free R-modules and their
homomorphisms, which correspond simply to matrices with entries in R. We formalize
the differential structure required to interpret R-weighted unidirectional terms – a reflexive
differential bialgebra – and use it to establish soundness of the model.

2 Preliminaries: Complete Semirings

Both operational and denotational semantics will use notions of complete monoid, semiring
and semimodule, which we define here. A complete monoid [12] is a commutative monoid
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with infinite sums – a pair (S,Σ) of a set S with an operation Σ taking indexed1 sets over S
to elements of S, satisfying the following axioms:

For any indexed family {ai}i∈I , and partitioning function f : I → J ,
Σi∈Iai = Σj∈J(Σi∈f−1(j)ai).
Σi∈{j}ai = aj .

A complete (commutative2) semiring R is a tuple (|R|,Σ, ·, 1) such that (|R|,Σ) is a complete
monoid and (|R|, ·, 1) is a commutative monoid which distributes over Σ – i.e. a · Σi∈Ibi =
Σi∈Ia · bi.

If R is a complete semiring, then (R,+, 0, ·, 1) is a commutative semiring in the usual
sense (where 0 is the sum of the empty family, and a1 + a2 = Σi∈{1,2}ai). R is idempotent if
ai = b for all i ∈ I implies Σi∈Iai = b.

If the sub-semiring of R, of elements generated from the unit 1 is a semifield, then we may
define an exponential function on R (a homomorphism from its additive to its multiplicative
structure) as follows:

I Definition 1. Let R be a complete semiring. For each natural number n, let nR denote the
sum Σ1≤i≤n1. If nR has a multiplicative inverse 1

nR
for each n > 0, we may define the Taylor

exponential ! : (R,+, 0)→ (R, ·, 1) as the sum of the formal power series !a = Σn≥0
1
!n .a

n.

Note that we may define the Taylor exponential on any idempotent complete semiring (as
nR = 1

nR
= 1 for all n).

2.1 Semiring-Weighted Networks
We shall represent concurrent systems as (possibly infinite) matrices over a complete semiring
R (an A×B matrix over R is a function from A×B to R). To motivate the rest of the paper,
we note that such matrices provide a general setting for defining and studying shortest-path
and related problems [21], which are a classical application of semirings in quantitative
analysis of static systems. An A × A matrix G ∈ RA×A corresponds to a network, or
weighted digraph on the set of nodes A, with G(a, a′) being the weight of the edge from
a to a′. For any path (sequence of length at least 2) in A∗ we may compute a weight by
multiplication in R – i.e. w(a0, . . . , an+1) = G(a0, a1) · . . . ·G(an, an+1) – and so define the
sum of weights of all paths between a and a′: ΣG(a, a′) = Σs∈A∗w(asa′). The significance of
this value depends on the choice of R. For example:

If R is the Boolean semiring B = ({>,⊥},
∨
,∧,>) (i.e. G represents an unlabelled

digraph) then ΣG(a, a′) = > iff there is a path from a to a′.
In general, if R is a lattice, (e.g. G(a, a′) is the security level of information that can pass
from a to a′) then ΣG(a′, a) is the least upper bound of all information that may flow
from a to a′

If R is the tropical semiring T∞ = (R+ ∪ {∞},
∧
,+, 0) (i.e. G(a, a′) is the length or cost

of travelling from a to a′) then w(s) represents the length of the path s and ΣG(a, a′) is
the length of the shortest path from a to a′.
If R is the probability semiring (R+ ∪ {∞},Σ,×, 1), and the sum of weights entering
(or leaving) each node is less than 1 (i.e G is a stochastic matrix) then ΣG(a, a′) is the
probability of reaching a′ from a.

1 Our semantics restrict straightforwardly to countably complete monoids/semirings.
2 Only commutative monoids and semirings will be considered throughout.
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3 A Calculus of Solos With Resources

In this section we describe a “resource sensitive” version of the solos calculus [17]. This is
the fragment of the fusion calculus [23] without prefixing – that is, we have primitives (solos)
which can emit or receive channel names, but no primitives for expressing sequentialization
(although these may be expressed). We include weights from a commutative monoid, which
can quantify the resources used (the monoid operation shows how to combine weights across
parallel composition).

We work in the dyadic3 solos calculus, omitting matching of channel names, but including
explicit fusions of names, which simplify presentation of the semantics (these are studied
in detail by Wischik and Gardner [25]). Let M = (|M |, ·, 1) be a commmutative monoid.
Terms of the solos calculus over M are formed according to the grammar:

p, q ::= a | x(y, z) | x(y, z) | x = y | p|q | p+ q | !p | νx.p

where variables x, y, z represent communication channel names, and:
Each constant a is a weight representing the value a in |M |.
x(y, z) and x(y, z) are input and output solos – representing the receiving and sending of
the pair of names y and z on the channel x, respectively.
x = y is an explicit fusion asserting the identity of the names x and y.
p|q is parallel composition, with unit 1.
νx.p is hiding, binding the name x in p.
!p is the exponential of p, offering arbitrarily many copies of p in parallel.
p+ q is an (external) choice of the processes p and q.

3.1 Reduction Semantics
Our operational semantics for the solos calculus is non-standard – the primary justification
for this is that it reflects an elegant denotational, algebraic model. The close correspondence
between the calculus and differential nets [10, 8] suggests that a term of the solos calculus
can represent a collection of resources, so that reduction determines whether these resources
are successfully consumed or not (as in the differential λ-calculus [9]). In practical terms,
this means that our reduction rules for the solos calculus are linear, rather than affine – a
resource which cannot be consumed (e.g. νx.x(y, z)) is not equivalent to the unit for parallel
composition – and the sum is an external choice corresponding to the sum in a semiring. Note
that the latter may be macro-expressed (e.g. as p+ q = νx.x(−,−)|!(x(−,−)|p)|!(x(−,−)|q)
where x is not free in p or q). Linearity allows us to be more precise about how resources
are used, but we can express the affine behaviour of the original solos calculus (e.g. by
representing an affine solo as a choice x(y, z) + 1), as for the π-calculus [2].

