
Interaction Automata and the ia2d Interpreter∗

Stéphane Gimenez1 and David Obwaller2

1 Institute of Computer Science, University of Innsbruck, Innsbruck, Austria
stephane.gimenez@uibk.ac.at

2 Institute of Computer Science, University of Innsbruck, Innsbruck, Austria
david.obwaller@student.uibk.ac.at

Abstract
We introduce interaction automata as a topological model of computation and present the con-
ceptual plane interpreter ia2d. Interaction automata form a refinement of both interaction nets
and cellular automata models that combine data deployment, memory management and struc-
tured computation mechanisms. Their local structure is inspired from pointer machines and
allows an asynchronous spatial distribution of the computation. Our tool can be considered as a
proof-of-concept piece of abstract hardware on which functional programs can be run in parallel.

1998 ACM Subject Classification F.1.2 Modes of computation

Keywords and phrases Interaction nets, computation models, parallel computation, functional
programming

Digital Object Identifier 10.4230/LIPIcs.FSCD.2016.35

1 Introduction

We present a candidate computation model with a quite natural, although non-standard
memory model reminiscent of cellular automata topologies which takes spatial distances
and related data migration costs into consideration. Our associated tool interpreter ia2d is
written in Haskell and is available online1. This interpreter takes as input a program written
as an interaction-net system, a generic, topology-independent language. This program is
then executed in parallel on a planar instance of the presented computation model, and
the result of the computation is returned in the same interaction-net language, along with
some detailed resource usage statistics. Operations on binary-encoded natural numbers,
implementations of merge sort and of the bitonic sorter, which has a theoretical parallel time
complexity of O(log2(n)), are provided as examples.

Our work is aimed at filling a gap that exists between the standard interaction-net
model and real distributed memory schemes. These schemes depart from the traditional
random access memory schemes in that they do not allow a uniform constant-time access
to data stored remotely. Our long term objective is an abstract execution model for
asynchronous computation adapted to both hardware components and network computing
that automatically distributes the computation over the available computation units and
incorporate latency and bandwidth management. We present here a simple and somewhat
naive approach which is nevertheless partially successful.

We know that interaction nets are a target of choice to run functional programs in parallel
[16, 15, 4, 2, 3], or to express concurrency such as in process algebras [18, 19]. Various

∗ This work was partially supported by FWF (Austrian Science Fund) project number P 25781-N18.
1 The ia2d interpreter: http://bitbucket.org/inarch/ia2d

© Stéphane Gimenez and David Obwaller;
licensed under Creative Commons License CC-BY

1st International Conference on Formal Structures for Computation and Deduction (FSCD 2016).
Editors: Delia Kesner and Brigitte Pientka; Article No. 35; pp. 35:1–35:11

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSCD.2016.35
http://bitbucket.org/inarch/ia2d
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

35:2 Interaction Automata and the ia2d Interpreter

implementations of interaction nets exist [20, 21, 1], some of which use a particular technique
called geometry of interaction [22]. But all consider traditional computer architectures as
a base model, with random access memory schemes. Our goal is to use micro and macro
parallelism extensively – beyond the standard multi-threading “compromise” – to run generic
programs which have not been instrumented with hardware, network, or architecture-specific
parallel constructions.

Towards this same goal, an experimental implementation of interaction nets on parallel
hardware such as GPUs has been developed [10]. A variant of interaction nets called hard
interaction nets has also been introduced to model asynchronous hardware components [14],
but we do not know of any practical way to use this model to run standard programs. A
compiler to hard interaction nets still has to be developed.

The model which we introduce is meant to incorporate spatial considerations in the most
generic way. Notably, when its topological constraints are lifted, we show that it corresponds
closely to the standard interaction-net model.

2 Interaction Nets

We present in this section interaction nets and their reduction which is based on graph-
rewriting techniques. This overview should be sufficient in order to understand the programs
provided as examples along with our tool. For a more detailed introduction, the reader is
referred to the seminal paper by Yves Lafont [11].

An interaction net is a graph, with vertices called nodes that are labeled with symbols,
and edges called wires. Each node has a principal port as well as a certain number of auxiliary
ports that is fixed for a given symbol. This number of auxiliary ports is called the arity of
the symbol. A node is typically drawn as a triangle with the principal port at the tip and
the auxiliary ports on the opposite side. Node ports can be connected together with a wire.
When two nodes are connected on their principal ports, we call the pair an active pair or a
redex. One or both ends of a wire may also be connected to free ports, which do not belong
to any cell. The set of free ports of a net is called its interface.

