
Focusing in Orthologic∗

Olivier Laurent†

Université de Lyon, CNRS, ENS de Lyon, UCB Lyon 1, LIP, Lyon, France

Abstract
We propose new sequent calculus systems for orthologic (also known as minimal quantum logic)
which satisfy the cut elimination property. The first one is a very simple system relying on the
involutive status of negation. The second one incorporates the notion of focusing (coming from
linear logic) to add constraints on proofs and thus to facilitate proof search. We demonstrate
how to take benefits from the new systems in automatic proof search for orthologic.

1998 ACM Subject Classification F.4.1 Mathematical Logic

Keywords and phrases orthologic, focusing, minimal quantum logic, linear logic, automatic proof
search, cut elimination

Digital Object Identifier 10.4230/LIPIcs.FSCD.2016.25

1 Introduction

Classical (propositional) logic can be used to reason about facts in classical mechanics and is
related with the lattice structure of Boolean algebras. On its side, quantum (propositional)
logic has been introduced to represent observable facts in quantum mechanics. It is provided
as an axiomatization of the lattice structure of the closed subspaces of Hilbert spaces. This
corresponds to the structure of so-called orthomodular lattices. Among the properties of
these lattices, and thus of quantum logic, one finds the orthomodularity law (a ≤ b =⇒
b ≤ a ∨ (¬a ∧ b)) which is a very weak form of distributivity. Removing this law gives the
notion of ortholattice and leads to the associated orthologic (also called minimal quantum
logic, as it can be defined as quantum logic without orthomodularity). In the description
and reasoning about quantum properties, quantum logic is more accurate than orthologic.
Nevertheless a formula valid in orthologic is also valid in quantum logic, and thus provides a
valid quantum property. In the current state of the art, orthologic benefits of much better
logical properties than plain quantum logic (in proof theory in particular) and, since it also
corresponds to a nice class of lattices, many authors focus on it [9, 14, 10, 13, 4]. From the
point of view of lattice theory, ortholattices are bounded lattices with an involutive negation
such that p ∨ ¬p = >. As a consequence they can be understood as Boolean lattices without
distributivity, and indeed distributive ortholattices are exactly Boolean lattices.

The main topic of the present work is the study of the proof theory of orthologic, from
the sequent calculus point of view. Sound and complete sequent calculi satisfying the cut-
elimination property already occur in the literature (see for example [14, 13, 6]). Our first
result is another such calculus which is particularly simple: each sequent has exactly two
formulas and only seven rules are required. It relies on ideas of J.-Y. Girard in linear logic [7]

∗ This work was supported by the LABEX MILYON (ANR-10-LABX-0070) of Université de Lyon,
within the program “Investissements d’Avenir” (ANR-11-IDEX-0007), and by projects Récré (ANR-
11-BS02-0010) and Elica (ANR-14-CE25-0005), all operated by the French National Research Agency
(ANR).

† http://perso.ens-lyon.fr/olivier.laurent/

© Olivier Laurent;
licensed under Creative Commons License CC-BY

1st International Conference on Formal Structures for Computation and Deduction (FSCD 2016).
Editors: Delia Kesner and Brigitte Pientka; Article No. 25; pp. 25:1–25:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSCD.2016.25
http://perso.ens-lyon.fr/olivier.laurent/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

25:2 Focusing in Orthologic

for the representation of systems with an involutive negation, and shows how orthologic can
be seen as an extension of the additive fragment of linear logic with one new contraction-
weakening rule. The second and main contribution of this paper lies in the development of
a “second-level proof-theory” for orthologic by investigating the notion of focusing in this
setting.

Focusing, introduced in linear logic by J.-M. Andreoli [1], is a constraint on the structure
of proofs which requires connectives sharing some structural properties (like reversibility) to
be grouped together. The key point is that this restriction is sound and complete: focused
proofs are proofs and any provable sequent admits a focused proof. Together with cut
elimination, focusing can be used as a strong tool in proof search and proof study since it
reduces the search space to focused proofs. Focusing has also been used to define new logical
systems [8].

In the case of orthologic, we show that focusing can be defined and interacts particularly
well with the 2-formulas sequents. In particular, not only logical rules associated with
connectives are constrained but also structural rules can be organised. The exchange rule can
be hidden easily in the specific focusing rules and the contraction-weakening rule becomes
precisely constrained. As a consequence, we obtain a bound on the height of all focused
proofs of a given sequent, which is rarely the case in the presence of a contraction rule.
Starting from this remark, we experiment proof search strategies for orthologic based on our
focused system.

In Section 2, we recall the definition of ortholattice and orthologic with the main results
from the literature on sequent calculus and cut-elimination for orthologic. In Section 3, we
introduce the sequent calculus OL (inspired by additive linear logic) with a few properties.
Section 4 gives the two-steps construction of the focused system OLf . We explain how
focusing is applied to orthologic and we prove soundness, completeness and cut-elimination.
The last Section 5 is dedicated to the application of OLf in (backward and forward) proof
search for orthologic. This is based on upper bounds on the height of proofs and on additional
structural properties of focused cut-free proofs.

2 Ortholattices and Orthologic

Orthologic or minimal quantum logic is the logic associated with the order relation of
ortholattices (for some results about ortholattices, see for example [2]).

I Definition 1 (Ortholattice). An ortholattice O is a bounded lattice (a lattice with smallest
and biggest elements ⊥ and >) with an order-reversing involution p 7→ ¬p (also often denoted
p⊥ in the literature), called orthocomplement, satisfying p ∨ ¬p = > (for all p in O).

In particular the following properties hold for any two elements p and q of any ortholattice:
p ≤ q =⇒ ¬q ≤ ¬p, ¬¬p = p, ¬⊥ = >, ¬(p ∨ q) = ¬p ∧ ¬q, p ∧ ¬p = ⊥, as well as the
other De Morgan’s laws, but there is no distributivity law between ∧ and ∨.

Orthologic is the logic associated with the class of ortholattices, or conversely ortholattices
are the algebras associated with orthologic. Formulas in orthologic are built using connectives
corresponding to the basic operations of ortholattices:

A ::= X | A ∧A | A ∨A | > | ⊥ | ¬A

where X ranges over elements of a given countable set X of variables.
We want then A ` B to be derivable in orthologic if and only if A ≤ B is true in any

ortholattice O (for every interpretation of variables as elements of O, and with connectives
in A and B interpreted through the corresponding operations of O). In particular, the

O. Laurent 25:3

Lindenbaum algebra associated with orthologic over the set X is the free ortholattice over X
(which is infinite as soon as X contains at least two elements [3]).

