
A Framework for Dynamic Parameterized
Dictionary Matching∗

Arnab Ganguly1, Wing-Kai Hon2, and Rahul Shah3

1 School of Electrical Engineering and Computer Science, Louisiana State
University, Baton Rouge, USA
agangu4@lsu.edu,rahul@csc.lsu.edu

2 Department of Computer Science, National Tsing Hua University, Hsinchu
City, Taiwan
wkhon@cs.nthu.edu.tw

3 School of Electrical Engineering and Computer Science, Louisiana State
University, Baton Rouge, USA; and
National Science Foundation, Arlington, USA
rahul@nsf.gov

Abstract
Two equal-length strings S and S′ are a parameterized-match (p-match) iff there exists a one-to-
one function that renames the characters in S to those in S′. Let P be a collection of d patterns
of total length n characters that are chosen from an alphabet Σ of cardinality σ. The task is to
index P such that we can support the following operations:

search(T ): given a text T , report all occurrences 〈j, Pi〉 such that there exists a pattern Pi ∈ P
that is a p-match with the substring T [j, j + |Pi| − 1].
insert(Pi)/delete(Pi): modify the index when a pattern Pi is inserted/deleted.

We present a linear-space index that occupies O(n logn) bits and supports (i) search(T ) in worst-
case O(|T | log2 n+ occ) time, where occ is the number of occurrences reported, and (ii) insert(Pi)
and delete(Pi) in amortized O(|Pi|polylog(n)) time. Then, we present a succinct index that
occupies (1+o(1))n log σ+O(d logn) bits and supports (i) search(T ) in worst-case O(|T | log2 n+
occ) time, and (ii) insert(Pi) and delete(Pi) in amortized O(|Pi|polylog(n)) time. We also present
results related to the semi-dynamic variant of the problem, where deletion is not allowed.

1998 ACM Subject Classification F.2.2 Pattern Matching

Keywords and phrases Parameterized Dictionary Indexing, Generalized Suffix Tree, Succinct
Data Structures, Sparsification

Digital Object Identifier 10.4230/LIPIcs.SWAT.2016.10

1 Introduction

Designing succinct data structures for the classical pattern matching problem of finding all
occurrences of a pattern P in a fixed text T can be traced back to the seminal work of Grossi
and Vitter [16], Ferragina and Manzini [13], and Sadakane [29]. This established an active
research area of designing succinct data structures. The focus was now on either improving
these initial breakthroughs (see [26] for a comprehensive survey), or designing succinct data

∗ The work of Arnab Ganguly was supported by National Science Foundation Grants CCF–1017623
and CCF–1218904. The work of Wing-Kai Hon was supported by National Science Council Grants
102-2221-E-007-068-MY3 and 105-2918-I-007-006.

© Arnab Ganguly, Wing-Kai Hon, and Rahul Shah;
licensed under Creative Commons License CC-BY

15th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2016).
Editor: Rasmus Pagh; Article No. 10; pp. 10:1–10:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SWAT.2016.10
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


10:2 A Framework for Dynamic Parameterized Dictionary Matching

structures for other variants [6, 8, 14, 25, 30]. Dictionary Matching, a typical example of
these variants, is defined as follows. Let P be a collection of d patterns {P1, P2, . . . , Pd} of
total length n characters which are chosen from a totally-ordered alphabet Σ of cardinality
σ. Given a text T , also over Σ, the task is to report all positions j such that at least
one of the patterns Pi ∈ P exactly matches an equal-length substring of T that starts at
j. Typically, the patterns which occur at j are also reported. In the Dictionary Indexing
problem, the patterns are provided upfront (and remain fixed) and the text comes as a
query. The classical solution for this problem is the Aho-Corasick (AC) automaton [1] which
occupies O(m logm) bits of space, where m ≤ n+1 is the number of states in the automaton,
and finds all occ occurrences in optimal time O(|T |+ occ). To the best of our knowledge, the
first succinct index for this problem is by Hon et al. [17]. Later, Belazzougui [6] presented an
m log σ +O(m+ d log(n/d)) bit index with optimal O(|T |+ occ) query time.