We work up to structural congruence, which is the smallest congruence on terms containing
α-equivalence with respect to bound variables and the following axioms:

p|(q|r) ≡ (p|q)|r p|q ≡ q|p p|1 ≡ p a|b ≡ a · b
νx.νy.p ≡ νy.νx.p νx.1 ≡ 1 (νx.p)|q ≡ νx.(p|q) (x 6∈ FV (p))

In other words, terms are identified up to associativity and commutativity of parallel
composition (which acts as multiplication in M on weights) and scope extrusion of variables.
The basic reduction rules are as follows:

3 This is a minimal, expressive version of the calculus – Laneve and Victor [17] show that monadic solos
cannot express polyadic solos.
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x(u, v)|x(y, z)→ u = y|z = v

!p→ 1 νx.x = y|p→ p[y/x] p+ q → p

!p→ p|!p νy.x = y|p→ p[x/y] p+ q → q

In other words, communicating solos reduce by fusing their arguments, !p may replicate or
discard p,4 explicit fusion of a bound variable reduces by substitution with the variable to
which it is fused and non-deterministic choice reduces to one of its branches.

These reductions may be applied inside hiding and parallel composition, to terms identified
up to structural congruence. We define the compatible reduction −→ to be the least relation
on terms such that:

p→q
p−→q

p≡p′ p−→q q≡q′
p′−→q′

p−→q
νx.p−→νx.q

p−→q
p|r−→q|r

Every terminating reduction path ends either in a weight a or an irreducible term p which
contains solos which cannot communicate – i.e. resources which cannot be consumed or
demands for resources which cannot be satisfied (cf. the differential λ-calculus [9]). In the
former case, we say that a is a weight for the path, in the latter, that p is a failure (written
p 6↓).

For instance, we might represent a finite directed graph with weights from M as a term
of the solos calculus, such that reduction paths correspond to paths through G. Assuming
for the sake of simplicity that G is acyclic, let G̃ = |i,j∈N !([xi 7→ xj ]|aij),

I Proposition 2. νx1 . . . xn.x1(−,−)|G̃|xk(−,−) ↓ a if and only if there is a path from node
1 to node k of weight a.

More importantly, using the solos calculus allows us to describe networks which do not have a
fixed topology – for example by passing names through the network to create new (weighted)
connections.

3.2 The Unidirectional Solos Calculus
Our aim is to give a semantics of the solos calculus which accounts for all reduction paths, by
summing their weights in a complete semiring. In general, to compute a sum of path weights
for a term it is necessary to take account of the multiplicity of distinct paths to the same
value, where paths are distinguished according to the different choices made during reduction,
but not the order in which they are made. To make this notion of “sum of independent
paths” precise, we restrict attention to an expressive fragment of the solos calculus, closer to
differential nets, for which we are able to give operational and denotational semantics which
give a consistent interpretation of path sum. This “unidirectional” fragment is defined by a
derivation system which separates input and output capabilities and enforces constraints on
mobility of names related to those in the private π-calculus [24].

In a unidirectional term, the solo x(y, z) is assumed to send (on x) the capability to
receive on y and send on z. Accordingly, we say that x and z occur as output names, and y
as an input name in x(y, z). Dually x(y, z) receives on x the capability to send on y, and
receive on z – i.e. x and z occur as input names and y as an output name. The fusion x = y

joins an input name (x) to an output name (y).
We shall say that an occurrence of a variable is mobile if it is the argument to an input

or output solo, or in an explicit fusion – i.e. y, z occur as mobile names in both x(y, z),

4 Note that !p is not structurally congruent to p|!p, reflecting the linear nature of our rules.

FSCD 2016



24:6 Weighted Relational Models for Mobility

x,z`x(y,z);y y`x(y,z);x,z x`x=y;y

Γ`p;∆
Γ−{x}`νx.p;∆−{x}

Γ`p;∆ Γ`q;∆
Γ`p+q;∆ _`a;_a ∈ |M |

Γ`p;∆ Γ′`q;∆′
Γ∪Γ′`p|q;∆∪∆′ Γ Γ′,∆ ∆′ Γ`p;∆

Γ`!p;∆Γ = ∆ = ∅

Figure 1 Derivation Rules for Unidirectional Solos.

x(y, z) (and y = z), whereas x does not. A unidirectional context Γ is a set of names with a
specified subset Γ ⊆ Γ of mobile names. Figure 1 gives derivation rules for unidirectional
terms-in-context of the form Γ ` p; ∆, where Γ and ∆ are unidirectional contexts of input
and output names occurring in p. These rules may be seen as enforcing a simple linear
typing discipline on terms of the solos calculus: mobile names must be used linearly, whereas
static names may be used freely, with respect to the input and output modalities separately.

We write Γ Γ′ if Γ ∩ Γ′ = ∅ and Γ′ ∩ Γ = ∅. Sharing of mobile names is constrained by
requiring that in the parallel composition p|q the input and output contexts of p and q must
be non-interfering in this sense. Similarly, the exponential !p may contain no (free) mobile
names. A name is static in Γ ` p; ∆ if it does not occur in Γ ∪∆.

I Proposition 3. If Γ ` p; ∆ and p −→ q then there exist Γ′,∆′ such that Γ′ ` p; ∆′.

Proof. This is evident for the basic reductions of communicating solos, choice and replication.
The key case is reduction of explicit fusion by substitution. We show that if Γ, y ` p; ∆, x,
where x 6∈ Γ and y 6∈ ∆, then Γ, y ` p[y/x]; ∆, y by induction on p. Hence if Γ, y ` νx.x =
y|p; ∆, y, so that Γ, y ` p; ∆, x then Γ, y ` p[y/x]; ∆, y as required. (Note, however, that in
this case, y is now output-static.)