If we adopt a sequent calculus style presentation, an (sound and complete) axiomatization
of orthologic can be given by the following axioms and rules (in the spirit of [9]):

A ` A
A ` B B ` C

A ` C

A ∧B ` A A ∧B ` B
C ` A C ` B

C ` A ∧B C ` >

A ` A ∨B B ` A ∨B
A ` C B ` C

A ∨B ` C ⊥ ` C
A ` B
¬B ` ¬A A ` ¬¬A ¬¬A ` A > ` A ∨ ¬A

The first line corresponds to an (pre) order relation. The second and third lines correspond
to a bounded inf semi-lattice and bounded sup semi-lattice (thus together they provide us
the structure of a bounded lattice). The fourth line adds the missing ortholattice ingredients
related with the orthocomplement ¬A.

I Example 2. If one wants to prove that for any p and q in an ortholattice, we have:
> ≤ ((p ∧ q) ∨ ¬p) ∨ ¬q. We can either use algebraic properties of ortholattices (which have
to be proved as well): ((p ∧ q) ∨ ¬p) ∨ ¬q = (p ∧ q) ∨ (¬p ∨ ¬q) = (p ∧ q) ∨ ¬(p ∧ q) = >
or we can use, on the logic side, a derivation with conclusion the corresponding sequent
> ≤ ((X ∧ Y) ∨ ¬X) ∨ ¬Y . This requires us to use most of the rules above.

The axiomatization proposed above is a direct translation of the order-theoretic definition
of ortholattices. From a proof-theoretic point of view, it has strong defects such has the
impossibility of eliminating the cut rule:

A ` B B ` C cut
A ` C

(which encodes the transitivity of the order relation). Example 2 could not be derived
without this rule for example. A reason for trying to avoid the cut rule is that when studying
a property like A ` C, the cut rule tells us that we may need to invent some arbitrary
B (unrelated with A and C). This may lead us to difficulties, undecidability, etc. In the
opposite, cut-free systems usually satisfy the sub-formula property stating that every formula
appearing in a proof of a given sequent is a sub-formula of a formula of this sequent. The
idea of finding presentations of the logic associated with lattices in such a way that cut (or
transitivity) could be eliminated goes back to Whitman [15] with applications to the theory
of lattices. In the case of ortholattices, one can find such an axiomatization in [14] under the
name OCL+ (also called GOL in [5]):

OCL+

ax
A ` A

Γ ` ∆ wLΓ, A ` ∆
Γ ` ∆ wRΓ ` A,∆

Γ, A ` ∆ ∧1LΓ, A ∧B ` ∆
Γ, B ` ∆ ∧2LΓ, A ∧B ` ∆

Γ ` A,∆ Γ ` B,∆
∧RΓ ` A ∧B,∆

Γ ` A,∆ ∨1RΓ ` A ∨B,∆
Γ ` B,∆ ∨2RΓ ` A ∨B,∆

Γ, A ` ∆ Γ, B ` ∆
∨LΓ, A ∨B ` ∆

>RΓ ` >,∆ ⊥LΓ,⊥ ` ∆
Γ, A ` ∆

¬RΓ ` ¬A,∆
Γ ` A,∆

¬LΓ,¬A ` ∆

where sequents Γ ` ∆ are given from two finite sets Γ and ∆ of formulas such that the size
of Γ plus the size of ∆ is at most 2 (and the comma denotes set union).

FSCD 2016

25:4 Focusing in Orthologic

I Example 3. We can prove in OCL+ the sequent of Example 2:

ax
X ` X ¬R` X,¬X ∨2R` X, (X ∧ Y) ∨ ¬X

∨1R` X, ((X ∧ Y) ∨ ¬X) ∨ ¬Y

ax
Y ` Y ¬R` Y,¬Y ∨2R` Y, ((X ∧ Y) ∨ ¬X) ∨ ¬Y

∧R` X ∧ Y, ((X ∧ Y) ∨ ¬X) ∨ ¬Y
∨1R` (X ∧ Y) ∨ ¬X, ((X ∧ Y) ∨ ¬X) ∨ ¬Y
∨1R` ((X ∧ Y) ∨ ¬X) ∨ ¬Y

wL> ` ((X ∧ Y) ∨ ¬X) ∨ ¬Y

The following key properties of OCL+ are proved in [14]:

I Theorem 4 (Cut Elimination in OCL+). The cut rule Γ1 ` A,∆1 Γ2, A ` ∆2
Γ1,Γ2 ` ∆1,∆2

is
admissible in OCL+.

I Theorem 5 (Soundness and Completeness of OCL+). OCL+ is sound and complete for
orthologic.

By looking at the structure of the rules, one can see there is an important symmetry
between ∨ on the left and ∧ on the right, ∧ on the left and ∨ on the right, ⊥ on the left and >
on the right, etc. This is not very surprising in a context where negation is an involution, and
this is an incarnation of De Morgan’s duality between ∧ and ∨ and > and ⊥. J.-Y. Girard
has shown for linear logic [7] how to simplify sequent calculi in the presence of an involutive
negation by restricting negation to variables and by considering one-sided sequents only.
This idea has been partly applied in [6] where they define formulas for orthologic as:

A ::= X | A ∧A | A ∨A | > | ⊥ | ¬X

and negation is then extended to all formulas by induction (it is not a true connective
anymore):

¬(¬X) := X ¬(⊥) := > ¬(>) := ⊥ ¬(A ∨B) := ¬A ∧ ¬B ¬(A ∧B) := ¬A ∨ ¬B

so that we obtain ¬¬A = A for any A. However the system proposed in [6] does not really
take benefits from this encoded involutive negation on formulas, since they use two-sided
sequents. One can also note that no remark is given in [6] regarding the number of formulas
in sequents. However one can see that, in their system, Γ ` ∆ is provable if and only if∧

Γ `
∨

∆ is provable, and that a proof of a sequent Γ ` ∆ with at most one formula in Γ
and at most one formula in ∆ contains only sequents satisfying this property.

We propose to go further in this direction of involutive negation to target a simpler
sequent calculus system for orthologic.