An interaction net system is a pair (S,R) of symbols and reduction rules. Given an
interaction net built using nodes labeled with symbols S, we can rewrite the net according
to the reduction rules R. A reduction rule describes how an active pair of nodes can be
rewritten by removing the active pair from the graph and substituting it by a net with the
same interface. Such a rule is generally represented as follows:

α

β

· · ·

· · ·

→ N(α, β)

· · ·

· · ·

To ensure determinism only one such rule is allowed for a given pair of symbols. If α = β

the right-hand side of the rule is required to be top-down symmetric. A strong confluence
property, namely the diamond property, holds for the reduction of interaction nets. The
order in which we choose to reduce the active pairs of the net is not important as it does
not change the outcome of the reduction. Furthermore, because the reduction steps are
performed locally and cannot overlap, they can be performed in parallel.

S. Gimenez and D. Obwaller 35:3

When programming with interaction nets we use labeled nodes to represent both con-
structors and operations. In the following example, we use the symbols zero (nullary) and
succ (unary) to represent the constructors for natural numbers, cons (binary) and nil (nullary)
to represent lists, and the symbols add (binary) and sum (unary) for the addition operations
on natural numbers and the sum operation on lists of naturals respectively. We can define
each operation using a pair of rules as follows:

add

sum

add

add

zero

add

succ

sum

cons

sum

nil

zero

succ

The following example computation illustrates how a given interaction net can be rewritten
using the rules given above. We start with a simple net that represents a list of two natural
numbers connected to a sum operation, which will compute the sum of the two numbers.

succ

succ

zero

cons

sum

succ

zero

succ

cons

nil

succ

succ

zero

nil

cons

succ

zero

succ

add

sum

sum

succ

succ

zero

add

add

succ

succ

zero

nil

succ

zero

add

succ

zero

add

zero

succ

succ

*

zero

succ

succ

succ

succ

The net on the left shows the list of natural numbers cons(2, cons(2, nil())) connected to the
sum operator. After two parallel reduction steps, denoted as →, we obtain three redexes,
namely two instances of add on succ and sum on nil. After exhaustively applying reduction
rules until no redexes are left, as denoted by ∗−→, we obtain the final net, the natural number
4 represented as net.

3 Interaction Automata

3.1 Definition of the Computation Model

We start by introducing a notion of web, which defines the topology on which interaction
automata will be built.

I Definition 1. A web is defined as a pair W = (L, ν), where L is a set of locations, called
support, and ν : L→ P(L) a map that associates a set of locations, called neighborhood, to
every location.

Interaction agents in our model will be nodes. Their purpose is indicated by a particular
symbol and they store a certain number of pointers to other locations. This number has
to match with a particular arity that was attributed to the symbol. Locations represent
positions at which two nodes are expected to interact.

FSCD 2016

35:4 Interaction Automata and the ia2d Interpreter

I Definition 2. For a given arity-attributed set of symbols S and a set of locations L, we
define nodes according to the syntax n ::= ω(l0) | s(l1, . . . , lk) where s ∈ S, k is the arity
of s, and the li ∈ L form a list of locations called pointers. The set of all possible nodes is
written N(S,L).

The ω notation can be considered as a particular “pointer-target” symbol, which contains a
reference that links back to the origin of the pointer.

I Definition 3. We define the forward-reference multiset of a node as f(ω(l0)) = ∅ and
f(s(l1, . . . , lk)) = {l1, . . . , lk} and its backward-reference multiset as b(ω(l0)) = {l0} and
b(s(l1, . . . , lk)) = ∅. These notations are straightforwardly extended to multisets of nodes
through multiset union.

I Definition 4. Given a set of symbols S, a domain D ⊆ L and a disjoint interface I ⊆ L, we
define Γ(S,D, I) as the set of maps from locations to multisets of nodes µ : L→M(N(S,L)),
called configurations, such that the cardinal of µ(l) is respectively 2 if l ∈ D, or 1 if l ∈ I, or
0 otherwise. Additionally we require that for all ls, lt ∈ L the multiplicity of lt in f(µ(ls))
matches the one of ls in b(µ(lt)).