It is straightforward to check that unidirectionality is preserved under structural con-
gruence – i.e. if p ≡ p′ and Γ ` p; ∆ then Γ ` p′; ∆. So subject reduction extends to the
compatible reduction relation. J

We now assume that our monoid of resources is the multiplication in a complete semiring
R with a Taylor exponential.

3.3 Expressiveness of Unidirectional Terms
Passing of bound names, as in the private π-calculus [24], is naturally expressed in the
unidirectional fragment: we write x(y, z)p and x(y, z)p for νy.νz.x(y, z)|p and νy.νz.x(y, z)|p
respectively. These are essentially bound input and output operations for the “synchronous
π-calculus” [3].

To show the expressiveness of the unidirectional solos calculus , we may define unidirec-
tional terms which correspond to bidirectional solos – i.e. they can pass the capability to
send and receive on static names. Hence we may give a translation of the full solo calculus
into the unidirectional fragment which is sound with respect to reduction.

Using the forwarder [x 7→ y] =df νu.νv.x(u, v)|y(u, v), we may define macros for explicit
fusions of static variables (the equators of [14]) – let x̂ = y =df ![x 7→ y]|![y 7→ x] – and for
monadic bidirectional solos x̂(u) (input) and x̂(u) (output) which pass both input and output
capabilities on the static name u:
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x̂(u) =df x(v, w)![v 7→ u]|![u 7→ w] x̂(u) =df x(v, w)![u 7→ v]|![w 7→ u] We define a unidirec-
tional term representing the dyadic bidirectional solo x(y, z) by passing private names v, w
on x, and communicating send and receive capacity for y on v, and for z on w (as in the
encoding of polyadic communication in the monadic π-calculus [24]) – i.e.

x̂(y, z) = x(v, w)v̂(y)|ŵ(z).
x̂(y, z) = x(v, w)v̂(y)|ŵ(z).

This yields a compositional translation _̂ of the (dyadic) solos calculus into its unidirectional
fragment by replacing each solo and explicit fusion with the corresponding macro.

I Proposition 4. For every term p, p −→∗ a if and only if p̂ −→∗ a.

Proof Outline. We show the following by induction on reduction:
for any unidirectional term p, νx.x̂ = y|p −→∗ a if and only if νx.p[x/y] −→∗ a.
(We prove from left to right by showing that if νx.([x 7→ y]|[y 7→ x])n|x̂ = y|p −→∗ a for
some n then νx.p[x/y] −→∗ a.)
νx.v̂(y)|v̂(y′)|p̂ −→∗ a if and only if ŷ = y′|p̂ −→∗ a.
x̂(y, z)| ̂x(y′, z′)|p̂ −→∗ a if and only if ŷ = y′|ẑ′ = z|p̂ −→∗ a.

In other words, reduction of p̂ precisely tracks reduction of p, and hence p −→∗ a if and only
if p̂ −→∗ a. J

3.4 The Quantitative λ-Calculus

As a demonstration of the expressiveness of quantitative unidirectional solos, we adapt
Milner’s translation of the λ-calculus into the π-calculus [19]. [16] introduced an applied
λ-calculus (PCF) with non-deterministic choice and scalar multiplication by weights in a
continuous semiring R, describing an operational semantics evaluating programs to elements
of R and a corresponding denotational semantics in the category of weighted relations (i.e.
matrices) over R (which will also furnish models of the solos calculus over R). We show that
these results may be recast as an interpretation of the untyped λ-calculus with choice in the
unidirectional solo calculus (where they may be extended to any complete semiring with a
Taylor exponential).

For any complete semiring R, let Λ+
R be the (lazy) λ-calculus extended with a binary

choice operator +, and weighting with values from R – i.e. terms are given by the grammar:

M,N ::= x | λx.M | M N | M +N | a(M)

where a ranges over elements of R.
We may interpret Λ+

R by translation into the unidirectional solos calculus over R . A term
M of Λ+

R over the free variables x1, . . . , xn is interpreted as a R-term x1, . . . , xn ` ([M ])(u);u
with free static input names x1, . . . , xn and output name u.

([x])(u) = x(u,−)
([λx.M ])(u) =!u(v, x)([M ])(v)
([M N ])(u) = νv.v(u,w)|([M ])(v)|!w(y,−)([N ])(y).
([M +N ])(u) = ([M ])(u) + ([N ])(u).
([a(M)])(u) = a|([M ])(u).

We show that this translation is sound with respect to an operational semantics of Λ+
R which

evaluates each term to the sum of its reduction-path weights (based on [16]).

FSCD 2016
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4 Denotational Semantics

We now describe, for each complete semiring R, a fully abstract interpretation of the
unidirectional solos calculus in the symmetric monoidal category MatR of sets and matrices
over R. The objects of MatR are sets, and morphisms from X to Y are X×Y matrices (a.k.a.
“R-weighted relations”) over R, composed by matrix multiplication – given f : X → Y and
g : Y → Z, (f ; g)(x, z) = Σy∈Y f(x, y) · g(y, z).

The tensor product X ⊗ Y is the cartesian product of X and Y as sets (with unit I
being the singleton set), sending f : X → X ′ and g : Y → Y ′ to the matrix f ⊗ g with
(f ⊗ g)(x, y, x′, y′) = f(x, x′) · g(y, y′). MatR is compact closed: every object Y is dual to
itself – i.e. there are evident natural isomorphisms MatR(X ⊗ Y,Z) ∼= MatR(X,Y ⊗ Z).

For each X,Y , the X × Y matrices over R form a R-module – that is, a complete monoid
with an operation of scalr multiplication by elements of R, which satisfies:

(Σi∈Iai).u = Σi∈I(ai.u) a.Σi∈Iui = Σi∈Ia.ui (a · b).u = a.(b.u) (1.u) = u

I Proposition 5. MatR is enriched over the category of R-modules and their homomorphisms.5

Proof. Concretely, this means that there are indexed sum and scalar multiplication operations
on each hom-set (i.e. pointwise addition and multiplication of matrix entries) which satisfy
the axioms for a R-module and distribute over composition and the tensor product – i.e.

