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Abstract
Unification is a central operation in the construction of a range of computational logic systems
based on first-order and higher-order logics. First-order unification has a number of properties
that dominates the way it is incorporated within such systems. In particular, first-order uni-
fication is decidable, unary, and can be performed on untyped term structures. None of these
three properties hold for full higher-order unification: unification is undecidable, unifiers can be
incomparable, and term-level typing can dominate the search for unifiers. The so-called pattern
subset of higher-order unification was designed to be a small extension to first-order unification
that respected the basic laws governing λ-binding (the equalities of α, β, and η-conversion) but
which also satisfied those three properties. While the pattern fragment of higher-order unification
has been popular in various implemented systems and in various theoretical considerations, it is
too weak for a number of applications. In this paper, we define an extension of pattern unific-
ation that is motivated by some existing applications and which satisfies these three properties.
The main idea behind this extension is that the arguments to a higher-order, free variable can
be more than just distinct bound variables: they can also be terms constructed from (sufficient
numbers of) such variables using term constructors and where no argument is a subterm of any
other argument. We show that this extension to pattern unification satisfies the three properties
mentioned above.
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1 Introduction

Unification is the process of solving equality constraints by the computation of substitutions.
This process is used in computational logic systems ranging from automated theorem
provers, proof assistants, type inference systems, and logic programming. The first-order
unification – that is, unification restricted to first-order terms – enjoys at least three important
computational properties, namely, (1) decidability, (2) determinacy, and (3) type-freeness.
These properties of unification shaped the way it can be used within computational logic
systems. The first two of these properties ensures that unification – as a process – will either
fail to find a unifier for a given set of disagreement pairs or will succeed and return the
most general unifier that solves all those disagreement pairs. The notion of type-freeness
simply means that unification can be done independently of the possible typing discipline
that might be employed with terms. Thus, first-order unification can be performed on
untyped first-order terms (as terms are usually considered in, say, Prolog). This property is
important since it means that unification can be used with any typing discipline that might
be adopted. Since typing is usually an open-ended design issue in many languages (consider,

© Tomer Libal and Dale Miller;
licensed under Creative Commons License CC-BY

1st International Conference on Formal Structures for Computation and Deduction (FSCD 2016).
Editors: D. Kesner and B. Pientka; Article No. 26; pp. 26:1–26:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSCD.2016.26
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


26:2 Functions-as-Constructors Higher-Order Unification

for example, higher-order types, subtypes, dependent types, parametric types, linear types,
etc.), the type-freeness of unification makes it possible for it to be applied to a range of
typing disciplines.

Of course, many syntactic objects are not most naturally considered as purely first-order
terms: this is the case when that syntax contains bindings. Instead, many systems have
adopted the approach used by Church in his Simple Theory of Types [11] where terms and
term equality comes directly from the λ-calculus. All binding operations – quantification in
first-order formulas, function arguments in functional programs, local variables, etc. – can
be represented using the sole binder of the λ-calculus. Early papers showed that second-
order pattern matching could be used to support interesting program analysis and program
transformation [18] and that a higher-order version of Prolog could be used to do more
general manipulations of programs and formulas [21]. Today, there is a rich collection of
computational logic systems that have moved beyond first-order term unification and rely on
some form of higher-order unification. These include the theorem provers TPS [3], Leo [7]
and Satallax [10]; the proof assistants Isabelle [26], Coq [36], Matita [4], Minlog [31], Agda
[9], Abella [5], and Beluga [29]; the logic programming languages λProlog [23] and Twelf [28];
and various application domains such as natural language processing [12].

The integration of full higher-order unification into computational logic systems is not as
simple as it is in first-order systems since the three properties mentioned above do not hold.
The unification of simply typed λ-terms is undecidable [15, 16] and there can be incomparable
unifiers, implying that no most general unifiers exist in the general situation. Also, types
matter a great deal in determining the search space of unifiers. For example, let i and j be
primitive types, let a be a constant of type i, and let F and X be variables of type α→ i

and α, respectively, where α is a type variable. Consider the unification problem (F X) = a.
If we set α to j, then there is an mgu for this problem, namely [F 7→ λw.a]. If we set α to i,
then there are two incomparable solutions, namely [F 7→ λw.a] and [F 7→ λw.w, X 7→ a]. If
we set α to i→ i, then there is an infinite number of incomparable solutions: [F 7→ λf.a]
and, for each natural number n, [F 7→ λf.fna, X 7→ λw.w]. If higher order values for α are
considered, the possibility of unifiers becomes dizzying.

For these reasons, the integration of unification for simply typed λ-terms into computa-
tional logic systems is complex: most such integration efforts attempt to accommodate the
(pre-)unification search procedure of Huet [17].

Instead of moving from first-order unification to full higher-order unification, it is possible
to move to an intermediate space of unification problems. Given that higher-order unification
is undecidable, there is an infinite number of decidable classes that one could consider. The
setting of higher-order pattern unification (proposed in [20] and called Lλ-unification there)
could be seen as the weakest extension of first-order unification in which the equations of
α, β, and η conversion hold. In this fragment, a free variable cannot be applied to general
terms but only to bound variables that cannot appear free in eventual instantiations for
the free variable. This restriction means that all forms of β-reduction encountered during
unification are actually (α-equivalent) to the rule (λx.B)x = B (a conversion rule called β0).
Notice that in this setting, β-reduction reduces the size of terms: hence, unification takes on
a much simpler nature. The unification problems that result retain all three properties we
listed for first-order unification [20]. As a result, the integration of pattern unification into a
prover is usually much simpler than incorporating all the search behavior implied by Huet’s
(pre-)unification procedure.

A somewhat surprising fact about pattern unification is that many computational logic
systems actually need only this subset of higher-order unification in order to be “practically
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complete”: that is, restricting unification to just this subset did not stop the bulk of
specifications from being properly executed. For example, while both early implementations
of λProlog and LF [24, 28] implemented full higher-order unification, the most recent versions
of those languages implement only pattern unification [1, 30]. A design feature of both of
those systems is to treat any unification problem that is not in the pattern fragment as a
suspended constraint: usually, subsequent substitutions will cause such delayed problems
to convert into the pattern fragment. Processing of constraints may also be possible: the
application of pruning to flexible-flexible constraints in [22] is such an example. Also since
pattern unification does not require typing information, it has been possible to describe
variants of such unification in settings where types can play a role during unification: see for
example, generalizations of pattern unification for dependent and polymorphic types [27],
product types [13, 14], and sum types [2].