3 One-Sided Orthologic

In order to clarify the analysis and to be closer to an implementation, we prefer to consider
sequents based on lists rather than sets or multi-sets. The main difference with respect to
OCL+ is the necessity to use an explicit contraction rule and an explicit exchange rule. We
thus consider two kinds of sequents: ` A,B and ` A. As a notation, Π corresponds to 0

O. Laurent 25:5

or 1 formula so that ` A,Π is a common notation for both kinds of sequents. Like in [6],
formulas are built with negation on variables only:

A ::= X | A ∧A | A ∨A | > | ⊥ | ¬X

and, by moving to a one-sided list-based system, we obtain derivation rules like:

ax
` ¬A,A

` A,B ex
` B,A

` A,A c
` A

` A w
` A,B

` A,Π ∨1` A ∨B,Π
· · ·

But we can optimise these rules. First, we can assume Π not to be empty since the case of
an empty Π is derivable from the non-empty case. For example, for the (∨1) rule:

` A w
` A,A ∨B ∨1` A ∨B,A ∨B c
` A ∨B

Second, once we thus consider only logical rules with two formulas in sequents, the only rule
with a premise with only one formula is the (w) rule and the only rule with a conclusion with
only one formula is the (c) rule. This means that in a proof of a sequent with two formulas,
(c) and (w) rules always come together, one above the other, and we can group them. Finally
a sequent ` A can always be encoded as ` A,A since one is provable if and only if the other
is (thanks to the rules (c) and (w)). We thus focus on sequents ` A,B only, and on the
following rules:

OL

ax
` ¬A,A

` A,B ex
` B,A

` A,A cw
` A,B

` A,C ∨1` A ∨B,C
` B,C ∨2` A ∨B,C

` A,C ` B,C
∧` A ∧B,C

>` >, C

This sequent calculus with 7 rules (6 rules in its multi-set-based and set-based versions) does
not seem to occur in the literature and looks simpler than all the sound and complete calculi
for orthologic we have found. We call it OL. Relying on the remarks above, we have:

I Theorem 6 (Soundness and Completeness of OL). ` ¬A,B is provable in OL if and only
if A ` B is provable in OCL+, so that OL is sound and complete for orthologic.

Proof. To be completely precise, we have to recall that formulas of OL are all formulas of
OCL+. While the converse is not true, there is a canonical mapping of formulas of OCL+ into
formulas of OL obtained by unfolding the definition of ¬. For soundness, we use Theorem 4.
Concerning completeness, we prove simultaneously that A ` B in OCL+ entails ` ¬A,B in
OL, A ` in OCL+ entails ` ¬A,¬A in OL and ` B in OCL+ entails ` B,B in OL. J

For readers familiar with linear logic [7], this calculus OL can be seen as one-sided additive
linear logic extended with the (cw) rule, if we replace ∨ by ⊕, ∧ by & and ⊥ by 0.

I Example 7. We can prove in OL the sequent of Example 2 in its one-sided version:

FSCD 2016

25:6 Focusing in Orthologic

ax
` ¬X,X ∨2` (X ∧ Y) ∨ ¬X,X ∨1` ((X ∧ Y) ∨ ¬X) ∨ ¬Y,X ex

` X, ((X ∧ Y) ∨ ¬X) ∨ ¬Y

ax
` ¬Y, Y ∨2` ((X ∧ Y) ∨ ¬X) ∨ ¬Y, Y ex

` Y, ((X ∧ Y) ∨ ¬X) ∨ ¬Y
∧

` X ∧ Y, ((X ∧ Y) ∨ ¬X) ∨ ¬Y ∨1` (X ∧ Y) ∨ ¬X, ((X ∧ Y) ∨ ¬X) ∨ ¬Y ∨1` ((X ∧ Y) ∨ ¬X) ∨ ¬Y, ((X ∧ Y) ∨ ¬X) ∨ ¬Y cw
` ((X ∧ Y) ∨ ¬X) ∨ ¬Y,⊥ ex
` ⊥, ((X ∧ Y) ∨ ¬X) ∨ ¬Y

We now describe a few properties of OL which will be used later. First, the cut rule
` A,B ` ¬B,C

` A,C
is admissible (see Proposition 19 for an indirect proof). Also:

I Proposition 8 (Axiom expansion for OL). If we restrict the axiom rule of OL to its variable
case axv` ¬X,X , the general rule (ax) is derivable.

I Lemma 9 (Reversibility of ∧). ` A ∧B,C is provable iff both ` A,C and ` B,C are.

I Lemma 10 (Reversing). If we restrict the (cw) rule to formulas of the shape A1 ∨A2:

` A1 ∨A2, A1 ∨A2 cw∨` A1 ∨A2, B

where moreover B is neither > nor a ∧, the general rule (cw) is admissible.

Proof. This is done in two steps, first by proving the restriction on A (by induction on A for
an arbitrary B) and then the restriction on B (by induction on B, with A = A1 ∨A2). J

4 Focused Orthologic

Relying on the strong relation between the sequent calculus OL and linear logic, we import
the idea of focusing [1]. This constraint on the structure of proofs is based on an analysis of
the polarity of connectives, by separating those which are reversible and those which are
not. By reducing the space of proofs of each formula, it is a strong tool for accelerating
proof search. In orthologic, the connectives ∧ and > are reversible: the conclusion of their
introduction rule implies its premises (see Lemma 9 for example). Such connectives are
also called asynchronous or negative. Their dual connectives are called synchronous or
positive. Following this pattern, we separate formulas into synchronous and asynchronous
ones according to their main connective: X, ⊥ and A ∨B are synchronous, and ¬X, > and
A ∧B are asynchronous. So that A is synchronous if and only if ¬A is asynchronous. The
choice for variables is in fact arbitrary, as soon as we preserve this dual polarity between X
and ¬X for each of them.

4.1 A First Focused System OL0
f

Dealing with variables in focused systems is delicate, so we recommend the reader not very
familiar with focusing to concentrate on the other aspects of the system first.

A key result will be to prove the focused system to be as expressive as OL (and thus
sound and complete for orthologic). In order to make this as simple and clear as possible, we
will work in two steps. Indeed some optimisations (to be introduced later on in Section 4.4)
would make a direct translation more difficult.

O. Laurent 25:7

Our first focused system OL0
f is based on four kinds of sequents. For each of them, we

give an informal explanation based on how we can find a proof of such a sequent, thus from
the point of view of a bottom-up reading of proofs and rules:

In a sequent ` ⇑ A,B, all the asynchronous connectives at the roots of A and B (in
formulas A and B seen as trees) will be deconstructed and after that, A and B will be
synchronous (or negation of a variable) and allowed to move to the left of ⇑. In fact we
first work on A and then we move to a sequent ` A ⇑ B.
In a sequent ` A ⇑ B, A is synchronous or is the negation of a variable. The asynchronous
connectives at the root of B will be deconstructed and after that, B will be synchronous
(or negation of a variable) and allowed to move to the left of ⇑.
In a sequent ` A,B ⇑ , A and B are synchronous or the negation of a variable. We have
to select a synchronous formula and start decomposing its synchronous connectives at
the root, in a sequent ` A ⇓ B. Before that, we can apply contraction-weakening rules
to A and B. This is the main place where choices have to be made during proof search.
In a sequent ` A ⇓ B, A is synchronous or is the negation of a variable. The synchronous
connectives at the root of B will be deconstructed and after that, B will be asynchronous
(and we will start decomposing its asynchronous connectives at the root in a sequent
` A ⇑ B). Choices concerning the decomposition of ∨ will have to be made here.