(Σi∈Ifi); g = Σi∈Ifi; g, f ; Σj∈Jgj = Σj∈J(f ; gj) and (a.f); g = a.(f ; g) = f ; (a.g).
(Σi∈Ifi)⊗ g = Σi∈I(fi ⊗ g) and (a.f ⊗ g) = a.(f ⊗ g).

By elementary linear algebra, the embedding of MatR into the category of R-modules which
sends each set X to the free R-module RX , and each X × Y matrix to the corresponding
linear function from RX to RY is fully faithful. J

4.1 Differential Structure
We interpret sharing of channels (contraction and weakening) using simple differential
structure in our category of matrices. The properties we require may be presented as follows:

I Definition 6. A differential bialgebra on a pair of objects (A,B) in a commutative-monoid-
enriched symmetric monoidal category is given by morphisms (µ : B ⊗B → B, η : I → B, δ :
B → B ⊗ B, ε : B → I, ζ : A → B, ξ : B → A) such that (B,µ, η, δ, η) is a commutative
bialgebra, and the following equations hold:
(i) ζ; ξ : A→ A = idA

(ii) η; ξ : I → A = 0 and ζ; ε : A→ I = 0
(iii) µ; ξ : B ⊗B → A = (ε⊗ ξ) + (ξ ⊗ ε) and ζ; δ : A→ B ⊗B = (η ⊗ ζ) + (ζ ⊗ η)
These equations are implicit in the definition of differential nets [10], and included explicitly
(alongside further structure) in the notion of a model of the differential calculus [4], which is
proven equivalent to a differential category with a storage modality – in any such category
there is a comonad ! : A→ A with a differential bialgebra on (A, !A) for each A. In MatR we
may define a differential bialgebra on (A,M∗(A)) for any set A, whereM∗(A) is the set of
finite multisets over A, by following the construction of the cofree commutative comonoid
on [18, 16] (essentially, a generalization of the finite multiset exponential on the relational
model of linear logic). Specifically, we may define the matrices:

5 The category of R-modules and their homomorphisms is symmetric monoidal closed, with construction
of the tensor product of R-modules following [13] – see e.g. [1] for extension with infinite sums).
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η(∗, X) = ε(X, ∗) = 1 if X = {}, 0 otherwise.
µ((X,Y ), Z) = δ(X, (Y, Z)) = 1 if X = Y ] Z, 0 otherwise.
ξ(X,x) = ζ(x,X) = 1 if X = {x}, 0 otherwise.

We interpret (the “type” of) channels as a differential bialgebra which satisfies a basic
recursive equation: on a channel we may send (finitely but unboundedly many) pairs of an
output and input name.

I Definition 7. A reflexive differential bialgebra is an object B (in a commutative monoid-
enriched SMC) with a dual B∗ and a differential bialgebra on (B ⊗B∗, B).

To define a reflexive differential bialgebra in MatR, we take the least fixed point of the
⊆-continuous operation sending the set X to the setM∗(X×X) of finite multisets of pairs of
elements ofX. LetB be the (countable) set

⋃
i∈ω Bi, whereB0 = ∅, andBi+1 =M∗(Bi×Bi),

so that B =M∗(B ×B). Since B is self-dual, and the tensor product in MatR is cartesian
product of sets, B =M∗(B ⊗B∗).

4.2 Denotational Interpretation
Let R be a complete semiring with a Taylor exponential, and let B be a reflexive differential
bialgebra in a R-module-enriched symmetric monoidal category C, yielding a commutative
bialgebra (B⊗n, µn, ηn, δn, εn) for each n.

For each m,n, C(B⊗m, B⊗n) is a complete semiring – we may define a product operation
on C(B⊗m, B⊗n): f · g = δm; (f ⊗ g);µn, with neutral element 1 = εm; ηn : B⊗m → B⊗n.
This is associative and commutative, and distributes over the indexed sum on C(B⊗m, B⊗n),
yielding a complete semiring CR(B⊗m, B⊗n), with a homomorphism of semirings from R

into CR(B⊗m, B⊗n) sending a ∈ R to a.1. Hence, in particular, CR(B⊗m, B⊗n) has a Taylor
exponential. The full subcategory of C generated from I,B,B∗ is compact closed, and
therefore has a canonical trace operator [15], with which we interpret hiding.

Ordering input and output contexts, we interpret terms-in-context x1, . . . , xm ` p;x1, . . . , xn

in CR(B⊗m, B⊗n), as follows:
Constants denote scalar multiples of the unit: [[_ ` a;_]] = k.idI .
Solos denote ξ and ζ: [[x, z ` x(y, z); y]] = Λ−1(ξ), [[y ` x(y, z);x, z]] = Λ(ζ).
Explicit Fusions denote the identity: [[x ` x = y; y]] = idB .
Hiding denotes the trace operation: [[Γ ` νx.p; ∆]] = tr([[Γ, x ` p; ∆, x]]).
Composition denotes the product: [[Γ ` p|q; ∆]] = [[Γ ` p; ∆]] · [[Γ ` q; ∆]].
Choice denotes the sum: [[Γ ` p+ q; ∆]] = [[Γ ` p; ∆]] + [[Γ ` q; ∆]].
Replication denotes the Taylor exponential: [[Γ `!p; ∆]] =![[Γ ` p; ∆]].

Permutation of contexts corresponds to composition with the corresponding isomorphisms on
B⊗m and B⊗n, and weakening of contexts to composition with B⊗m ⊗ ε : B⊗m+1 → B⊗m

and B⊗n ⊗ η : B⊗n → B⊗n+1

It may be noted that this interpretation does not mention unidirectionality. However, it
plays a critical role in the proof of its soundness in the following section.