Since pattern unification is a weak fragment of higher-order unification, it is natural to
ask if it can be extended and still keep the same high-level properties. There have been
extensions of pattern unification considered in the literature. The generalization (mentioned
above) of pattern unification to patterns by Fettig and Löchner [14] and Duggan [13] allows
for constructors denoting projections to be admitted in the scope of free functional variables.
These projections are specific unary functions which are closed under a number of properties,
such as associativity. When attempting to encode the meta-theory of sequent calculus in
which eigenvariables are seen as abstractions over sequents [19], a single bound variable
was intended to be used as a list of bound (eigen)variables. Thus, in order to encode the
sequent judgment x0, . . . , xn ` Cx0 . . . xn (for n ≥ 0 and all variables being of the same
primitive type) one would instead use the simply typed term λl.C(fst l) . . . (fst(sndnl)), where
the environment abstraction l has type, say, evs, and fst and snd are constructors of type
evs → i and evs → evs, respectively. Tiu showed how to lift pattern unification to this
setting [33]. The Coq proof assistant allows for some limited forms of unification and many
simple unification problems can appear that should be automatically solved. A typical such
example is of the form λx.Y (gx) .= λx.f(gx), where Y is a free variable of type i→ i and f
and g are constructors of the type i→ i. Clearly, this problem has the mgu Y 7→ λz.fz but
it falls outside the pattern restriction. There are certain uses of Coq (for example, with the
bigop library of SSReflect) which produce a number of non-pattern unification problems.1

Let us return to the definition of pattern unification problems. The restriction on
occurrences of the free variable, say, M is that (1) it can be applied only to variables that
cannot appear free in terms that are used to instantiate M and (2) that those arguments are
distinct. Condition (1) essentially says that the arguments of M form a primitive pattern
that allows one to form an abstraction to solve a unification problem. Thus, M x y can
equal, say, (s x) + y simply by forming the abstraction λxλy.(s x) + y. Condition (2) implies
that such abstracts are unique.

The examples of needing richer unification problems above illustrate that it is also natural
to consider arguments built using variables and term constructors: that is, we should consider
generalizing condition (1) above by allowing the application λl(M (fst l) (fst (snd l))). If this
application is required to unify with a term of the form λl.t then all occurrence of l in t must
occur in subterms of the form (fst l) or (fst (snd l)). In that case, forming an abstraction
of t by replacing all occurrences of (fst l) and (fst (snd l)) with separate bound variables
gives a solution to this unification problem. To guarantee uniqueness of such solutions, we
shall also generalize condition (2) so that the arguments of M cannot be subterms of each

1 Personal communication with Enrico Tassi.
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other. This additional constraint is required here (but not in the papers by Duggan [13] and
Tiu [33]) since we wish to handle richer signatures than just those with monadic constraints.

Many of the examples leading to this generalization of pattern unification arise in situations
where operators (such as fst and snd) are really functions and not constructors: the intended
meaning of those two operators are as functions that map lists to either their first element
or to their tail. When they arise in unification problems, however, we can only expect
to treat them as constructors. Thus, we shall name this extended pattern unification as
function-as-constructor (pattern) unification, or just FCU for short.

The rest of this paper is structured as follows. We cover the basic concepts related to
higher-order unification in Section 2. The class of unification problems addressed in this
paper, the functions-as-constructor class, is defined in Section 3 as is a unification algorithm
for that class. We prove the correctness of that algorithm in Section 4. We conclude in
Section 5.

2 Preliminaries

2.1 The Lambda-Calculus
In this section we will present the logical language that will be used throughout the paper.
The language is a version of Church’s simple theory of types [11] with an η-conversion rule as
presented in [6] and [32] and with implicit α-conversions. Unless stated otherwise, all terms
are implicitly converted into β-normal and η-expanded form. Most of the definitions in this
section are adapted from [32].

Let T0 be a set of basic types, then the set of types T is generated by T := T0 |
T → T. Let C be a signature of function symbols and let V be a countably infinite set of
variable symbols. Variables are normally denoted by the letters l, x, y, w, z,X, Y,W,Z and
function symbols by the letters f, g, h, k, a or typed names like cons . W e sometimes use
subscripts and superscripts as well. We sometimes add a superscript to symbols in order
to specify their type. The set Termα of terms of type α is generated by Termα := fα |
xα | (λxβ .Termγ) | (Termβ→αTermβ) where f ∈ C, x ∈ V and α ∈ T (in the abstraction,
α = β → γ). Applications throughout the paper will be associated to the left. We will
sometimes omit brackets when the meaning is clear. We will also normally omit typing
information when it is not crucial for the correctness of the results. τ(tα) = α refers to
the type of a term. The set Term denotes the set of all terms. Subterms and positions are
defined as usual. We denote the fact that t is a (strict) subterm of s using the infix binary
symbol (@) v. Sizes of positions denote the length of the path to the position. We denote
the subterm of t at position p by t|p. Bound and free variables are defined as usual. We will
use the convention of denoting bound and universally quantified variables by lower letters
while existentially quantified variables will be denoted by capital letters. Given a term t,
we denote by hd(t) its head symbol and distinguish between flex terms, whose head is a free
variable and rigid terms, whose head is a function symbol or a bound variable.

We will use both set union (∪) and disjoint set union (]) in the text.
Substitutions and their composition (◦) are defined as usual. Namely, (σ ◦ θ)X = θ(σX).

id denotes the trivial substitution mapping each variable to itself. We denote by σ|W the
substitution obtained from substitution σ by restricting its domain to variables in W . We
denote by σ[X 7→ t] the substitution obtained from σ by mapping X to t, where X might
already exist in the domain of σ. We extend the application of substitutions to terms in
the usual way and denote it by postfix notation. Variable capture is avoided by implicitly
renaming variables to fresh names upon binding. A substitution σ is more general than a
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substitution θ, denoted σ ≤ θ, if there is a substitution δ such that σ ◦ δ = θ. The domain of
a substitution σ is denoted by dom(σ).