Note, sequents ` ⇑ A,B are crucial for the comparison with other systems but play a weak
role inside this system. Indeed they occur only in proofs of sequents of the same shape and
only at the bottom part of such a proof. As soon as we reach a sequent ` A ⇑ B (in the
bottom-up reading of a proof), we will not find any other sequent ` ⇑ A,B above.

Let us be more formal now with the explicit list of the rules of the system OL0
f :

OL0
f

` ⇑ A,C ` ⇑ B,C ⇑∧` ⇑ A ∧B,C
⇑>` ⇑ >, C

` A ⇑ C ⇑R` ⇑ A,C

` C ⇑ A ` C ⇑ B ∧⇑` C ⇑ A ∧B
[(s) or (n)] >⇑` A ⇑ >

` C,A ⇑ R⇑` C ⇑ A

` C,C ⇑[(s) or (n)] cw1` C,A ⇑
` C,C ⇑[(s) or (n)] cw2` A,C ⇑

` C ⇓ A[(s)] D1` A,C ⇑
` C ⇓ A[(s)] D2` C,A ⇑

axv` ¬X ⇓ X
` C ⇓ A ∨1` C ⇓ A ∨B

` C ⇓ B ∨2` C ⇓ A ∨B
` C ⇑ A[(a)] R⇓` C ⇓ A

with the following side conditions written between square brackets [_]:
(a) A is asynchronous (s) A is synchronous (n) A is the negation of a variable.

One could have been more explicit by asking [(s) or (n)] as side condition in the (⇑R)
and (R⇑) rules but the following lemma proves these two side conditions to be redundant.

I Lemma 11. If ` A ⇑ C or ` A,B ⇑ or ` A ⇓ C is provable then A and B are
synchronous or the negation of a variable.

I Example 12. The sequent ` (X ∨ A) ∨ B, (C ∨ (D ∨ ¬X)) ∧ > has many proofs in the
systems of the previous sections, in particular in OL. However the corresponding sequent
` ⇑ (X ∨A) ∨B, (C ∨ (D ∨ ¬X)) ∧ > has a unique proof in OL0

f :

FSCD 2016

25:8 Focusing in Orthologic

axv` ¬X ⇓ X ∨1` ¬X ⇓ X ∨A ∨1` ¬X ⇓ (X ∨A) ∨B
D1` (X ∨A) ∨B,¬X ⇑
R⇑

` (X ∨A) ∨B ⇑ ¬X
R⇓

` (X ∨A) ∨B ⇓ ¬X ∨2` (X ∨A) ∨B ⇓ D ∨ ¬X ∨2` (X ∨A) ∨B ⇓ C ∨ (D ∨ ¬X)
D2` (X ∨A) ∨B,C ∨ (D ∨ ¬X) ⇑
R⇑

` (X ∨A) ∨B ⇑ C ∨ (D ∨ ¬X)
>⇑

` (X ∨A) ∨B ⇑ >
∧⇑

` (X ∨A) ∨B ⇑ (C ∨ (D ∨ ¬X)) ∧ >
⇑R

` ⇑ (X ∨A) ∨B, (C ∨ (D ∨ ¬X)) ∧ >

One can prove the soundness of OL0
f with respect to orthologic by translation into OL.

I Proposition 13 (Soundness of OL0
f). If ` ⇑ A,B or ` A ⇑ B or ` A,B ⇑ or ` A ⇓ B is

provable in OL0
f then ` A,B is provable in OL.

To conclude this section, here are a few simple facts which will be useful later and which
can be obtained by simple induction on proofs:
` X,Y ⇑ , ` ¬X,¬Y ⇑ and ` ⊥,⊥ ⇑ are not provable (both if X = Y or X 6= Y);
if ` A,B ⇑ is provable then ` B,A ⇑ as well (and with a proof of the same size);
if ` A,A ⇑ is provable then the proof contains a proof of ` A ⇓ A.

4.2 Cut Elimination in OL0
f

Due to the very rigid structure of proofs in focused systems, the possibility of enriching them
with admissible cut rules is often used in their study [8, 11] (in particular for expressiveness
analysis). It is the tool we are going to use here in order to prove the completeness of OL0

f
with respect to orthologic.

I Theorem 14 (Cut Elimination in OL0
f). The following cut rules are admissible in OL0

f :

C synchronous
` X ⇓ A ` ¬X ⇓ C

v-cut2` C ⇓ A

C synchronous
` X ⇑ A ` ¬X ⇓ C

v-cut3` C ⇑ A

` A,X ⇑ ` C,¬X ⇑
v-cut1` A,C ⇑

B asynchronous or variable
` A ⇑ B ` C ⇑ ¬B cut1` A,C ⇑

` A ⇑ B ` C,¬B ⇑ cut2` A,C ⇑

B asynchronous
` A ⇑ B ` ¬B ⇓ C cut3` A ⇓ C

B asynchronous or variable
` A ⇑ B ` C ⇓ ¬B cut4` A,C ⇑

` A ⇑ B ` ¬B ⇑ C cut5` A ⇑ C

` ⇑ A,B ` ⇑ C,¬B cut0` ⇑ A,C
` ⇑ A,B ` C ⇑ ¬B cut′0` C ⇑ A

O. Laurent 25:9

Proof. This is a proof involving many cases which require a precise management of the four
kinds of sequents. We try to explain the key ingredients which work in successive steps.