5 Sum-of-Paths Evaluation

We now aim to show that our denotational semantics for a (closed) unidirectional term p

over the semiring R corresponds to an operational semantics which computes a sum in R of
the residues of the reduction paths of p.
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a⇓Ra
p⇓Ra p≡q

q⇓Ra
p 6↓
p⇓R0

p⇓Ra
νx.p⇓Ra

p|r⇓Ra q|r⇓Rb
(p+q)|r⇓Ra+b

pn|q⇓Ran

!p|q⇓RΣn≥0
an
n!

p⇓Ra
x=x|p⇓R∞.a

x(y1,z1)|...|u=yi|zi=v|...|x(yn,zn)|p⇓Rai

x(u,v)|x(y1,z1)|...|x(yn,zn)|p⇓RΣi≤nai
x 6∈ FV −(p) p[y/x]⇓Ra

x=y|p⇓Ra
x 6≡ y

Figure 2 Evaluation Rules for Unidirectional Terms.

If R is idempotent, then we may define this to be
∨
{a | p ↓ a}, but in the general case,

we require a notion of (syntax) independent reduction path. On the one hand, it is necessary
to take account of the multiplicity of distinct paths to the same value. For example, there
should be two reduction paths from a+ a to a. On the other hand some distinct reduction
paths in the rewriting system are different syntactic representations of the same events and
so do not represent independent paths in the required sense. For example, there is a single
path from a+ b|c+ d to a|c. Moreover, in calculi with mobility such as the solos calculus the
order in which reduction choices are made changes the communications available – as in the
term νxνy.νz.x(y, z)|x(z, y)|y(x, z)|y(z, x)|z(x, y)|z(y, x), for example.

Beffara makes this notion of independent reduction path explicit in giving a trace semantics
of the πI-calculus [2], which is quotiented by an equivalence relation between reduction paths.
However, if p is a term in our unidirectional solos calculus we can always find a channel on
which all possible interactions are simultaneously available, and so it remains implicit in the
operational semantics given here.

I Remark. Unidirectionality, and our denotational semantics, provide a perspective on the
notion of acyclicity introduced by Ehrhard and Laurent [7]. Cycles arise when a channel
name becomes fused to itself – a term is acyclic if it never attempts to fuse a channel to itself
in this way.

In our semantics, cyclic terms denote infinite sums of paths. For example, consider the solo
term νx.x = x, which denotes the composition of the unit and counit νB ; εB : I ⇒ I. Letting
∞ = Σi∈N1 (note that if R is idempotent, then ∞ = 1) then Σb∈B idI =∞.idI , whereas (e.g.)
νx.νy.x = y denotes idI . Semantically, this corresponds to identifying an explicit fusion
such as x = x with the forwarder ![x 7→ x], which reduces to νyz.x(y, z)|x(y, z)|![x 7→ x] −→
νyz.y = y|z = z|![x 7→ x], generating infinitely many reduction paths. Note that this does
not arise for forwarders and equators in the π-calculus, which must receive an input before
they can send an output – more generally (as noted by Ehrhard and Laurent), terms of the
π-calculus and λ-calculus can be represented as acyclic solos.

5.1 Evaluation Semantics
The rules in Figure 2 define a relation ⇓R between unidirectional R-terms and values in R,
such that if p ⇓R a then a is the sum in R of the weights of the reduction paths of p. We
write pn for the composition of n copies of p – i.e. p0 = 1, pn+1 = p|pn, and FV −(p) for the
set of input names of p.

I Proposition 8. For any term p, there exists a such that p ⇓R a.

Proof. By induction on the (well-founded [6]) multiset ordering on the measure `(p), defined
as follows:
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`(a) = `(x = y) = ∅ `(x(y, z)) = `(x(y, z)) = {{}}
`(νx.p) = `(p) `(p|q) = `(p) ∪ `(q)

`(p+ q) = `(p) ∪ `(q) ∪ {{}} `(!p) = {`(p)}

Note that ` is invariant with respect to structural congruence, and if q ⇓R b is a premise
for a rule (other than structural congruence) with conclusion p ⇓R a, then `(q)� `(p). If p
contains occurrences of !, = or +, then one of the corresponding rules is applicable. Otherwise
p is equivalent to νx1 . . . νxm.p

′, where p′ is a parallel composition of solos and constants. If
p′ consists only of constants, then p ≡ a for some a. If p′ contains a pair of complementary
solos xi(xj , xk) and xi(xj′ , xk′) then by unidirectionality xi cannot occur as a mobile name
in p′, and so the communication rule applies. Otherwise p is a failure. J

Moreover, it is a consequence of the soundness of the denotational model (Proposition 17)
that the result of evaluation is unique and therefore ⇓R defines a function from closed R-terms
to elements of R. For idempotent complete semirings, this agrees with small-step reduction
in the following sense.

I Proposition 9. If R is idempotent, p ⇓R

∨
{k | p −→∗ a}

Proof. By induction over the nested multiset ordering on `(p). J

Each complete semiring R induces a notion of contextual equivalence (R-equivalence)
on unidirectional solo terms, by testing closed terms with ⇓R. Say that a context C[_] is a
closing context for Γ,∆ if for any unidirectional term Γ ` p; ∆, C[p] is a closed unidirectional
term.

I Definition 10. Given terms Γ ` p, q; ∆, p∼Γ,∆
R q if for all closing contexts C[_] for Γ,∆,

C[p] ⇓R a if and only if C[q] ⇓R a.6

The properties of ∼R depend on R, but in general it is neither coarser nor finer than the
bisimulation equivalence for the solos calculus [17]. We give some illustrative examples of
equivalences and inequivalences (for non-trivial R), which follow from full abstraction of the
denotational semantics. We leave the input and output contexts implicit.