We introduce also a vector notation tn for the sequence of terms t1, . . . , tn. This notation
also holds for nesting of sequences. For example, the term f (X1 z1 z2) (X2 z1 z2) (X3 z1 z2)
will be denoted by fX3z2. The meaning of the notation λzn is λz1, . . . , λzn. When the order
of the sequence is not important, we will use this notation also for multisets.

2.2 Higher-order Pre-unification
In this section we present Huet’s pre-unification procedure [17] as defined in [32]. The
procedure will be proven, in Section 3.2, to be deterministic for the class of FCU problems.
This result, together with the completeness of the procedure, implies the existence of most-
general unifiers for unifiable problems of this class.

The presentation in this paper of both the pattern and FCU unification algorithms is
much simplified if the following non-standard normal form is being used. All terms, including
functional existential variables but excluding the arguments of these variables, are considered
to be in η-expanded form. The arguments of these variables are expected to be in η-normal
forms. In a similar manner to the one in [32], one can prove that all substitutions used in
this paper preserve this normal form.

I Definition 1 (Unification Problem). An equation is a formula t .= s where t and s are
βη-normalized (see remark above) terms. A unification problem is a formula of the form
∃Xm.e1 ∧ . . . ∧ en where ei for 0 < i ≤ n is an equation. Sets of equations are always closed
under symmetry, i.e. if t .= s is in the set, then also s .= t.

I Definition 2 (Unification System). A unification system over a signature C is the following
quadruple 〈Q∃, Q∀, S, σ〉 where Q∃ and Q∀ are disjoint sets of variables, S is a set of equations
and σ a substitution. Given a unification problem ∃Xm.e1∧. . .∧en we consider the unification
system over signature C by setting Q∃ = Xm, Q∀ = {}, S = {e1, . . . , en} and σ = id. Let
bvars(ei) = zn for ei = (λzn.ti

.= λzn.si).

An important property of terms in which we will be interested later is the subterm property
between terms of different equations. Such a property is not closed under α-renaming of
bound variables for our current definition of unification systems. Since we implicitly assume
such renaming in order to avoid variables capture, we have to add the following additional
requirement.

I Definition 3 (Regular Unification Systems). A regular unification system is a unification
system in which each bound variable which is bound in a different context has a different
name.

I Example 4. The system 〈∅, ∅, {λx.fx .= λx.gx, λy.hy
.= λy.ky}, id〉 is regular while the

system 〈∅, ∅, {λx.fx .= λx.gx, λx.hx
.= λx.kx}, id〉 is not.

The next lemma is easily proven.

I Lemma 5. The subterm property is closed under α-renaming of bound variables for regular
unification systems.

Regular unification systems will also be called systems.
Before presenting Huet’s procedure for pre-unification, we will repeat the definition of

partial bindings as given in [32].
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〈Q∃, Q∀, S ] {t
.= t}, σ〉 → 〈Q∃, Q∀, S, σ〉 (Delete)

〈Q∃, Q∀, S ] {λzk.ftn
.= λzk.fsn}, σ〉 → 〈Q∃, Q∀, S ] {λzk.t1

.= λzk.s1, . . . , λzk.tn
.= λzk.sn}, σ〉 (Decomp)

〈Q∃, Q∀, S ] {λzk.Xzk
.= λzk.t}, σ〉 → 〈Q∃, Q∀, Sθ ] {X

.= λzk.t}, σ ◦ θ〉 (Bind)
where X 6∈ fvars(t) and θ = [X 7→ λzk.t]

〈Q∃, Q∀, S ] {λzk.Xα(sn) .= λzk.f(tm)}, σ〉 → 〈Q∃, Q∀, S ] {X
.= u, λzk.X

α(sn) .= λzk.f(tm)}, σ〉 (Imitate)
where u = PB(f, α) and f ∈ C

〈Q∃, Q∀, S ] {λzk.Xα(sn) .= λzk.a(tm)}, σ〉 → 〈Q∃, Q∀, S ] {X
.= u, λzk.X

α(sn) .= λzk.a(tm)}, σ〉 (Project)
where 0 < i ≤ k, u = PB(i, α) and either a ∈ C or a = zi for some 0 < i ≤ k

Figure 1 PUA- Huet’s pre-unification procedure.

I Definition 6 (Partial bindings). A partial binding of type α1 → . . . → αn → β where
β ∈ T0 is a term of the form
λyn.a(λz1

p1
.X1(yn, z1

p1
), . . . , λzmpm .Xm(yn, zmpm)) for some atom a where

τ(yi) = αi for 0 < i ≤ n.
τ(a) = γ1 → . . .→ γm → β where γi = δi1 → . . .→ δipi → γ′i for 0 < i ≤ m.
γ′1, . . . , γ

′
m ∈ T0.

τ(zij) = δij for 0 < i ≤ m and 0 < j ≤ pi.
Xi is a fresh variable and τ(Xi) = α1 → . . .→ αn → δi1 → . . .→ δipi → γ′i for 0 < i ≤ m.

Partial bindings fall into two categories, imitation bindings, which for a given atom a and
type α, are denoted by PB(a, α) and projection bindings, which for a given index 0 < i ≤ n
and a type α, are denoted by PB(i, α) and in which the atom a is equal to the bound variable
yi. Since partial bindings are uniquely determined by an index, a type and an atom (up to
renaming of the fresh variables Xm), this defines a particular term.

I Definition 7 (Huet’s Pre-unification Procedure). Huet’s pre-unification procedure is given
in Figure 1. Note that the sets Q∃ and Q∀ are fixed during the execution and are mentioned
explicitly just for compatibility with the algorithms given later in the paper.

The next theorem states the completeness of this procedure.

I Theorem 8 ([32]). Given a system 〈Q∃, Q∀, S, id〉 and assuming it is unifiable by σ, then
there is a sequence of rule applications in Def. 7 resulting in 〈Q′∃, Q′∀, ∅, θ〉 such that θ ≤ σ.

2.3 Pattern Unification
In this section we describe the higher-order pattern unification algorithm in [20]. The notation
used is similar to the one in [25]. This algorithm forms the basis for our algorithm.