Arguably, the most natural variant of the dictionary indexing problem is the Dynamic
Dictionary Indexing problem in which we are allowed to insert a new pattern or delete an
existing one. The challenge is to modify the index under such updates without having to
rebuild it from scratch. Of course, the index should still be able to answer text queries in
a reasonably efficient time. The first non-trivial solution was provided by Amir et al. [3].
As opposed to the AC-automaton, their technique comprised of the generalized suffix tree
GST of all the patterns. Later, this was improved by Amir et al. [4] and again by Alstrup
et al. [2]. Each of these indexes occupies O(n logn) bits of space. The natural question to
ask is "Does there exist a succinct index for dynamic dictionary matching?". Chan et al. [9]
answered this by presenting an O(nσ)-bit index which is (nearly) succinct only for σ = O(1).
Moreover, their query time suffers from an O(log2 n) multiplicative slowdown (compared
to the AC-automaton) due to the use of complicated dynamic versions of FM-Index [13]
and Compressed Suffix Tree [16] as the underlying main ingredient. Updating the index
for a pattern Pi required O(|Pi| log2 n) time. Hon et al. [18] improved this to a more space
efficient (1 + o(1))n log σ +O(d logn) bit index with a faster O(|T | logn+ occ) query time
and O(|Pi| log σ + logn) update time. Recently, Feigenblat et al. [12] improved the query
time to O(|T |(log logn)2 + occ) for σ = O(polylog(n)).

Parameterized Pattern Matching has received significant attention (see [22] for a survey)
since its inception by Baker [5]. The alphabet Σ is partitioned into two disjoint sets: Σs

containing static-characters (s-characters) and Σp containing parameterized characters (p-
characters). Two strings S and S′, both over Σ, are a parameterized-match (p-match) iff
|S| = |S′|, and there is a one-to-one function f such that S[i] = f(S′[i]). For any s-character
c ∈ Σs, we have f(c) = c. Thus, for Σs = {A,B,C} and Σp = {w, x, y, z}, the strings
AxBxCy and AzBzCx are p-match, but AxBxCy and AzBwCx are not. We consider the
Parameterized Dictionary Matching problem which was introduced by Idury and Schäffer [19].
This is similar to the standard dictionary problem, just that the alphabet Σ is partitioned
into Σs and Σp, and we consider p-matches of a pattern to the text. Idury and Schäffer
presented an AC-automaton like solution which occupies O(m logm) = O(n logn) bits, and
reports all occ occurrences in O(|T | log σ + occ) time. Our main focus lies on the dynamic
version of this problem. Specifically, we present the following results.

I Theorem 1. By maintaining a linear-space index occupying O(n logn) bits, we can answer:
search(T ) in worst-case O(|T | log2 n+ occ) time.
insert(Pi) in amortized O(|Pi| logn) time.
delete(Pi) in amortized O(|Pi| log2 n) time.



A. Ganguly, W.-K. Hon, and R. Shah 10:3

I Theorem 2. By maintaining a succinct-space index occupying (1+o(1))n log σ+O(d logn)
bits, we can answer:

search(T ) in worst-case O(|T | log2 n+ occ) time.
insert(Pi) in amortized O(|Pi| logn) time.
delete(Pi) in amortized O(|Pi| log σ + log d) time.

1.1 Roadmap
We show that if the patterns are appropriately encoded [5], then the problem can be solved
using a generalized suffix tree GST of all the encoded patterns. Although the techniques
are similar to that of Amir et al. [3] and Hon et al. [18], we need much more machinery
to deal with parameterized patterns. This is because a crucial property, known as suffix
links, of traditional suffix trees does not apply directly for parameterized strings. This makes
navigating in the GST more tricky, and we have to augment the tree with additional data
structures. Furthermore, it is difficult to maintain the analogous version of suffix links in
the GST explicitly as they are more fragile to the deletion of patterns. Hence, we need an
implicit representation. Also, following suffix links in the GST is trickier as the text and
patterns have to be re-encoded. Moreover, maintaining the encoded patterns explicitly causes
the space to increase to n logn bits as opposed to the n log σ bits occupied by the patterns.

The succinct solution is largely based on the sparsification technique [17, 18] for the
(dynamic) dictionary matching problem. Broadly speaking, for a parameter ∆, the idea
is to sample suffixes at an interval of ∆, and then maintain a GST for these sampled
suffixes. Likewise, the text is also sampled. Now the sampled text starting from i = 1 is
matched, and all occurrences are reported. The occurrences reported in this run lie in the set
{i, i+ ∆, i+ 2∆, . . . }. All occurrences are subsequently reported by repeating the process for
i = 1, 2, 3, . . . ,∆. The sparsification technique, however, does not immediately extend to the
case of parameterized matching. For one, handling and maintaining suffix links is trickier.
Another issue is how to handle truncating of characters at the beginning of a currently
matched text, which is essential for the approaches in [3, 17, 18].

In Section 2, we first present a linear space index and prove Theorem 1. This index
forms the backbone of the succinct index (Theorem 2); the details are provided in Section 3.
Section 4 discusses results on the semi-dynamic variant of the problem.