The latter constraint ensures that every forward-reference attached to a symbol node
matches with a backward-reference attached to an ω-node.

I Definition 5. A topological configuration of a web W = (L, ν) with symbols in S is the
combination of a domain D, an interface I and a configuration γ ∈ Γ(S,D, I) that satisfies
neighborhood compatibility, i.e., lt ∈ f(γ(ls))⇒ lt ∈ ν(ls), for all ls, lt ∈ L.

We will rely on an abstract reduction scheme to automatically endow any given web with
a transfer function from configurations to configurations.

I Definition 6. An abstract transition scheme over a set of symbols S is a binary relation
µl → µr over configurations µl ∈ Γ(S,Dl, I) and µr ∈ Γ(S,Dr, I) which is invariant upon
permutations of locations in L. The sets Dl, Dr and I are arbitrary disjoint subsets of L.

Dl and Dr represent respectively the sets of freed and allocated locations during a
reduction step that is defined by the abstract transition scheme. If we additionally require
that Dl has cardinal 1 and that the singleton µ(l) stored at any l ∈ I is an ω-node, the
scheme is called atomic.

I Definition 7. An interaction automaton is defined as a quadruple A = (L, ν, S,→) where
W = (L, ν) is a chosen web, S is a set of symbols, and → is an abstract transition scheme
over S.

I Definition 8. Given an interaction automaton A, a parallel transition γl
A−→→ γr occurs

between two topological configurations of its web, γl ∈ Γ(S,Dl, I) and γr ∈ Γ(S,Dr, I),
if both configurations are pointwise multiset unions of configurations γl =

⊕
i µ

l
i ⊕ µ and

γr =
⊕

i µ
r
i ⊕ µ, such that each pair of sub-configurations satisfy the abstract transition

scheme relation µl
i → µr

i .

If the chosen abstract transition scheme is atomic, in the absence of topological constraints
(unrestricted neighborhoods and an infinite number of locations), we can guarantee that the
parallel transition relation, despite being non-deterministic, satisfies the diamond property
up to a relocation of cells.

S. Gimenez and D. Obwaller 35:5

Bounded Interaction Automata and Interaction Grids. Bounded interaction automata
are interaction automata for which the sizes of neighborhoods are globally bounded by a
constant.

Example: Interaction grids of dimension d and neighborhood radius m are denoted by
Gd

m. They are particular interaction automata whose sets of locations are defined as L = Zd

and neighborhood maps as ν(~x) = {~x+ ~u, |~u| ≤ m}. We chose to work with the Manhattan
distance in our implementation.

3.2 Implementation of Interaction Nets on Interaction Automata
We now show that interaction-net computation can be performed within the abstract
interaction automata computation model without topological constraints.

With topological constraints, nothing guarantees that allocations are always possible
within the appropriate neighborhoods nor specify how the allocations should be done. They
can be performed randomly, but the reduction is of course likely to block due to a local lack
of space on webs with small connectivity. The allocations could also be done strategically if
we rely on topological knowledge or external ways to gauge the occupancy of the web and its
capacity. Our experiments however tend to show that a simple allocation strategy is enough
in order to run interaction-net programs of a particular complexity class on webs with a
matching connectivity.

The implementation of a given interaction-net system is quite straightforward. A glimpse
at the output of our tool should be sufficient to illustrate the general principles which we
sketch here.

Cells containing two ω-nodes are used to translate wires between two auxiliary ports.

ω · · ·· · ·

α β
⇒β

· · ·· · ·
α

ω

Mixed cells containing an ω-node and a symbol node are used to translate wires between
an auxiliary port and a principal port.

ω

α
α

β
· · ·

· · ·
· · ·

β

· · ·

⇒

Cells containing two symbol nodes are used to translate wires from a principal port to
another principal port.

⇒

· · ·

· · ·
α

β

α

β

· · ·

· · ·

An interface cell containing a single ω-node is used to encode a wire that links one
auxiliary port of an interaction-net node to one free port.
An interface cell containing a single symbol node is used to encode a wire that links one
principal port of an interaction-net node to one free port.