I Definition 9 (Pattern Systems). A system 〈Q∃, Q∀, S, σ〉 is called a pattern system if for
all equations ei ∈ S and for all subterms Xzn in these equations such that X ∈ Q∃ we have
that zn ⊆ Q∀ ∪ bvars(ei) and zi 6= zj for all 0 < i < j ≤ n.

The following simplification will be called during the execution of the algorithm given in
Def. 11.

I Definition 10 (Pruning). Given a pattern system 〈Q∃, Q∀, S, σ〉 such that λzn.Xz1
n
.=

λzn.r ∈ S, r contains an occurrence y such that y ∈ Q∀ ∪ zn and y 6∈ z1
n:

if there is a subterm Wz2
m of r such that y = z2

i for some 0 < i ≤ m, then return
〈Q∃ ] {W ′} \ {W}, Q∀, Sθ, σ ◦ θ〉 where θ = [W 7→ λz2

m.W
′z3
m−1] and z3

m−1 = z2
m \ {z2

i }.
otherwise, return 〈Q∃, Q∀,⊥, id〉.
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〈Q∃, Q∀, S ] {t
.= t}, σ〉 → 〈Q∃, Q∀, S}, σ〉 (0)

〈Q∃, Q∀, S ] {λx.s
.= λx.t}, σ〉 → 〈Q∃, Q∀ ] {x}, S ] {s

.= t}, σ〉 (1)
〈Q∃, Q∀, S ] {ftn

.= fsn}, σ〉 → 〈Q∃, Q∀, S ] {t1
.= s1, . . . , tn

.= sn}, σ〉 (2)
where f ∈ C ∪Q∀

〈Q∃ ] {X}, Q∀, S ] {Xzn
.= fsm}, σ〉 → 〈Q∃, Q∀, Sθ, σ ◦ θ〉 (3)

where f ∈ C, X 6∈ fvars(fsm) and θ = [X 7→ λzn.fsm]

〈Q∃ ] {X}, Q∀, S ] {Xz1
n
.= Xz2

n}, σ〉 → 〈Q∃ ] {W}, Q∀, Sθ, σ ◦ θ〉 (4)
θ = [X 7→ λz1

n.Wz3
k

] and z3
k

= {z1
i | z

1
i = z2

i }

〈Q∃ ] {Y }, Q∀, S ] {Xz1
n
.= Y z2

m}, σ〉 → 〈Q∃, Q∀, Sθ, σ ◦ θ〉 (5)
where X 6= Y , θ = [Y 7→ λz2

m.Xz
2
φ(m)] and φ is a permutation

such that φ(j) = i if z1
i = z2

j for 0 < i ≤ n and 0 < j ≤ m

Figure 2 Pattern Unification Algorithm.

I Definition 11 (Pattern Unification Algorithm). The pattern unification algorithm is the
application of the rules from Figure 2 such that before the application of rules (3) and (5)
we apply exhaustively pruning.

Paper [20] contains a proof that the algorithm from Def. 11 is terminating, sound and
complete.

3 A Unification Algorithm for FC Higher-order Unification Problems

3.1 FC Higher-order Unification (FCU) Problems
The main difference between pattern and FCU problems is in the form of arguments of
existentially quantified variables. While in pattern unification problems, these arguments
must be a list of distinct universally quantified variables which occur in the scope of the
existentially quantified one, we relax this requirement for FCU problems. This relaxation
still ensures the existence of mgus if the problems are unifiable.

I Definition 12 (Restricted Terms). Given C, Q∀ and an equation e, a restricted term in e is
defined inductively as follows:

a ∈ Q∀ ∪ bvars(e) is a restricted term.
ftn is a restricted term if n > 0, f ∈ C ∪Q∀ ∪ bvars(e) and ti is a restricted term for all
0 < i ≤ n.

When e is clear from the context, we will refer to these terms just as restricted terms.

We will use examples over C = {cons , fst , snd , nil} and Q∀ = {l, z} to explain the
definition and algorithms presented in the paper.

I Example 13. The terms l, (cons z, l ), (cons (fst l) l) and (snd (cons z l)) are restricted
terms over the above C and Q∀, while nil and (cons z nil) are not.

I Definition 14 (FCU Systems). A system 〈Q∃, Q∀, S, σ〉 is an FCU system if the following
three conditions are satisfied:

argument restriction - for all occurrences Xtn in S where X ∈ Q∃, ti for all 0 < i ≤ n
is a restricted term.
local restriction - for all occurrences Xtn in S where X ∈ Q∃ and for each ti and tj
such that 0 < i, j ≤ n and i 6= j, ti 6v tj .

FSCD 2016



26:8 Functions-as-Constructors Higher-Order Unification

global restriction - for each two different occurrences Xtn and Y sm in S where
X,Y ∈ Q∃ and for each 0 < i ≤ n and 0 < j ≤ m, ti 6@ sj .

I Example 15. Some examples of the equations of FCU systems are {X l z
.= fst (snd l)} and

{cons (X (fst l)) (snd l) .= snd (Y (fst l) (fst (snd l)))}. Note that only the first example is
a pattern unification problem. Examples of non-FCU problems are {X (cons z nil) .= snd l}
which violates the argument restriction, {X (fst l) l .= cons z l} which violates the
local restriction and {X (fst l) .= snd (Y (cons (fst l) (snd l)))} which violates (only)
the global restriction.

It is important to note that when dealing with restricted unification problems, the global
restriction from above cannot be violated by occurrences within different equations. The
name global only refers, therefore, to the context of one equation.

The next proposition is easy to verify.

I Proposition 16. Pattern systems are FCU systems.

Before going on to show the properties of these problems, we would like to present a short
discussion about the motivation behind the restrictions above. The three restrictions are
required in order to maintain uniqueness of the result and will be used in the next section
in order to prove the determinacy of Huet’s procedure over FCU problems. Nevertheless,
we do not prove that this result does not hold when weakening the above restrictions. The
local restriction and global restriction can easily be shown to be required even for
very simple examples. This is not the case for the argument restriction. One alternative
is to weaken the restricted term definition from above to require only one subterm in the
second condition to be restricted. I.e. to allow terms such as (cons z nil) as arguments
of existential variables. In the following, we will give a counter-example to this weaker
restriction. Still, it should be noted that the counter-example depends on allowing inductive
definitions containing more than one base case (in particular, we allow for different empty
list constructors nil1 and nil2). When such definitions are not allowed, it may be possible
to prove the results given in this paper for a stronger class of problems.