We prove simultaneously the admissibility of (v-cut2) and (v-cut3) by induction on the
size of the left premise.
We deduce the admissibility of (v-cut1) by induction on the size of the left premise. For
example:

` X ⇓ A D1` A,X ⇑
` ¬X ⇓ C D1` C,¬X ⇑

v-cut1` A,C ⇑

` X ⇓ A ` ¬X ⇓ C
v-cut2` C ⇓ A D1` A,C ⇑

since A and C are synchronous.
Using the previous steps, we prove simultaneously the admissibility of (cut1), (cut2), (cut3),
(cut4) and (cut5) by induction on the pair (f, p) where f is the size of the cut-formula B
and p is the size of the right premise. The crucial cases are the following:

Starting from:
` A ⇑ B1 ` A ⇑ B2 ∧⇑` A ⇑ B1 ∧B2

` C ⇓ ¬B1 ∨1` C ⇓ ¬B1 ∨ ¬B2 cut4` A,C ⇑
we can apply the induction hypothesis by means of (cut4) with a smaller cut formula.
If B is asynchronous, we have:

` A ⇑ B
` ¬B ⇓ C D1` C,¬B ⇑ cut2` A,C ⇑

` A ⇑ B ` ¬B ⇓ C cut3` A ⇓ C D2` A,C ⇑

otherwise B is a variable so that ` A ⇑ X must come from (R⇑) and we apply (v-cut1).
The most tricky case is contraction where we need two induction steps:

` A ⇑ B

` ¬B ⇓ ¬B
D` ¬B,¬B ⇑
cw

` ¬B,¬B ⇑ cw2` C,¬B ⇑ cut2` A,C ⇑

` A ⇑ B

` A ⇑ B ` ¬B ⇓ ¬B cut3` A ⇓ ¬B cut4` A,A ⇑ cw1` A,C ⇑

First we apply (cut3) with a smaller right premise and then, by transforming one more
step the (cut4), we reach a smaller cut formula.

We deduce the case (cut′0) and then (cut0), by induction on the size of the left premise. J

Among the 10 cut rules considered in the theorem above, mainly two will be used now
(namely cut0 and cut′0). The other rules were however necessary as intermediary steps to
prove the admissibility of these two rules.

4.3 Completeness of OL0
f

We are going to translate proofs of OL into proofs of OL0
f . We start with some preliminary

results about sequents ` ⇑ A,B in OL0
f which will be the target of sequents of OL.

I Lemma 15. The following rules are admissible in OL0
f :

` ⇑ C,>
` ⇑ C,A ` ⇑ C,B

` ⇑ C,A ∧B
` A ⇑ C
` ⇑ C,A

` ⇑ A,C
` ⇑ C,A

FSCD 2016

25:10 Focusing in Orthologic

I Lemma 16. In OL0
f , the following rules are admissible (and similarly for B ∨A instead

of A ∨B):

A asynchronous
` C ⇑ A
` A ∨B ⇑ C

A synchronous
` A ⇑ C
` A ∨B ⇑ C

A synchronous
` A,C ⇑
` A ∨B,C ⇑

A synchronous
` A ⇓ C
` A ∨B ⇓ C

I Proposition 17 (Axiom expansion for OL0
f). If A is synchronous or a negation of a variable,

` A ⇑ ¬A is provable.

This leads us to the completeness of OL0
f for orthologic by means of the completeness of

OL and the following translation result:

I Theorem 18 (Completeness of OL0
f). If ` A,B is provable in OL then ` ⇑ A,B is

provable in OL0
f .

Proof. By induction on the proof of ` A,B in OL, the main cases are:
If the last rule is a contraction-weakening rule, we use Lemma 10 to restrict ourselves to
the (cw∨) case, and by induction hypothesis we have ` ⇑ A1 ∨A2, A1 ∨A2. The only
way this is provable is by:

` A1 ∨A2, A1 ∨A2 ⇑ R⇑` A1 ∨A2 ⇑ A1 ∨A2 ⇑R` ⇑ A1 ∨A2, A1 ∨A2
so that we can build:

` A1 ∨A2, A1 ∨A2 ⇑ cw1` A1 ∨A2, B ⇑ R⇑` A1 ∨A2 ⇑ B ⇑R` ⇑ A1 ∨A2, B

If the last rule is a (∨1) rule, by induction hypothesis we have ` ⇑ A,C, thus using
Lemmas 15 and 16, Proposition 17 and Theorem 14:

` ⇑ A,C
` ⇑ C,A

A synchronous
` A ⇑ ¬A
` A ∨B ⇑ ¬A cut′0` A ∨B ⇑ C ⇑R` ⇑ A ∨B,C

and
` ⇑ A,C
` ⇑ C,A

A asynchronous
` ¬A ⇑ A
` A ∨B ⇑ ¬A cut′0` A ∨B ⇑ C ⇑R` ⇑ A ∨B,C

J

As promised in Section 3, we can deduce cut elimination for OL.

I Proposition 19 (Cut Elimination for OL). The cut rule is admissible in OL.

Proof. By Theorem 18, we have ` ⇑ A,B and ` ⇑ ¬B,C in OL0
f . By Lemma 15 we

deduce ` ⇑ C,¬B. Using cut0 (Theorem 14) we have ` ⇑ A,C, and by Proposition 13,
` A,C in OL. J

4.4 A Second Focused System OLf

If we try to apply a simple bottom-up proof-search procedure in a sequent calculus system,
a first obstacle to the finiteness of the search is given by cut rules. If a cut rule cannot
be eliminated then a given conclusion leads us to a possibly infinite set of premises. A
second obstacle comes from loops, i.e. non trivial derivations leading from a sequent to the

O. Laurent 25:11

same sequent (note however this obstacle can be dealt with by using loop detection during
the search, but loops make the proof-search longer). All the systems we have seen so far
contain non-trivial loops. Avoiding loops is one of the motivations for looking for a more
constrained focused system. Let us analyse loops in OL0

f . They mainly come from rules
acting on sequents of the shape ` _,_ ⇑ . If we look at derivations in a bottom-up way, we
reach such a sequent through a (R⇑) rule:

` C,A ⇑ R⇑` C ⇑ A

then we stay with sequents ` _,_ ⇑ by using (upwardly):

` C,C ⇑ cw1` C,A ⇑
and ` C,C ⇑ cw2` A,C ⇑

until we reach:

` C ⇓ A D1` A,C ⇑
or ` C ⇓ A D2` C,A ⇑

.

