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Abstract
In recent work the author has analyzed a number of classical functional search tree and priority
queue implementations with the help of the theorem prover Isabelle/HOL. The functional cor-
rectness proofs of AVL trees, red-black trees, 2-3 trees, 2-3-4 trees, 1-2 brother trees, AA trees
and splay trees could be automated. The amortized logarithmic complexity of skew heaps, splay
trees, splay heaps and pairing heaps had to be proved manually.
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1 Summary

Recent work on the analysis of functional data structures [6, 7] considers two questions: func-
tional correctness and amortized complexity. In the theorem proving community, functional
correctness of programs is the primary issue and their complexity is analyzed much less
frequently. In the algorithms community it is the other way around: functional correctness
is often viewed as obvious and the main issue is the complexity. We confirm the latter
point of view in two case studies involving a number of functional search tree and priority
queue implementations. The proofs were all conducted with the help of the theorem prover
Isabelle/HOL [8, 9].

In [7] it is shown how to automate the functional correctness proofs of insertion and
deletion in search trees: by means of an inorder traversal function that projects trees to lists,
the proofs are reduced from trees to lists. With the help of a small lemma library, functional
correctness and preservation of the search tree property are proved automatically for a range
of data structures: unbalanced binary trees, AVL trees, red-black trees, 2-3 trees, 2-3-4 trees,
1-2 brother trees, AA trees and splay trees.

In [6] a framework for the analysis of the amortized complexity of (functional) data
structures is formalized and applied to a number of standard examples and to three famous
non-trivial ones: skew heaps, splay trees and splay heaps. More recently, pairing heaps
were added in collaboration with Hauke Brinkop [2, 5]. In all cases we proved logarithmic
amortized complexity and the proofs were largely manual, following the existing algorithms
literature.
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2 Related Work

Very close to the above work is Charguéraud’ and Pottier’s verification of the almost-linear
amortized complexity of an OCaml implementation of Union-Find in Coq [3]. Using different
methods but also aiming for performance analysis is work on automatic analysis of worst
case execution time [11], analysis of complexity of term rewriting systems (e.g. [1, 10]), and
automatic complexity analysis of functional programs (e.g. [4]).
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