I Example 17. 〈{X,Y }, {z, z2}, {X (cons z nil1) (cons z nil2) .= cons z (Y z2)}, id〉 is
unifiable by the following two incompatible substitutions:
1. [Y 7→ λz1.nil1, X 7→ λz1, z2.z1].
2. [Y 7→ λz1.nil2, X 7→ λz1, z2.z2].

3.2 The Existence of Most-general Unifiers
From this section on, an FCU problem will be referred to simply as system, unless indicated
otherwise.

In [32] it is claimed that the only “don’t-know" non-determinism in the general higher-
order procedure stems from the choice between the different applications of (Imitate) and
(Project). We prove that fulfilling the three restrictions in Def. 14 makes these choices
deterministic.

We first prove a couple of auxiliary lemmas.

I Lemma 18. let t be a restricted term, s a term containing the subterm Xrn and σ a
substitution such that t = sσ, then there is a restricted term t′ such that t′ = Xrnσ.

Proof. Let k be the length of the position of Xrn in s, we prove by induction on k.
k = 0, then t′ = t.
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k > 0, then s = fsm and fsmσ = ftm = t. Since t is restricted, by definition so are
t1, . . . , tm. Assume Xrn occurs in si, then, according to the inductive hypothesis, there
is a restricted term t′ such that t′ = Xrnσ. J

I Lemma 19. Given a unifiable equation Xtn
.= r, where r is a restricted term. Then, there

is 0 < i ≤ n such that ti is a subterm of r.

Proof. Assume the contrary and let σ be the unifier. Then, Xtnσ = r. By definition, r
contains a symbol a ∈ Q∀ and we get a contradiction. J

I Lemma 20. Let t = t′tk and s = fsn such that t′ is a restricted term and f ∈ C ∪Q∀. If
t
.= s is unifiable, then t = fvn−ktk for restricted terms vn−k.

Proof. Since t′ is restricted, it does not contain abstractions and variables and as t is unifiable
with s, it can be written as fvn−k. Since t′ is restricted, all its subterms are restricted as
well. J

The next two lemmas prove the determinism claim on applications of (Project) and
(Imitate).

I Lemma 21. Given the equation Xtn
.= fsm where X does not occur in fsm and assuming

we can obtain the following two equations by applying the substitutions σ0 = X 7→ λzn.ziXmzn
and θ0 = X 7→ λzn.zjYkzn for some 0 < i < j ≤ n:

tiXltn
.= fsm (1)

and

tjYktn
.= fsm (2)

Then, there are no substitutions σ and θ such that σ unifies equation 1 and θ unifies equation
2.

Proof. Assume the existence of the two unifiers and obtain a contradiction. According to
Lemma 20, we can rewrite the two equations as

fvm−lXltn
.= fsm (3)

and

fum−kYktn
.= fsm (4)

for restricted terms vm−l and um−k. Assume, wlog, that l ≥ k. Note also, that since ti 6= tj
and ti, tj have f as head symbol, m ≥ m− k > 0. We consider two cases:

s1, . . . , sm−k are all ground terms. In this case and since both equations are unifiable, we
get the equation

fvm−lXl−ktnσ = fsm−k = fum−k (5)

Clearly, k 6= l since otherwise ti = tj which violates the local restriction from Def.
14. We can now conclude that

X1tnσ = um−l+1 (6)

Since um−l+1 is a restricted term then, according to Lemma 19, there is 0 < k1 ≤ n such
that tk1 is a subterm of um−l+1. Since um−l+1 is a subterm of tj , we get that tk1 is a
subterm of tj which contradicts the local restriction.
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There is sk1 for 0 < k1 ≤ m− k which contains an occurrence of Zrk2 . This must occur
as a subterm of sk1 as otherwise the subterm Zrk2r

′ where r′ is not a restricted term,
violates the argument restriction. Since sk1θ = uk1 and uk1 is a restricted term, we
have, according to Lemma 18, that there exist a restricted term u′ such that Zrk2θ = u′.
Using Lemma 19, we can conclude that there is 0 < k3 ≤ k2 such that rk3 is a subterm of
u′, which is a subterm of uk1 which is a strict subterm of tj , which violates the global
restriction. J

I Lemma 22. Given the equation Xtn
.= fsm where X does not occur in fsm and assuming

we can obtain the following two equations by applying the substitutions σ0 = X 7→ λzn.fXmzn
and θ0 = X 7→ λzn.zjYkzn for some 0 < j ≤ n:

fXmtn
.= fsm (7)

and

tjYktn
.= fsm (8)

Then, there are no substitutions σ and θ such that σ unifies equation 7 and θ unifies equation
8.

Proof. Assume the existence of the two unifiers and obtain a contradiction. Using Lemma
20, we can rewrite Eq. 8 as:

fvm−kYktn
.= fsm (9)

where v1, . . . , vm−k are restricted terms and strict subterms of tj . Since f is imitated, it is
not a restricted term and f 6= tj which implies that m− k > 0. Eq. 9 tells us that v1 = s1θ

which implies that s1θ is a strict subterm of tj and a restricted term. On the other hand, we
have that X1tn = s1σ from Eq. 7. We consider two cases:

s1 is ground. In this case we can use Lemma 19 and the fact that s1 is a restricted term
to conclude that there is 0 < k1 ≤ n such that tk1 is a subterm of s1. On the other hand,
we know that s1 is a strict subterm of tj and therefore we get that tk1 is a strict subterm
of tj , which contradicts the local restriction..
If s1 is not ground, it must contain an occurrence Zrl. This occurrence cannot occur as the
subterm Zrlr

′ where r′ is not a restricted term as it violates the argument restriction.
Therefore, Zrl is a subterm of s1. Since s1θ = v1 and since v1 is a restricted term, we
can use Lemma 18 to get that there is a restricted term v′ such that Zrl = v′. Now we
use Lemma 19 and get that there is 0 < k1 ≤ l such that rk1 is a subterm of v′, which is
a strict subterm of tj . We get again a contradiction to the global restriction. J

I Theorem 23 (The existence of most-general unifiers). Given a unifiable FCU system S,
then applying the procedure in Def. 7 to S terminates and returns a most-general unifier for
S.