FSCD 2016

35:6 Interaction Automata and the ia2d Interpreter

The particular case of a wire that links two free ports is encoded by mapping two
corresponding interface locations to nodes annotated with a particular forwarder symbol.
Both nodes forward to the same additional location designated for this wire that contains
two target ω-nodes.

Interaction-net node data is stored in the cell dedicated to the wiring of its principal port.
Pointers are then set up such that related ports and wires reference each other.

Among the set of symbols S, additionally to the symbols of the chosen interaction-net
system, as mentioned, a particular forwarder symbol (unary), which we denote by & in our
tool, can be used to lengthen the wires if necessary. Each occurrence contains a pointer to
the next hop on the path to the destination cell. In particular it is used in the transition
schemes associated to right-hand sides that connect two interface ports with a wire directly.

Given the above encoding for nets, reductions rules are turned to abstract transition
schemes µl → µr easily. The left-hand side of an interaction-net rule is encoded as a
configuration µl with any single-location domain that stores the two interaction-net nodes
that are part of the redex, and any interface that contain the required number of auxiliary
ports present in the redex. The right-hand side is encoded as a configuration µr with a
domain whose cardinal corresponds to the number of wires, except for those which connect a
free port to a port of an interaction-net node. The usual constraints on interaction-net rules,
including the symmetry of the rules that define interaction between two identical symbols,
ensure that the defined abstract transition scheme is invariant upon permutations of the
locations which were arbitrarily chosen as port identifiers.

Assuming neighborhoods are “sufficiently large to always contain free cells”, the interaction-
net reduction can be simulated on an interaction automaton. Different topologies are expected
to lead to different performances. We implemented an interpreter for the planar topology
G2

m.

3.3 Limits
For grids Gd

m (and similar topologies for which the size of iterated n-neighborhoods is
polynomially bounded in n), due to data propagation constraints, the number of spawned
redexes after a parallel running time t is necessarily bounded by a polynomial of degree d,
the dimension of the grid. We cannot hope that the asymptotic speed-up offered by the
parallelization will exceed this limit.

We have not yet investigated other topologies. Some multiscale webs including limited-
bandwidth but long-distance links seem sufficiently realistic and could provide exponential
speed-ups in many cases.

4 Implementation

The source code of ia2d is available at https://bitbucket.org/inarch/ia2d. For in-
stallation and usage instructions please consult the README.md file included in the source
repository.

4.1 General Design Principles
Our automaton implementation works on a 2-dimensional grid of cells, each of which can
hold up to two nodes. Parallel transitions of the automaton are performed in a loop. Each
of these parallel transitions is preceded by a migration pass and an input/output pass as
described hereafter.

https://bitbucket.org/inarch/ia2d

S. Gimenez and D. Obwaller 35:7

Migration. The migration pass rearranges the cells in a way that avoids too high densities
of cells, while at the same time keeping connected nodes within range of each other. As
currently implemented the strategy favors migrations to locations whose neighborhoods
contain the most empty cells. The final selection of a destination location among identically
weighted candidates relies on randomization to avoid directional bias. Like the rest of the
computation, the implemented migration strategy is local. Decisions are made by looking
only at cells within a fixed radius.

Input and Output. For input and output the automaton uses special nodes in and out.
During the input/output pass, the in nodes lazily insert nodes from the supplied program
onto the grid when their interaction with other nodes is required. Conversely, the out nodes
take nodes which are part of the normal form off the grid to produce a result. Currently, the
collected result is printed at once on the terminal when the automaton stops, but input and
output could also be streamed in real time.

Parallel Transitions. The main reduction pass rewrites cells that contain interaction-net
redexes, as defined by the user, assuming enough free cells are locally available to store the
right-hand sides of the reduction rules. The combination of a migration pass, an input/output
pass and a parallel transition is repeated until the normal form of the input net has been
entirely collected or an error such as memory exhaustion occurs.

Ressource Stress. The size of the grid has no effect if it is sufficiently large, but if the
memory capacity is really tight the grid may become too densely populated, up to saturation.
The firing of redexes that require allocations are in this case delayed until some space is
made available locally by other reductions. Parallel execution which generally requires more
space than sequential execution is therefore affected and gradually sequentializes to some
extent. It may also occur that the memory capacity is simply too small for the computation,
in which case the reduction will fail as it would on a normal computer.