Units 1 6∼R0 – as noted, our interpretation of solo terms is not affine.
p|0∼R0 – 0 is an absorbing element for parallel composition.
Choice p|(q + r)∼Rp|q + p|r (distributivity).
p+ p∼Rp if and only if the finite sum in R is idempotent .
Exponential !(p+ q)∼R!p|!q and !0∼R1 – ! is a homomorphism from + to |
!p 6∼Rp|!p in general (since !0∼R0|!0 implies 0∼R!0∼R1).
For idempotent R, !p∼R1 + (p|!p).

5.2 Sum-of-paths for λ-terms
We illustrate our sum-of-paths interpretation of unidirectional processes by relating to an
evaluation semantics of Λ+

R terms based on that given in loc. cit. [16] – i.e. we prove
soundness of the translation given in Section 3.4. We evaluate closed terms of Λ+

R to elements
of R using a CEK machine equipped with an oracle determining which branch is taken at
each choice encountered in evaluation. A state of the machine is a triple (C;E;K;w) of

6 It will follow from our full abstraction result that any terms which are not ∼R-equivalent can be
separated by pure contexts – i.e. each semiring induces a single notion of equivalence, regardless of
which elements are denoted as constants.
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(λx.M ;E;ε)⇓R1
(Mi;E;K;w)⇓Ra

(M0+M1;E;K;iw)⇓Ra
i ∈ {0, 1} (M ;E,(x,N);K;w)⇓Ra

(λx.M ;E;N ::K;w)⇓Ra

(M ;E;N ::S;w)⇓Ra
(M N ;E;K;w)⇓Ra

(M ;E;K;w)⇓Rb
(a(M);E;K;w)⇓Ra·b

(M ;E,(x,M);K;w)⇓Ra
(x;E,(x,M);K;w)⇓Ra

Figure 3 Evaluation rules for the Λ+
R CEK machine.

(λx.M ;∅;ε;ε)⇓R1
(Mi;E;K;w)⇓Ra

(M0+M1;E;K;iw)⇓Ra
i ∈ {0, 1} (M ;E,(x,N)j ;K;w)⇓Ra

(λx.M ;E;N ::K;w)⇓Ra

(M ;E;N ::S;w)⇓Ra
(M N ;E;K;w)⇓Ra

(M ;E;K;w)⇓Rb
(a(M);E;K;w)⇓Ra·b

(M ;E,(x,M)j ;K;w)⇓Ra
(x;E,(x,M)j+1;K;w)⇓Ra

Figure 4 Multiset CEK Machine for Λ+
R .

a term C, an environment E (a finite set of pairs (x,M) defining a partial function from
variables to terms) and a continuation K (a finite list S of terms), and an oracle w (an
element of the set {0, 1}∗ of binary words). The rules in Figure 3 define a “big-step” reduction
relation from states to elements of R.

By induction on derivation, we prove that:

I Lemma 11. If (M ;E;K,w) ⇓ a and (M ;E;K;w) ⇓ a′ then a = a′.

So for any closed term M we may define the function evM : {0, 1}∗ → R:
evM (w) = a if (M ;∅; ε;w) ⇓R a, and evM (w) = 0, otherwise.
Hence we may evaluate the sum of paths for M by taking the sum of evM (w) over {0, 1}∗.

To prove soundness of the translation with respect to this operational semantics, we define
an equivalent version of the latter in which the environment E is a finite multiset of variable
bindings (rather than a set), such that application creates a finite (non-deterministically
chosen) number of copies of the binding of x to N , invocation of x consumes a single instance
and convergence requires that the environment is empty (See Figure 4.) We prove the
following lemma by a straightforward induction on derivation (sup(E) is the support of the
multiset E):

I Lemma 12. (M ; E ;K;w) ⇓R a if and only if there exists a multiset E such that sup(E) ⊆ E
and (M ; E;K;w) ⇓R a.

I Proposition 13. For any closed term M of Λ+
R , ([M ]) ⇓R Σw∈{0,1}∗evM (w).

Proof. By Lemma 12, it is sufficient to show ([M ; E;K]) ⇓R Σw∈{0,1}∗ev(M ; E;K;w), where:
ev(M ; E;K;w) is the evaluation function for states of the multiset CEK machine – i.e.
ev(M ; E;K;w) = a if (M ; E;K;w) ⇓R a, and ev(M,E,K,w) = 0, otherwise.
([M ; E;K]) is defined by extending the translation of Λ+

R -terms to states of the multiset
CEK machine:

([M ; {(x1, N1)j1 , . . . , (xk, Nk)jk};P1 : . . . : Pl]) =
([M ])(v1)| 1

!j1
|(x1(y,−)([N1])(y))j1 | . . . | 1

!jk
|(xk(y,−)([Nk])(y))jk |v1(v2, w1)|([P1])(w1)| . . .

. . . |vl(u,wl)|([P ])l(wl).
This is shown by nested multiset induction on `([M ; E;K;w]). J
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6 Soundness and Full Abstraction

We now prove soundness and completeness results relating the operational and denotational
semantics of unidirectional terms. We first show that structurally congruent terms have the
same denotation, using the symmetric monoidal structure and the properties of the trace
operator

I Lemma 14. For processes Γ `; p, q; ∆, if p ≡ q then [[Γ ` p; ∆]]R = [[Γ ` q; ∆]]R.

Soundness of the communication rule is established using the differential structure. Given
a differential bialgebra (A,B) we may derive a morphism ε : A ⊗ B → B = (ξ ⊗ B);µ
(this corresponds to the deriving transform for the differential operation). For n ≥ 0 let
δn

A : B → B⊗n be n-fold comultiplication derived from the comonoid structure on B, and for
each i ≤ n, let θi,n : A⊗n → A⊗n be the permutation isomorphism swapping the first and
ith copies of A. The equations for a differential bialgebra yield: ε; δn+1; ζ⊗n+1 : (A⊗B)→
A⊗n+1 = Σi≤n(A⊗ (δn; ζ⊗n)); θi,n+1.