Proof. The procedure in Def. 7 computes complete sets of unifiers and terminates with an
element in this set [32]. Using the lemmas 21 and 22 we obtain that all transformations
are deterministic. Therefore, the complete set contains only one element, which is the
most-general unifier of S. J
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〈Q∃, Q∀, S ] {t
.= t}, σ〉 → 〈Q∃, Q∀, S, σ〉 (0)

〈Q∃, Q∀, S ] {λx.s
.= λx.t}, σ〉 → 〈Q∃, Q∀ ] {x}, S ] {s

.= t}, σ〉 (1)
〈Q∃, Q∀, S ] {ftn

.= fsn}, σ〉 → 〈Q∃, Q∀, S ] {t1
.= s1, . . . , tn

.= sn}, σ〉 (2)
where f ∈ C ]Q∀

〈Q∃ ] {X}, Q∀, S ] {Xtn
.= fsm}, σ〉 → 〈Q∃, Q∀, Sθ, σ ◦ θ〉 (3)

where f ∈ C, X 6∈ fvars(fsm) and θ = [X 7→ λzn.fsm |tnzn ]

〈Q∃ ] {X}, Q∀, S ] {Xtn
.= Xsn}, σ〉 → 〈Q∃ ] {W}, Q∀, Sθ, σ ◦ θ〉 (4)

where W 6∈ Q∃, tn 6= sn, θ = [X 7→ λzn.Wzrk ] and rk = {i | 0 < i ≤ n ∧ ti = si}

〈Q∃ ] {Y }, Q∀, S ] {Xtn
.= Y sm}, σ〉 → 〈Q∃, Q∀, Sθ, σ ◦ θ〉 (5)

where X 6= Y , θ = [Y 7→ λzm.Xzφ(m)] and φ is a permutation (see Lemma 36)

such that φ(j) = i if ti = sj for 0 < i ≤ n and 0 < j ≤ m

Figure 3 An algorithm for FCU problems.

3.3 The Unification Algorithm
For defining the unification algorithm, we need to slightly extend the definition of pruning.

I Definition 24 (Covers). A cover for Xtn and a restricted term q is a substitution σ such
that Xtnσ = q.

Note, uniqueness of covers follows from Theorem 23

I Example 25. The following substitution [X 7→ λz1λz2.cons (fst z1) z2] is a cover for
(X l z) and (cons (fst l) z).

I Definition 26 (Pruning). Given an FCU system 〈Q∃, Q∀, S, σ〉 such that (Xtn
.= r) ∈ S

and r contains an occurrence of a maximal restricted term q such that q 6∈ tn:
if there is a subterm Wsm of r such that q = si for some 0 < i ≤ m, then return
〈Q∃ ] {W ′} \ {W}, Q∀, Sθ, σ ◦ θ〉 where θ = [W 7→ λzm.W

′z′m−1] and z′m−1 = zm \ {zi}.
else if there is no cover ρ for Xtn and q, then return 〈Q∃, Q∀,⊥, id〉.
else, do nothing.

I Example 27. Given the system 〈{X,Y,W,Z}, {l, w, z}, {X (snd l) z .= Y z (fst l),
W (fst l) z .= snd (Z w (fst l))}, id〉, we can apply the following three prunings, σ1 =
[Z 7→ λz1, z2.Z

′z1], σ2 = [Y 7→ λz1, z2.Y
′z1] and σ3 = [x 7→ λz1, z2.X

′z2] and obtain the
system 〈{X ′, Y ′,W,Z ′}, {l, w, z}, {X ′ z .= Y ′ z,W (fst l) z .= snd (Z ′ z)}, σ1 ◦ σ2 ◦ σ3〉.

For the next definition, we will use the following replacement operator r |tnzn to denote
the replacement of each occurrence ti in r with zi for 0 < i ≤ n.

I Definition 28 (Algorithm for FCU Systems). The rules of an algorithm for the unification
of FCU systems is given in Figure 3 where before the application of rules (3) and (5) we
apply exhaustively pruning.

I Example 29. The following problem is contained in one of the classes of problems discussed
in the introduction: ∃X∃Y λl1λl2.X (fst l1) (fst (snd l1)) .= λl1λl2.snd (Y (fst l2) (fst l1))
Figure 4 gives a full execution of the algorithm on it.

Notice that this algorithm can also work with terms that are essentially untyped: it is
the presence or absence of constructors and bound variables that matters in this algorithm
and not the types of those constructors and variables. Rich typing can, of course, be used to
disallow unifiers that are created by considering terms to be type-less.
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〈{X,Y }, ∅, {λl1λl2.X (fst l1) (fst (snd (l1))) .= λl1λl2.snd (Y (fst l2) (fst l1))}, id〉 →(1)×2

〈{X,Y }, {l1, l2}, {X (fst l1) (fst (snd (l1))) .= snd (Y (fst l2) (fst l1))}, id〉 →prun

〈{X,Y ′}, {l1, l2}, {X (fst l1) (fst (snd (l1))) .= snd (Y ′ (fst l1))}, [Y 7→ λz1λz2.Y
′z2]〉 →(3)

〈{Y ′}, {l1, l2}, {snd (Y ′ (fst l1)) .= snd (Y ′(fst l1))}, [Y 7→ λz1λz2.Y
′z2, X 7→ λz1λz2.snd (Y ′z1)]〉 →(0)

〈{Y ′}, {l1, l2}, ∅, [Y 7→ λz1λz2.Y
′z2, X 7→ λz1λz2.snd (Y ′z1)]〉

Figure 4 An example of a reduction on an FCU.

4 Correctness of the Algorithm

The unification algorithm transforms systems by the application of substitutions and by the
elimination of equations. We prove next that the application of rules of the algorithm in Def.
28 on FCU problems results in FCU problems as well.

I Lemma 30. Given an FCU problem, then the application of rules from Def. 28 results in
ain FCU problem.

Proof. Removing equations from the system clearly preserves the restrictions of FCU prob-
lems. This result is also immediate when applying substitutions as the only change to the
arguments of the variables in the problem is to eliminate them and we have already claimed
that the subterm property is closed under α-renaming for these problems in Lemma 5. J

The following lemma states that projected arguments of variables on one side of the
equation must always match arguments on the other side.