Globally, this means we start with a sequent ` C ⇑ A and we must end with ` C ⇓ A,
` A ⇓ C, ` A ⇓ A or ` C ⇓ C. This would correspond to four derivable rules:

` C ⇓ A
` C ⇑ A

` A ⇓ C
` C ⇑ A

` A ⇓ A
` C ⇑ A

` C ⇓ C
` C ⇑ A

In the same time we want to try to constrain contraction so that it is applied on ∨-formulas
only (in the spirit of Lemma 10). Moreover we would like contraction not being applied twice
on the same formula. In particular we get read of the fourth rule just above, which would
allow C to be contracted (uselessly) many times. All these remarks lead us to the following
new focused system called OLf :

OLf

` ⇑ A,C ` ⇑ B,C ⇑∧` ⇑ A ∧B,C
⇑>` ⇑ >, C

` C ⇑ A ` C ⇑ B ∧⇑` C ⇑ A ∧B
[(s) or (n)] >⇑` A ⇑ >

` B ∨ C ⇓ B ∨ C ⇑cw` ⇑ B ∨ C,A
` B ∨ C ⇓ B ∨ C[(s) or (n)] cw⇑` A ⇑ B ∨ C

axv` ¬X ⇓ X
` C ⇓ A ∨1` C ⇓ A ∨B

` C ⇓ B ∨2` C ⇓ A ∨B

` A ⇑ C ⇑R` ⇑ A,C
` C ⇑ A[(a)] R⇓` C ⇓ A

` C ⇓ A[(s)] D1` A ⇑ C
` C ⇓ A[(s)] D2` C ⇑ A

(a) A is asynchronous (s) A is synchronous (n) A is the negation of a variable

Note, sequents ` A,B ⇑ disappear in this system which relies on three kinds of sequents
only: ` A ⇑ B, ` A ⇓ B and ` ⇑ A,B.

I Example 20. We can prove in OLf the sequent associated with Example 2:

FSCD 2016

25:12 Focusing in Orthologic

axv` ¬X ⇓ X D1` X ⇑ ¬X R⇓` X ⇓ ¬X ∨2` X ⇓ (X ∧ Y) ∨ ¬X ∨1` X ⇓ ((X ∧ Y) ∨ ¬X) ∨ ¬Y
D1` ((X ∧ Y) ∨ ¬X) ∨ ¬Y ⇑ X

axv` ¬Y ⇓ Y D1` Y ⇑ ¬Y R⇓` Y ⇓ ¬Y ∨2` Y ⇓ ((X ∧ Y) ∨ ¬X) ∨ ¬Y
D1` ((X ∧ Y) ∨ ¬X) ∨ ¬Y ⇑ Y
∧⇑

` ((X ∧ Y) ∨ ¬X) ∨ ¬Y ⇑ X ∧ Y
R⇓

` ((X ∧ Y) ∨ ¬X) ∨ ¬Y ⇓ X ∧ Y ∨1` ((X ∧ Y) ∨ ¬X) ∨ ¬Y ⇓ (X ∧ Y) ∨ ¬X ∨1` ((X ∧ Y) ∨ ¬X) ∨ ¬Y ⇓ ((X ∧ Y) ∨ ¬X) ∨ ¬Y
cw⇑

` ⊥ ⇑ ((X ∧ Y) ∨ ¬X) ∨ ¬Y
⇑R

` ⇑ ⊥, ((X ∧ Y) ∨ ¬X) ∨ ¬Y

The system OLf is as expressive as OL0
f for sequents ` ⇑ A,B. In particular:

I Proposition 21 (Expressiveness of OLf). If ` ⇑ A,B is provable in OL0
f , it is also provable

in OLf .

Proof. We prove by induction on the proof π in OL0
f the more general statement:

If ` ⇑ A,B in OL0
f then ` ⇑ A,B in OLf .

If ` A ⇑ B in OL0
f then either ` A ⇑ B in OLf or A = A1 ∨A2 with ` A ⇓ A in OLf .

If ` A ⇓ B in OL0
f then either ` A ⇓ B in OLf or A = A1 ∨A2 with ` A ⇓ A in OLf .

If ` A,B ⇑ in OL0
f then at least one of the following four possibilities holds:

B is synchronous and ` A ⇓ B in OLf ;
A is synchronous and ` B ⇓ A in OLf ;
A = A1 ∨A2 and ` A ⇓ A in OLf ;
B = B1 ∨B2 and ` B ⇓ B in OLf .

We consider each possible last rule for π. Interesting cases are:
For the two contraction rules, we have ` C,C ⇑ in OL0

f thus, by induction hypothesis,
` C ⇓ C in OLf with C synchronous and we are done since ` ⊥ ⇓ ⊥ and ` X ⇓ X are
not provable thus C = C1 ∨ C2.
For (∨1), by induction hypothesis, we have either ` C ⇓ A or ` C1 ∨ C2 ⇓ C1 ∨ C2 in
OLf with C = C1 ∨ C2. In the first case, we apply the corresponding rule. In the second
case, we are immediately done.
For (⇑R), by induction hypothesis we have ` A ⇑ C or A = A1 ∨A2 with ` A1 ∨A2 ⇓
A1 ∨A2, we can build: ` A ⇑ C ⇑R` ⇑ A,C

or ` A1 ∨A2 ⇓ A1 ∨A2 ⇑cw` ⇑ A1 ∨A2, C
For (R⇑), we apply the induction hypothesis and we obtain four possible cases:

If ` C ⇓ A in OLf with A synchronous, we have: ` C ⇓ A D2` C ⇑ A
If ` A ⇓ C in OLf with C synchronous, we have: ` A ⇓ C D1` C ⇑ A
If ` C1 ∨ C2 ⇓ C1 ∨ C2 (C = C1 ∨ C2) in OLf , we are done.

If ` A1 ∨A2 ⇓ A1 ∨A2 (A = A1 ∨A2) in OLf , we have: ` A1 ∨A2 ⇓ A1 ∨A2 cw⇑` C ⇑ A1 ∨A2
J

I Proposition 22 (Soundness of OLf). If ` ⇑ A,B is provable in OLf then ` A,B is
provable in OL.

O. Laurent 25:13

From Propositions 19, 21 and 22, and Theorem 18, we can deduce the admissibility of
the following cut rule in OLf :

` ⇑ A,B ` ⇑ ¬B,C
cut` ⇑ A,C

We have thus built yet another sound and complete system for orthologic. This one has
very strong constraints on the structure of proofs. A key property of this new system (which
holds in none of the previous ones) is the termination of the naive bottom-up proof search
strategy (Proposition 23).

5 Proof Search in OLf

We first develop a few properties of OLf on which we will rely for proof search. In a second
time, we will compare with other algorithms from the literature.

5.1 Backward Proof Search
The basic idea of backward proof search in a cut-free sequent calculus system is to start
from the sequent to be proved, to look in a bottom-up manner at each possible instance of a
rule with this sequent as conclusion and to continue recursively with the premises of these
instances until axioms are reached. Given a sequent, we are going to bound the length of
branches of its proofs in OLf . Let us first define the following measure on formulas:

ϕ(X) = ϕ(¬X) = ϕ(⊥) = ϕ(>) = 1 ϕ(A∧B) = ϕ(A)+ϕ(B) ϕ(A∨B) = 2ϕ(A)+2ϕ(B)

As a bound on ϕ, we have ϕ(A) < 2|A| where |A| is the size (number of symbols) of A.