I Lemma 15. If x 6∈ FV −(p) then [[νx.x(u, v)|x(y1, z1)| . . . |x(yn+1, zn+1)|p]]
= Σi≤n[[νx.x(u, v)|x(y1, z1)| . . . |u = yi|zi = v| . . . |x(yn+1, zn+1)|p]].

Proof. Suppose Γ ` p; ∆, x, with x 6∈ Γ – so p denotes a morphism [[p]] : [[Γ]] → [[∆]] ⊗ B.
Then x(u, v)|p denotes (a currying of) ([[p]]⊗ (B⊗B∗)); ([[∆]]⊗ε) : [[Γ]]⊗ (B⊗B∗)→ [[∆]]⊗B,
and x(y1, z1)| . . . |x(yn+1, zn+1) denotes (an uncurrying of) δn; ζ⊗n : B → (B ⊗B∗)n.

By dinaturality of the trace, νx.x(u, v)|x(y1, z1)| . . . |x(yn+1, zn+1)|p denotes the compos-
ition of these morphisms – i.e. ([[p]] ⊗ (B ⊗ B∗)); ([[∆]] ⊗ (ε; δn; ζ⊗n)) : [[Γ]] ⊗ (B ⊗ B∗) →
∆⊗ (B ⊗B∗)n).

By the differential rule above this is equal to [[p]]⊗ (Σi≤n(B ⊗ B∗)⊗ (δn; ζ⊗n); θi,n+1),
and hence to Σi≤n[[νx.x(y1, z1)| . . . |u = yi|zi = v| . . . |x(yn+1, zn+1)|p]]. J

Soundness of the evaluation rules for choice and replication follow directly from their definition,
and for (non-acyclic) explicit fusion, from the yanking rule for the trace operator. However,
the categorical structure is not sufficient to establish that every failure denotes the zero
map – this requires a global argument to show that every failure corresponds to “deadlocked”
matrix with a trace of zero.

I Lemma 16. If p 6↓ then [[p]] = 0.

Proof. Suppose p 6↓. Then p ≡ νx1 . . . xm.q where q is a parallel composition of solos and
constants. By definition, [[p]] is the trace of the Bm×Bm matrix [[x1, . . . , xm ` q;x1, . . . , xm]]
– i.e. the sum of the entries on the diagonal of [[q]]. Suppose (for a contradiction) that this is
non-zero – then there is a non-zero entry on this diagonal – i.e. there exist e1, . . . , em ∈ B
such that [[q]](e1, . . . , em, e1, . . . , em) 6= 0.

Choose the smallest n ∈ N such that e1, . . . , em ∈ Bn+1. Then (without loss of generality)
there exists j such that q ≡ xj(y, z)|q′ and ej 6∈ Bn. By assumption that p is a failure, xj

must appear as a mobile output name in q′ (otherwise, the communication rule may be
applied to reduce p to 0). Suppose (w.l.o.g.) q′ ≡ xk(u, xj)|q′′ for some q′′. Then there exists
d with (d, ej) ∈ ek. But ek ∈ Bn+1, and therefore ej ∈ Bn, a contradiction. J

I Proposition 17. For any closed term p, p ⇓R a if and only if [[p]]R(∗, ∗) = a.

Proof. From left-to-right, this follows from an induction on `(p), using Lemmas 14 15 and
16. For the converse, suppose [[p]]R(∗, ∗) = a. By Proposition 8, p ⇓R b for some b, and by
the left-to-right implication just established, a = b. J
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6.1 Full Abstraction
We will now establish a full abstraction result, showing that contextually equivalent R-
weighted solo terms denote the same matrix over R – i.e. if Γ ` p, q; ∆ where Γ ∩∆ = ∅,
p∼Rq if and only if [[p]]R = [[q]]R

7. This establishes the closeness of the syntax and semantics,
and also that we can define a testing equivalence for weighted processes which obeys the
algebraic laws of R-modules, and differential nets. Note that the R-weighted model of PCF
in [16] is not fully abstract, essentially because it contains finite elements which are not
denoted by any term. By contrast, we will show thatit is straightforward to define a basis of
definable elements for each R-module in our model.

For an element b ∈ B, define χ−b : B → I and (its transpose) χ+
B : I → B:

χ−b (a, ∗) = χ+
b (∗, a) = 1 if a = b: χ−b (a, ∗) = χ+

b (∗, a) = 0, otherwise.
{χ−b | b ∈ B} and {χ

+
b | b ∈ B} are bases for the R-modules MatR(B, I) and MatR(I,B).

I Lemma 18. For all b ∈ B, there exist terms x ` p−b and ` p+
b ; y which denote χ−b and χ+

b .

Proof. We prove that if b ∈ Bk then χ−b and χ+
b are definable, by induction on k. B0 = ∅,

so suppose b ∈ Bk+1. Then b is a finite multiset {(b−1 , b
+
1 ), . . . , (b−m, b+m)}, where each

b−i , b
+
i ∈ Bk. So by hypothesis, for each i, χ−

b+
i

is definable as a term u ` p−i and each χ+
b−

i

as ` p+
i ; v. Hence χ−b is definable as p−(x) = x(v, u)p−1 |p

+
1 | . . . |x(v, u)p−m|p+

m. By symmetry,
χ+

b is definable as _ ` p+(y); y. J

I Theorem 19. If Γ ` q, q′; ∆, where Γ ∩∆ = ∅ then [[q]]R = [[q′]]R ⇐⇒ q∼Rq
′.

Proof. Equational soundness follows from Proposition 17.
To prove completeness, suppose x1, . . . , xm ` q, q′; y1, . . . , yn, and [[q]]R 6= [[q′]]R. There ex-

ist b−1 , . . . , b−m, b
+
1 , . . . , b

+
n ∈ B such that [[q]](b−1 , . . . , bm, b

+
1 , . . . , b

+
n ) 6= [[q′]](b−1 , . . . , bm, b

+
1 , . . . , b

+
n ).