I Lemma 31. Let Xtn
.= r be an equation such that r contains an occurrence of Y sm where

r 6= Y sm and let σ be a unifier of this equation such that σY = λzm.s. Then, for each
occurrence zi in s for 0 < i ≤ m, there is 0 < j ≤ n such that si = tj.

Proof. We prove by induction on the number of occurrences. If s does not contain such
occurrence, then the lemma clearly holds. Assume s contains an occurrence zi for 0 < i ≤ m
and that there is no 0 < j ≤ n such that si = tj . In case there is more than one such
occurrence in s, choose this occurrence to be in a minimal such subterm, i.e. zi occurs in
a subterm zivk such that all occurrences of z ∈ zm in vk fulfill the requirement that there
is tj = z for some 0 < j ≤ n. Let λzm.zivk(sm) = siv′k. Since r 6= Y sm and the argument
restriction, we have that Y sm @ r. Since Xtnσ = rσ, we get that siv′k @ Xtnσ. Since si
is a restricted term, we get that there is 0 < j ≤ n such that either

siv′k v tj . By the minimality assumption, if v′k contains a restricted term, then it must
be equal to some tl 0 < l ≤ n and therefore, that tl @ tj , which contradicts the local
restriction. Therefore, since tj is a restricted term, k = 0. We obtain that si v tj and
since si 6= tj by assumption, we get, again, a contradiction to the global restriction.
tj v si. Again, since si 6= tj , we get a contraction to the global restriction. J

We now prove, for each rule in the FCU algorithm, a relative completeness result. We
start by the non-unifiability of problems with a positive occur check.

I Lemma 32. Let 〈Q∃, Q∀, S∪{Xtn
.= fsm}, σ〉 be a system such that X occurs in sm, then

the system is not unifiable.

Proof. Assume it is unifiable by θ and θX = λzn.s. Consider two cases:
s does not contain any occurrence of a variable zi for 0 < i ≤ n. Let #t be the number
of occurrences of symbols from C in t. Then, #(Xtnθ) = #(θX) ≤ #(smθ) < #(fsmθ)
and we get a contradiction to Xtnθ = fsmθ.
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In case s contains such an occurrence and let Xqn be the occurrence in sm. According to
Lemma 31, we know that for all occurrences of zi in s for 0 < i ≤ n, there is an index
0 < j ≤ n such that tj = qi. Let ρ be the mapping between indices defined as above such
that ρ(i) = j. Let rk be the set of indices 0 < i ≤ n which occur in s for some k ≤ n.
Let p′ be the non-trivial position of Xqn in fsm and let p be the maximal position of a
zi in s for i ∈ rk. This means we have qi at position p′ ◦ p in fsmθ and since tρ(i) = qi
and Xtnθ = fsmθ, we get that tρ(i) occurs at position p′ ◦ p in Xtnθ. Since tρ(i) is a
restricted term, there is an occurrence of zρ(i) in s at position p′ ◦ p, in contradiction to
the maximality of p. J

I Lemma 33. Given a system 〈Q∃, Q∀, S, ρ} where Xtn
.= r ∈ S and assuming we apply

pruning in order to obtain system 〈Q∃, Q∀, S′, ρ′} as defined in Def. 26, then, if S is unifiable
by substitution σ, then there is a substitution σ′, such that σ = θ ◦ σ′. If S is not unifiable,
then S′ is not unifiable.

Proof. The rule is applicable only if there is such an occurrence q. Otherwise, S = S′ and
θ = id. We consider the two cases in the lemma:

there is a subterm Y sm of r such that q = si for 0 < i ≤ m. If S is not unifiable, then
assume S′ is unifiable by σ′ and since S′ = Sθ, we get that S is unifiable by θ ◦ σ′, a
contradiction. Assume the system is unifiable and let σY = λzm.s. Then, according
to Lemma 31, either there is 0 < j ≤ n, such that tj = si, which contradicts the
assumption, or s does not contain an occurrence of si. In the second case, by taking
σ′ = σ|V(S)\{Y }[W 7→ λzrm−1 .Y zmσ] where zm \ z′m−1 6⊆ Q∀, we get that Y smσ =
Wsrm−1σ

′ = Y smθ ◦ σ′.
If there is no such cover, then there is no substitution which unifies this equation. J

I Lemma 34. Given a system 〈Q∃, Q∀, S, ρ〉 where Xtn
.= s ∈ S and X does not occur in s

and assuming we apply the substitution θ as defined in rule (3) in Figure 3. Then, if σ a
unifier of S, then there is σ′ such that σ = θ ◦ σ′.

Proof. We prove by induction on the structure of s. Note that two base cases are also
defined in the last two cases below for m = 0.

s = Y sm for 0 ≤ m. Note, that in this case, since ti 6@ sj for 0 < i ≤ n and 0 < j ≤ m

and that since m ≤ n due to pruning, we get that Xtnθ = Y tφ(m) for φ defined as in rule
(5) in Figure 3. The rest of the proof is similar to the proof of Lemma 36.
s = tism for some 0 < i ≤ n and 0 ≤ m and therefore θX = λzn.zis′m for some s′m.
Assume applying (Project) with the substitution θ′ = λzn.ziXmzn as defined in Def. 7.
After applying (Bind) and possibly also several (Decomp), we get the problem, since X
cannot occur in s,

S′θ′ ∪ {X1tn
.= s1, . . . , Xmtn

.= sm} (10)

Since, by assumption, Xtn
.= tism is unifiable and ti is a restricted term, it follows, using

an argument similar to the one in the proof of Lemma 21, that also each of the Xjtn
.= sj

is unifiable by some σoj for 0 < j ≤ m. By following lemmas 21 and 22, we have that
applying any other projection or imitation to Xtn

.= tism will render it non-unifiable. By
using Theorem 8, we have that σoj can be extended into a unifier σj of S′θ′ ∪{Xjtn

.= sj}
for all 0 < j ≤ m and σ = θ′ ◦ σ1 ◦ . . . ◦ σm. By applying the induction hypothesis, we get
that there are substitutions σ′j unifying S′θ′ ∪ {Xjtn