Failures. Reduction can stop half-way if space is unavailable or cannot be freed locally.
We developed this is software in order to understand when it happens in practice, how it
can be avoided, and what theoretical results are necessary. For comparison, in traditional
computation, the practical answer to a shortage of resources, (i.e., an insufficient amount of
memory to run a certain algorithm) is simply to “fail” rather than to try to adapt to the
situation. In the more tricky case of parallel computation, where a simple amount of memory
is not the only parameter, we still have to decide whether it is worthwhile to adapt.

4.2 Input Language

As input language we use a variant of the Pin language [8]. The Pin language is a flat
representation of graphs. We write the rule for an active pair between nodes α and β as
α(x1, . . . , xn) ./ β(y1, . . . , ym)⇒ N where N is a comma-separated list of net components.
Net components are either:

wires x ∼ y,
connections to nodes x ∼ γ(y1, . . . , yk),
or active pairs γ1(x1, . . . , xn) ∼ γ2(y1, . . . , ym).

FSCD 2016

35:8 Interaction Automata and the ia2d Interpreter

Moreover, any variable used in a reduction rule should occur exactly twice in this rule. For
example, one rule used to define binary addition is the following:

add(y, r) ./ succ(x)⇒ r ∼ succ(t), add(y, t) ∼ x

In the actual input to the program we write ./ as ><, ∼ as ~, ⇒ as => and we separate
net components with commas and rules with semicolons. The following source code defines
addition on natural numbers in unary encoding and the sum over a list of natural numbers:

add(y,r) >< zero() => r~y;
add(y,r) >< succ(x) => r~succ(t), add(y,t)~x;

sum(r) >< nil() => r~zero();
sum(r) >< cons(x, xs) => x~add(t, r), xs~sum(t);

A complete source file consists of an optional header of import statements and a list of rules
and input nets. By storing the above library in a file called nat_unary.inet, we can write
the computation of the sum of the natural numbers 4 and 2 as follows:

import "nat_unary.inet"
x ~ succ(succ(succ(succ(zero())))),
y ~ succ(succ(zero)),
cons(x, cons(y, nil())) ~ sum(r)

In this net, r is the only variable which occurs only once. It is the name associated to
the result of this computation.

Along with the ia2d source code, a number of code examples are provided in the examples
directory. The reader should refer to these files for more involved programming examples.

Synthesized Rules. Most interaction-net programs use δ nodes for duplicating and ε nodes
for erasing parts of nets. The implementation of the automaton also makes use of forwarder
nodes to connect two auxiliary ports or to extend the connections between distant nodes.
The rules for δ, ε are synthesized and need not be provided by the programmer. For any
user-defined symbol l of arity k the following rules are generated.

ε() ./ l(z1, . . . , zk) ⇒ ε() ∼ z1, . . . , ε() ∼ zk

δ(x, y) ./ l(z1, . . . , zk) ⇒ x ∼ l(x1, . . . , xk), y ∼ l(y1, . . . , yk),

z1 ∼ δ(x1, y1), . . . , zk ∼ δ(xk, yk)

In order to duplicate cyclic data structures the rules ε() ./ ε()⇒ (with an empty list as
right-hand side) and δ(x1, y1) ./ δ(x2, y2)⇒ x1 ∼ x2, y1 ∼ y2 are provided as well.

4.3 Resource Usage Reports
When invoked on the command-line, besides the normal form of the provided net, ia2d
outputs the number of individual transition steps and parallel reductions passes which were
performed, along with more detailed reports for every reduction pass. (Please note that the
output is truncated for brevity and might change in future versions.)

S. Gimenez and D. Obwaller 35:9

$ ia2d examples/bsort_example.inet --grid-size=16x16
SEQ STEPS: 664
PAR STEPS: 48
PASSES BREAKDOWN:

...
1 x 27 fired
1 x 29 fired
1 x 29 fired and 1 delayed
5 x 30 fired
...