By Lemma 18, each χ+
b−

i

and χ−
b+

j

are definable as terms _ ` p+
i ;xi and yj ` p−j for

i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}.
Let C[_] = νx1 . . . xm.νy1 . . . yn.[_]|p+

1 | . . . |p+
m|p−1 | . . . |p−n . By Proposition 17 C[q] ⇓R

[[q]](b−1 , . . . , bm, b
+
1 , . . . , b

+
n ) and C[q′] ⇓R [[q]](b−1 , . . . , bm, b

+
1 , . . . , b

+
n ) – i.e. q 6∼Rq

′ as required.
J

7 Conclusions and Further Directions

We have defined a semantic basis for name mobility which focusses on quantitative testing.
Areas in which it might be extended, refined or applied, include:

Describing systems: which classes of processes can be expressed in the (acyclic part
of) the calculus of R-solos? In particular, can we establish a precise relationship with
Beffara’s quantitative trace semantics of the πI-calculus [2].
Expressing properties: which quantitative and qualitative properties of systems can be
naturally expressed using quantitative solos?
Computing sums of paths: For which terms can we give algorithms for computing the
evaluation function?
Constructing new models: Are there instances of reflexive differential bialgebras with
richer structure, for example in categories of games or event structures?

7 Our result is restricted to terms with disjoint input and output channels, essentially because input and
output capabilities are modelled separately. Without this restriction, full abstraction may fail – e.g.
in an idempotent semiring, the term νy.νz.x(y, z)|x(y, z) (which forwards to itself) is observationally
equivalent to the unit, 1.



J. Laird 24:15

References
1 A. Bahamonde. Tensor product of partially-additive monoids. Semigroup Forum, 32(1):31–

53, 1985.
2 Emmanuel Beffara. Quantitative testing semantics for non-interleaving. CoRR,

abs/0906.3994, 2009.
3 G. Bellin and P. J. Scott. On the pi-calculus and linear logic. Theoretical Computer Science,

135(1):11–65, 1994.
4 R. F. Blute, J. R. B. Cockett, and R. A. G. Seely. Differential categories. Mathematical.

Structures in Comp. Sci., 16, 2006.
5 M. Boreale and F. Gaducci. Processes as formal power series: A coinductive approach to

denotational semantics. Theoretical Computer Science, 360(1–3):440–458, 2006.
6 N. Dershowitz and Z. Manna. Proving termination with multiset orderings. Communica-

tions of the ACM, 22:465–476, 1979.
7 T. Ehrhard and O. Laurent. Acyclic solos and differential interaction nets. Logical Methods

in Computer Science, 6(3), 2010.
8 T. Ehrhard and O. Laurent. Interpreting a finitary pi-calculus in differential nets. Inform-

ation and Computation, 208(6):606–633, 2010.
9 T. Ehrhard and L. Regnier. The differential lambda-calculus. Theoretical Computer Science,

309, 2003.
10 T. Ehrhard and L. Regnier. Differential interaction nets. Theoretical Computer Science,

364(2):166–195, 2006.
11 C. Fornet and G. Gonthier. The reflexive chemical abstract machine and the join-calculus.

In 23rd ACM Symposium on Principles of Programming Languages (POPL’96), 1996.
12 J. S. Golan. The theory of semirings with applications in mathematics and theoretical

computer science. Addison-Wesley, 1992.
13 R. Guitart. Tenseurs et machines. Cahiers de Topologie et Geometrie Differentielle,

XXI(1):5–62, 1980.
14 K. Honda and N. Yoshida. On reduction-based process semantics. Theoretical Computer

Science, 152:437–686, 1995.
15 A. Joyal, R. Street, and D. Verity. Traced monoidal categories. Math. Proc. Camb. Phil.

Soc., 119:447–468, 1996.
16 J. Laird, G. Manzonetto, G. McCusker, and M. Pagani. Weighted relational models of

typed lambda-calculi. In Proceedings of LICS’13, 2013.
17 C. Laneve and B. Victor. Solos in concert. Mathematical Structures in Computer Science,

13(5), 2003.
18 P. Melliès, N. Tabareau, and C. Tasson. An explicit formula for the free exponential

modality of linear logic. In Proc. ICALP’09, number 5556 in LNCS, pages 247–260, 2009.
19 R. Milner. Functions as processes. Math. Struct. in Computer Science, 2(2):119–141, 1992.
20 Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, part i.

I AND II. INFORMATION AND COMPUTATION, 100, 1989.
21 M. Mohri. Semiring frameworks and algorithms for shortest-distance problems. Journal of

Automata, Languages and Combinatorics, 7(3):321–350, 2002.
22 C. Laneve. J. Parrow and B. Victor. Solo diagrams. In Proceedings of TACS 2001, LNCS.

Springer, 2001.
23 J. Parrow and B. Victor. The fusion calculus: Expressiveness and symmetry in mobile

processes. In Proceedings of LICS’98, pages 176–185. IEEE press, 1998.
24 D. Sangiorgi and D. Walker. The Pi-Calculus: A theory of mobile processes. Cambridge

University Press, 2001.
25 L. Wischik and P. Gardner. Explicit fusions. Theoretical Computer Science, 340(3):606–630,

2005.

FSCD 2016


	Introduction
	Related Work
	Contribution

	Preliminaries: Complete Semirings
	Semiring-Weighted Networks

	A Calculus of Solos With Resources
	Reduction Semantics
	The Unidirectional Solos Calculus
	Expressiveness of Unidirectional Terms
	The Quantitative lambda-Calculus

	Denotational Semantics
	Differential Structure
	Denotational Interpretation

	Sum-of-Paths Evaluation
	Evaluation Semantics
	Sum-of-paths for lambda-terms

	Soundness and Full Abstraction
	Full Abstraction

	Conclusions and Further Directions