I Proposition 23 (Finiteness of Branches in OLf). Given two formulas A and B, 2ϕ(A)+2ϕ(B)
is a bound on the length of the branches of any proof of ` ⇑ A,B in OLf .

Proof. We define the measure ψ of a sequent, according to its shape:

ψ(` ⇑ A,B) = 2ϕ(A) + 2ϕ(B) ψ(` A ⇑ B) = ϕ(A) + 2ϕ(B)

ψ(` A ⇓ B) =
{
ϕ(A) + ϕ(B) if B is synchronous
ϕ(A) + 2ϕ(B) + 1 if B is asynchronous

We now prove for each rule of OLf : if S1 is a sequent premise of the rule and S2 is the sequent
conclusion of the rule, then ψ(S1) < ψ(S2). For example:

(∨1) with A synchronous (∨1) with A asynchronous

ψ(` C ⇓ A) = ϕ(C) + ϕ(A)
< ϕ(C) + 2ϕ(A) + 2ϕ(B)
= ϕ(C) + ϕ(A ∨B)
= ψ(` C ⇓ A ∨B)

ψ(` C ⇓ A) = ϕ(C) + 2ϕ(A) + 1
< ϕ(C) + 2ϕ(A) + 2ϕ(B)
= ϕ(C) + ϕ(A ∨B)
= ψ(` C ⇓ A ∨B)

Thus for any sequent S, ψ(S) is a bound on the height of the branches of the proofs of S. J

Since rules of OLf are finitely branching, this bound on the length of branches ensures
(the absence of loops and) the termination of the backward proof search. Moreover, thanks
to the sub-formula property, we know every sequent appearing in a proof of ` ⇑ A,B is
made of two formulas which are sub-formulas of A or B. Since we have three different kinds
of sequents, there are at most 3(|A|+ |B|)2 such sequents. We have just proved a sequent
cannot appear twice in a branch of a proof, so we can deduce a tighter bound than ψ on the
height of branches: 3(|A|+ |B|)2. We thus have an upper bound 23(|A|+|B|)2+1 on the size of
proofs since rules have arity at most 2.

FSCD 2016

25:14 Focusing in Orthologic

5.2 Single Formula Proof Search
As we have seen in Section 3, in systems with exactly two formulas in sequents presented in
this paper, the provability of a formula A in orthologic is encoded as the provability of a
sequent of the shape ` A,A or ` ⇑ A,A. Since we are often interested in the provability of
a single formula, these sequents play a specific role. We can give some optimisation on the
bottom structure of proofs of sequents ` ⇑ A,A.

I Proposition 24 (Diagonal Sequent). The following properties hold in OLf :
` ⇑ X,X, ` ⇑ ¬X,¬X and ` ⇑ ⊥,⊥ are not provable.
` ⇑ >,> is provable.
` ⇑ B ∧ C,B ∧ C is provable if and only if both ` ⇑ B,B and ` ⇑ C,C are provable.
` ⇑ B ∨ C,B ∨ C is provable if and only if ` B ∨ C ⇓ B ∨ C is provable.

Proof. We consider the last two statements only. For ∧, we move back and forth to OL
thanks to Theorem 18 and Propositions 21 and 22. In OL, we use Lemma 9 and:

` B,B cw
` B,B ∧ C

` C,C cw
` C,B ∧ C

∧` B ∧ C,B ∧ C

For ∨, the only possible last rules are:

` B ∨ C ⇓ B ∨ C ⇑cw` ⇑ B ∨ C,B ∨ C
` B ∨ C ⇑ B ∨ C ⇑R` ⇑ B ∨ C,B ∨ C

and for a proof of ` B ∨ C ⇑ B ∨ C, the only possible last rules are:

` B ∨ C ⇓ B ∨ C cw⇑` B ∨ C ⇑ B ∨ C
` B ∨ C ⇓ B ∨ C D1` B ∨ C ⇑ B ∨ C

` B ∨ C ⇓ B ∨ C D2` B ∨ C ⇑ B ∨ C

so that ` B ∨ C ⇓ B ∨ C must be provable for ` ⇑ B ∨ C,B ∨ C to be provable. In the
other direction we directly use (⇑cw). J

This means in particular that any sequent ` A,A is equivalent to a finite family of
sequents ` B1 ∨ C1 ⇓ B1 ∨ C1,. . . , ` Bn ∨ Cn ⇓ Bn ∨ Cn (with each Bi ∨ Ci sub-formula
of A) or clearly not provable.

5.3 Forward Proof Search
Forward proof search consists in building, in a top-down way, proof-trees which are candidates
to be sub-proof-trees of proofs of a given sequent. Clearly the sub-formula property can
be used to control the sequents to be considered inside the proof-trees. We use here even
stronger constraints. Let us fix a formula A. We want to study sub-proof-trees of proofs of
` ⇑ A,A in OLf . We do not consider the more general case ` ⇑ A,B here.

I Proposition 25 (Strengthened Sub-Formula Property). If ` C ⇓ B or ` C ⇑ B′ or
` ⇑ D,E appears in a proof of ` ⇑ A,A in OLf , these are sub-formulas of A and moreover:

if B is asynchronous, it appears inside A just below a ∨ connective;
if B′ is synchronous, it is equal to A or it appears inside A just below a ∧ connective;
if B′ = A then C = A or C appears inside A below ∧ connectives only;
if C is synchronous, it is equal to A or it appears inside A just below a ∧ connective;
E = A, and D = A or D appears inside A below ∧ connectives only.

O. Laurent 25:15

Proof. Since ` ⇑ A,A satisfies the conclusion of the statement, we prove for each rule that
if the conclusion satisfies it, then all its premises as well. For example, for the (R⇓) rule,
the formula in position B′ in the premise must be asynchronous. Moreover we cannot have
B′ = A, since the property for the conclusion gives B′ below a ∨ connective inside A. J

This proposition provides us constraints on the meaningful sequents to be considered
during forward proof search. This means we can restrict the application of rules in the
algorithm for forward proof search to the case where they generate sequents satisfying the
properties given by Proposition 25.