DURATION:
0.537617s

From the above output we can tell that ia2d had to perform 48 parallel reduction passes
to reduce the input program. If we furthermore supply a parameter for the --svg flag, the
intermediate states of the grid are made available as SVG files. As an illustration, we provide
below four snapshots of the SVG output for the sum.inet program, which is available in the
repository.

in
in

in
succ

-
-

-
-

in
add

in
add

-
-

in
sum

-
-

out
succ

-
-

-
-

zero
add

in
-

succ
add

cons
sum

in
-

in
-

-
-

succ
out

&
-

succ
-

succ
-

in
add

zero
-

succ
-

In the first picture, the grid is initially populated by just two in nodes which form the
only redex of the input program. After three steps, as seen in the second picture, the grid
contains more redexes and some input is still to be written onto the grid by the in nodes.
The transition between the second and third picture is a migration pass, where existing in
nodes are replaced with symbols from the input, new in nodes are added, and one different
cell is migrated to a different position. The last picture shows the grid in a state where part
of the output is already taken off the grid by an out node, while at the same time the final
add node is still waiting for additional input data.

FSCD 2016

35:10 Interaction Automata and the ia2d Interpreter

4.4 Results
The following table shows the number of parallel reduction passes needed to sort the leaves of
a full binary tree with the bitonic sorter on the 2-dimensional grid model and compares it to
the sequential number of steps that would be required in the standard interaction-net model.

number of leaves sequential steps parallel steps (average) speed-up
2 23 10.0 2.30
4 70 15.0 4.67
8 212 22.0 9.64
16 620 31.9 19.44
32 1740 52.8 32.95

The size of the grid was chosen sufficiently large not to slow the computation. We observe
a quick increase of speed-ups as long as the neighborhood radius does not influence the
allocation too much. Beyond a certain input size we see that the potential quadratic increase
of the speed-up is not yet met on this example with a naive migration strategy.

5 Conclusion

We introduced a parallel computation model with an entirely localized reduction on top of a
memory scheme with a limited connectivity and a locally bounded storage and computation
capacity. We run functional programs on this model and showed that reasonable memory
management strategies can also be implemented locally.

We plan to incorporate new features such as nested pattern matching [9, 7] to our input
language and support more traditional programming syntaxes.

Despite the relatively smooth executions obtained with a very simplistic memory allocation
strategy, there is plenty of room for efficiency improvements that would reduce the total
migration costs. Integration with complexity-analysis techniques such as [13, 6] should help
to implement really accurate allocation strategies.

We only considered 2-dimensional uniform grid supports in our experimentation. In the
future, we would also like to support 3 or n dimensional grids and more elaborate topologies.

A last remaining challenge is to use a minimal set of symbols and reduction rules. We
know that there exist interaction-net systems with a very restricted set of symbols that are
universal [12]. In particular preliminary investigations have been made concerning the usage
of such minimal sets of symbols to specifically encode functional programs by means of linear
logic [17, 4, 5].

References
1 Andrea Asperti, Cecilia Giovannetti, and Andrea Naletto. The bologna optimal higher-

order machine. Journal of Functional Programming, 6(6):763–810, 1996. doi:10.1017/
S0956796800001994.

2 Horatiu Cirstea, Germain Faure, Maribel Fernandez, Ian Mackie, and François-Régis Sinot.
From functional programs to interaction nets via the rewriting calculus. Electronic Notes
in Theoretical Computer Science, 174(10):39–56, 2007.

3 Maribel Fernández, Ian Mackie, Shinya Sato, and Matthew Walker. Recursive functions
with pattern matching in interaction nets. ENTCS, 253(4):55–71, 2009. doi:10.1016/j.
entcs.2009.10.017.

4 Stéphane Gimenez. Programmer, calculer et raisonner avec les réseaux de la logique linéaire.
PhD thesis, 2009. URL: http://pps.jussieu.fr/~gimenez/these.html.

http://dx.doi.org/10.1017/S0956796800001994
http://dx.doi.org/10.1017/S0956796800001994
http://dx.doi.org/10.1016/j.entcs.2009.10.017
http://dx.doi.org/10.1016/j.entcs.2009.10.017
http://pps.jussieu.fr/~gimenez/these.html

S. Gimenez and D. Obwaller 35:11

5 Stéphane Gimenez. Towards generic inductive constructions in systems of nets. In 13th
International Workshop on Termination (WST 2013), page 51, 2013.

6 Stéphane Gimenez and Georg Moser. The complexity of interaction. In POPL, pages
243–255. ACM, 2016. doi:10.1145/2837614.2837646.