.= sj} for all 0 < j ≤ m such that
σj = θj ◦ σ′j for θjXj = λzn.s

′
j . I.e. that σ = θ′ ◦ θ1 ◦ σ′1 ◦ . . . ◦ θm ◦ σ′m. Since each σj is

a unifier of the above equations and σ is a unifier of S, we get that for each m ≥ j′ > j,
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σ′j′ ≤ σ′j |dom(σ′
j′

). From this, together with the fact that the domain and range of each
σ′j do not contain variables from the domain of each θj′ for 0 < j < j′ ≤ m, we get that
σ = θ′ ◦ θ1 ◦ . . .◦ θm ◦σ′1 ◦ . . .◦σ′m. On the other hand, by applying θ, we get the problem

S′θ ∪ {s′1
.= s1, . . . , s

′
m
.= sm} (11)

But, since θ = θ′ ◦ θ1 ◦ . . . ◦ θm, we just need to choose σ′ = σ′1 ◦ . . . ◦ σ′m and we have
σ = θ ◦ σ′.
s = fsm for 0 ≤ m and therefore θX = λzn.fs′m. Assume applying (Imitate) with
the substitution θ′ = λzn.fXmzn. After applying (Bind) and a (Decomp), we get the
problem, since x cannot occur in s,

S′θ′ ∪ {X1tn
.= s1, . . . , Xmtn

.= sm} (12)

From here we follow as before and use again Theorem 8 and Lemma 22. J

I Lemma 35. Given a system 〈Q∃, Q∀, S′ ∪ {Xtn
.= Xsn}, ρ〉 and assuming we apply the

substitution θ as defined in rule (4) in Figure 3. Then, if the system is unifiable by a
substitution σ, then there is σ′ such that σ = θ ◦ σ′.

Proof. Assume that σX = λzn.s, we first prove that there is no occurrence zi in s such that
there is 0 < j ≤ k where i = rj and ti 6= si. Assume on the contrary, then Xtnσ = Xsnσ

which implies that ti = si. Now we can define σ′ = σ|V(S)\{X}[W 7→ λzrk .Xznσ] where
zn \ zrk 6⊆ Q∀ are new variables. J

I Lemma 36. Given a system 〈Q∃, Q∀, S′ ∪ {Xtn
.= Y sm}, ρ〉 where X 6= Y and assuming

we apply the substitution θ as defined in rule (5) in Figure 3. Then, if the system is unifiable
by a substitution σ, then there is σ′ such that σ = θ ◦ σ′.

Proof. First note that since we apply pruning beforehand (in a symmetric way), n = m

and φ is indeed a permutation. Assume, wlog, that σX = λzn.s. We know that for each
occurrence zi in s for 0 < i ≤ n, si = tφ(i). By choosing σ′ = σ|V(S)\{Y }, we get that
Y smσ = Xsφ(m)σ = Xsφ(m)σ

′ = Y smθ ◦ σ′. Therefore, σ = θ ◦ σ′. J

I Theorem 37 (Termination). Given a system 〈Q∃, Q∀, S, σ〉, the algorithm in Def. 28 always
terminates.

Proof. Let the tuple m = 〈m1,m2〉 where m1 is the size of the set Q∃ and m2 is the number
of all symbols except .= in S. Consider its lexicographical order, it is clear that m is well
founded. We show that it decreases with every rule application of the algorithm:

rules (0), (1) and (2) decrease m2 and do no increase m1.
rule (3) decreases m1.
rule (4) decreases m2 and does not increase m1.
rule (5) decreases m1.
pruning decreases m2 and does not increase m1. J

I Theorem 38 (Completeness). Given a system 〈Q∃, Q∀, S, id〉 and assuming it is unifiable
by σ, there there is a sequence of rule applications in Def. 28 resulting in 〈Q′∃, Q′∀, ∅, θ〉 such
that θ ≤ σ.

Proof. Since the algorithm terminates and since it has a rule application for each unifiable
equation, we obtain at the end the above system. Lemmas 32, 33, 34, 35 and 36 then give
us that for any unifier σ of S, there is a substitution σ′ such that σ = θ ◦ σ′. Therefore,
θ ≤ σ. J
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The next theorem is an easy corollary of the completeness theorem.

I Theorem 39 (Most-general unifier). Given a system 〈Q∃, Q∀, S, id〉, if the algorithm defined
in Def. 28 terminates with system 〈Q′∃, Q′∀, ∅, σ〉, then σ is an mgu of S.

Proof. Since the algorithm in Def. 28 is deterministic, then we can use Theorem 38 in order
to prove that σ is an mgu. J

The next theorem is proved by simulating the algorithm in Def. 28 using the procedure
in Def. 7.

I Theorem 40 (Soundness). Given a system 〈Q∃, Q∀, S, id〉 and assuming there is a sequence
of rule applications in Def. 28 resulting in 〈Q′∃, Q′∀, ∅, θ〉, then θ is a unifier of S.

Proof. It is obvious we can simulate each of the rules (0), (1), (2) and (3) using the procedure
in Def. 7. We get the required result by using Theorem 23. For rules (4), (5) and the first
case of pruning, assume there is another substitution ρ such that ρ unifies the problem and
ρ 6< θ. This can only happen if ρX = λzn.W ′rk′ such that rk ⊂ r′k′ . Lemma 35 states that
there is no unifier ω and a substitution γ such that ω = ρ ◦ γ. Since the second case of
pruning results in failure, we are done. J

5 Conclusion

We have described an extension of pattern unification called function-as-constructor unifica-
tion. Such unification problems typically show up in situations where functions are applied
to bound variables and where such functions are treated as term constructors (at least during
the process of unification). We have shown that the properties that make first-order and
pattern unification desirable for implementation – decidability and the existence of mgus
for unifiable pairs – also hold for this class of unification problems. We are planning an
implementation within the Leo-III theorem prover [35] and we then plan to compare this
approach to unification with the implementation of Huet’s pre-unification algorithm available
in Leo-III when exercised against the THF set of problems within TPTP [8].

Another possible extension of the work is to improve its complexity class. The current
algorithm, like the one in [20] and first-order unification algorithms which are used in practice,
is of an exponential complexity. We would like to follow the work of Qian [34] and prove
that FCU is of linear complexity.
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