5.4 Benchmark
We want to compare our proof-search procedures with procedures from the literature. We
consider some formulas from [12] and [5] as well as some random formulas in the language of
orthologic:

E1 = ((¬X ∨ Y) ∧X) ∨ ((X ∧ ¬Y) ∨ ((¬X ∧ ((X ∨ ¬Y) ∧ (X ∨ Y)))
∨ (¬X ∧ ((¬X ∧ Y) ∨ (¬X ∧ ¬Y)))))

E2 = X ∨ ((¬X ∧ ((X ∨ ¬Y) ∧ (X ∨ Y))) ∨ (¬X ∧ ((¬X ∧ Y) ∨ (¬X ∧ ¬Y))))
E3 = (((X ∨ ¬Y) ∧ (X ∨ Y)) ∧ (¬X ∨ (X ∧ ¬Y))) ∨ (¬X ∨ Y)
Φ0 = X ∨ ¬X Φn+1 = ((Xn ∧ Yn) ∧ (Xn ∧ Zn)) ∨ (((¬Xn ∧ Φn) ∨ ¬Yn) ∨ ¬Zn)
Ψ1

0 = > Ψ2
0 = ⊥ Ψ1

n+1 = Ψ1
n ∧Xn Ψ2

n+1 = Ψ2
n ∨ Yn

Ψ3
n = (X ∨ (Y ∧Ψ2

n)) ∧Ψ1
n Ψ4

n = (Y ∧ (X ∨Ψ1
n)) ∨Ψ2

n Ψn = ¬Ψ3
n ∨Ψ4

n

The formulas E2, E3 and Φn are provable, while E1 and Ψn are not.
We compare four algorithms: cf is prove-cf from [5], fw is the forward algorithm from [5],

bwf is the backward algorithm based on OLf , and fwf is the forward algorithm based on OLf .
The implementations are done in OCaml in the most naive way (except that we use some
memoization), so that running time (time, in seconds) should not be taken too seriously. As
an alternative measure which depends less on the particular implementation, we also count
the number of rule occurrences (rules) applied during search.

time cf bwf fw fwf

E1 0.00 0.00 0.04 0.03
E2 0.00 0.00 0.02 0.01
E3 0.00 0.00 0.02 0.02

Φ5 0.07 0.00 15.00 3.56
Φ10 0.34 0.00 368.86 88.60

Ψ5 0.22 0.00 1.43 0.13
Ψ20 _ 0.00 161.84 4.92

rules cf bwf fw fwf

E1 2 305 132 47 64
E2 210 104 33 49
E3 42 144 47 49

Φ5 6 094 384 724 338
Φ10 12 344 774 2 639 1 023

Ψ5 244 055 308 343 123
Ψ20 _ 2 603 2 083 723

rules cf bwf fw fwf

Average on some random formulas of size 20 971 28 163 29
Average on some random formulas of size 100 129 428 264 2 753 734

This is really a minimalist benchmarking. Deeper experiments must be done to obtain more
precise comparison informations. Focusing-based algorithms look really competitive. Forward
algorithms are sometimes more efficient than backward ones concerning the number of rules
applied, but require more management of data structures so take longer execution time.

FSCD 2016

25:16 Focusing in Orthologic

6 Conclusion

We have presented new sequent-calculus proof-systems for orthologic, mainly: OL which is
the simplest such system we know, and OLf which is based on focusing to constrain the
structure of proofs. With some complementary analysis on the structure of proofs in OLf
we have proposed efficient proof search algorithms for orthologic which look quicker than
the state of the art [5] (but additional studies in this direction must be done to obtain fully
convincing evaluations).

Our new systems open the door for additional proof-theoretical studies of orthologic (and
the possibility of extracting counter-models from proof-search failures should be investigated).
We hope also this will lead to results in the theory of ortholattices (free ones in particular)
in the spirit of Whitman’s work [15]. The present work could be extended to second-order
quantifiers on the logic side in relation with complete ortholattices. We plan also to work on
the application of focusing to other lattice-related logics [14].

Finally, the proof theory of orthologic seems to be mature enough to try to develop some
Curry-Howard correspondence aiming at exhibiting the computational content of orthologic.

Additional Material

A Coq development formalising the main proofs of the paper is available at:

https://hal.archives-ouvertes.fr/hal-01306132/file/olf.v.txt

The OCaml code for the benchmark of Section 5.4 is available at:

https://hal.archives-ouvertes.fr/hal-01306132/file/olf.ml.txt

References
1 Jean-Marc Andreoli. Logic programming with focusing proofs in linear logic. Journal of

Logic and Computation, 2(3):297–347, 1992.
2 Garrett Birkhoff. Lattice Theory, volume 25 of Colloquium Publications. American Math-

ematical Society, third edition, 1967.
3 Günter Bruns. Free ortholattices. Canadian Journal of Mathematics, 28(5):977–985, Octo-

ber 1976.
4 Uwe Egly and Hans Tompits. Gentzen-like methods in quantum logic. Technical Report

99-1, Institute for Programming and Logics, University at Albany - SUNY, 1999. Position
Papers of TABLEAUX ’99.

5 Uwe Egly and Hans Tompits. On different proof-search strategies for orthologic. Studia
Logica, 73(1):131–152, February 2003.

6 Claudia Faggian and Giovanni Sambin. From basic logic to quantum logics with cut-
elimination. International Journal of Theoretical Physics, 37(1):31–37, January 1998.

7 Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.
8 Jean-Yves Girard. A new constructive logic: classical logic. Mathematical Structures in

Computer Science, 1(3):255–296, 1991.
9 Robert Goldblatt. Semantic analysis of orthologic. Journal of Philosophical Logic, 3(1–

2):19–35, 1974.
10 Robert Goldblatt. Orthomodularity is not elementary. Journal of Symbolic Logic, 49(2):401–

404, 1984.
11 Olivier Laurent. A proof of the focalization property of linear logic. Unpublished note,

May 2004.

https://hal.archives-ouvertes.fr/hal-01306132/file/olf.v.txt
https://hal.archives-ouvertes.fr/hal-01306132/file/olf.ml.txt

O. Laurent 25:17

12 William McCune. Automatic proofs and counterexamples for some ortholattice identities.
Information Processing Letters, 65(6):285–291, 1998.

13 Hirokazu Nishimura. Proof theory for minimal quantum logic I. International Journal of
Theoretical Physics, 33(1):103–113, January 1994.

14 Jürgen Schulte Mönting. Cut elimination and word problems for varieties of lattices. Algebra
Universalis, 12:290–321, December 1981.

15 Philip Whitman. Free lattices. Annals of Mathematics, 42(1):325–330, January 1941.

FSCD 2016

	Introduction
	Ortholattices and Orthologic
	One-Sided Orthologic
	Focused Orthologic
	A First Focused System OLf0
	Cut Elimination in OLf0
	Completeness of OLf0
	A Second Focused System OLf

	Proof Search in OLf
	Backward Proof Search
	Single Formula Proof Search
	Forward Proof Search
	Benchmark

	Conclusion