7 Abubakar Hassan, Eugen Jiresch, and Shinya Sato. An implementation of nested pattern
matching in interaction nets. arXiv preprint arXiv:1003.4562, 2010.

8 Abubakar Hassan, Ian Mackie, and Shinya Sato. Interaction nets: programming language
design and implementation. Electronic Communications of the EASST, 10, 2008.

9 Abubakar Hassan and Shinya Sato. Interaction nets with nested pattern matching. Elec-
tronic Notes in Theoretical Computer Science, 203(1):79–92, 2008.

10 Eugen Jiresch. Towards a GPU-based implementation of interaction nets. In DCM, pages
41–53, 2014. doi:10.4204/EPTCS.143.4.

11 Yves Lafont. Interaction nets. In Proceedings of the 17th ACM SIGPLAN-SIGACT sym-
posium on Principles of programming languages, pages 95–108. ACM, 1989.

12 Yves Lafont. Interaction combinators. Information and Computation, 137(1):69–101, 1997.
doi:10.1006/inco.1997.2643.

13 Ugo Dal Lago. A short introduction to implicit computational complexity. In Lectures on
Logic and Computation – ESSLLI 2010, ESSLLI 2011, pages 89–109, 2011. doi:10.1007/
978-3-642-31485-8_3.

14 Sylvain Lippi. Universal hard interaction for clockless computation. Dem Glücklichen
schlägt keine Stunde! Fundamenta Informaticae, 91(2):357–394, 2009. doi:10.3233/
FI-2009-0048.

15 Ian Mackie. Interaction nets for linear logic. Theoretical Computer Science, 247(1-2):83–140,
2000. doi:10.1016/S0304-3975(00)00198-5.

16 Ian Mackie. Efficient lambda-evaluation with interaction nets. In RTA, volume 3091 of
Lecture Notes in Computer Science, pages 155–169, 2004. doi:10.1007/b98160.

17 Ian Mackie and Jorge Sousa Pinto. Encoding linear logic with interaction combinators.
Information and Computation, 176(2):153–186, 2002. doi:10.1006/inco.2002.3163.

18 Damiano Mazza. Multiport interaction nets and concurrency. In CONCUR, pages 21–35,
2005. doi:10.1007/11539452_6.

19 Damiano Mazza. Interaction Nets: Semantics and Concurrent Extensions. PhD thesis,
2006. URL: https://www-lipn.univ-paris13.fr/~mazza/papers/Thesis.pdf.

20 Jorge Sousa Pinto. Sequential and concurrent abstract machines for interaction nets. In
FOSSACS, pages 267–282. Springer-Verlag, 2000. doi:10.1007/3-540-46432-8_18.

21 Jorge Sousa Pinto. Parallel evaluation of interaction nets with MPINE. In RTA, pages
353–356, 2001. doi:10.1007/3-540-45127-7_26.

22 Jorge Sousa Pinto. Parallel implementation models for the lambda-calculus using the geo-
metry of interaction. In TLCA, pages 385–399, 2001. doi:0.1007/3-540-45413-6_30.

FSCD 2016

http://dx.doi.org/10.1145/2837614.2837646
http://dx.doi.org/10.4204/EPTCS.143.4
http://dx.doi.org/10.1006/inco.1997.2643
http://dx.doi.org/10.1007/978-3-642-31485-8_3
http://dx.doi.org/10.1007/978-3-642-31485-8_3
http://dx.doi.org/10.3233/FI-2009-0048
http://dx.doi.org/10.3233/FI-2009-0048
http://dx.doi.org/10.1016/S0304-3975(00)00198-5
http://dx.doi.org/10.1007/b98160
http://dx.doi.org/10.1006/inco.2002.3163
http://dx.doi.org/10.1007/11539452_6
https://www-lipn.univ-paris13.fr/~mazza/papers/Thesis.pdf
http://dx.doi.org/10.1007/3-540-46432-8_18
http://dx.doi.org/10.1007/3-540-45127-7_26
http://dx.doi.org/0.1007/3-540-45413-6_30

	Introduction
	Interaction Nets
	Interaction Automata
	Definition of the Computation Model
	Implementation of Interaction Nets on Interaction Automata
	Limits

	Implementation
	General Design Principles
	Input Language
	Resource Usage Reports
	Results

	Conclusion