2 Linear Space Index

We assume that the alphabet Σ is disjoint from the set of integers. Any string S over Σ can
be initially processed in O(|S| log σ) time to ensure that this condition holds.

2.1 Parameterized Suffix Tree
Baker [5] introduced the following encoding scheme to enable matching of parameterized
strings. Given a string S, obtain a string prev(S) by replacing the first occurrence of every
p-character in S by 0, and any other occurrence by the difference in position from its
previous occurrence. Thus, prev(AxByAxCz) = A0B0A4C0, where {A,B,C} ∈ Σs and
{x, y, z} ∈ Σp. It is easy to see that prev(S) can be computed in O(|S| log σ) time.1 Baker
showed that two strings S and S′ are a p-match iff prev(S) = prev(S′). They introduced

1 Read S from left to right, and use a balanced binary search tree (BST) to maintain the position of the
latest occurrence of each p-character.

SWAT 2016



10:4 A Framework for Dynamic Parameterized Dictionary Matching

the Parameterized Suffix Tree (PST) of a string S, which is a compacted trie of the strings
prev(S[i, |S|]), 1 ≤ i ≤ |S|. At each node u in PST, maintain strDepth(u) i.e., the length of
the string formed by concatenating the edge labels from root to u. The label of an edge
e = (u, v) is derived dynamically as follows. We maintain two pointers from e to the start
position sp and end position ep of the label in S. (Note that the encoding of the edge is
not necessarily prev(S)[sp, ep].) Suppose we want to find the encoding of the jth character
on e, where strDepth(u) = D. Then we find the encoding x = prev(S)[sp+ j − 1] using the
pointers. If x is an s-character, then x is itself the desired encoding. Otherwise, if x ≥ D + j

then the encoding is 0, else it is x. If prev(S) has been pre-computed and stored explicitly,
then all operations require constant time per character. Suppose Su is the string obtained by
concatenating the labels (over S) of the edges from root to a node u. Then, the suffix link
of u points to the location in the PST which is represented by prev(Su[2, |Su|]). If |Su| ≤ 1,
then the suffix link points at the root. Baker showed that unlike in suffix trees, a suffix link
in PST can point to inside an edge.

Although Baker’s encoding makes p-matching easier to handle, for our purposes, it suffers
from a drawback. Specifically, prev(S) is a string over an alphabet of size Θ(n) in the worst
case, whereas the original alphabet size σ may be much smaller in comparison. In order to
alleviate this, our objective is to maintain S in |S| log σ bits so that we can still use the PST.
In the above discussion, note that in order to find the prev-encoding of a p-character at the
jth position, it suffices to find the last position (if any) in the interval [sp−D, sp+ j − 2]
where the character S[sp+ j−1] occurs. To facilitate this, instead of maintaining S explicitly,
we build a Wavelet Tree [15] over it. Using this, we can easily find the desired encoding
as follows (see Fact 3). Let x = rank(sp+ j − 1, access(sp+ j − 1)). If x = 1, the required
encoding is 0. Otherwise, let y = select(x − 1, access(sp + j − 1)). If y ≥ sp −D then the
encoding is (sp+ j − 1− y) and is 0, otherwise.

I Fact 3 ([15]). Let S be a string of length m over an alphabet Σ of size σ. We can build
a data structure in O(m log σ) time that occupies m log σ + o(m log σ) bits and supports the
following operations in O(log σ) time:

access(i) = S[i].
rank(i, c) = the number of occurrences of c ∈ Σ in the substring S[1, i].
select(j, c) = the smallest position i such that rank(i, c) = j.

Suppose we are trying to find all p-matches of a string S′ with S using the PST of S. Given
a node v, in O(1) time, we can find the correct outgoing edge of v that matches the next
(encoded) character of prev(S′) by using a perfect hash function at each node. Specifically,
the hash function maps the (encoded) first character of an edge to the edge itself. Every
other p-character on an edge can be appropriately encoded as described above in O(log σ)
time. Therefore, the time to find all occ p-matches is O(|S′| log σ + occ).

2.2 The Index
We assume that no two patterns Pi and Pj exist such that prev(Pi) = prev(Pj). Recall that
maintaining the patterns in their prev-encoded form requires Θ(n logn) bits in the worst case.
Although this will not affect our overall space (for the linear space index), we will use the
following scheme, which would be carried forward to our succinct index. For every pattern
Pi ∈ P , we maintain a wavelet tree WT over Pi. Then we create a generalized parameterized
suffix tree GST out of all the prev-encoded suffixes of Pi$i and Pi#i, where $i and #i are
two special s-characters neither of which belongs to Σs. Note that each leaf corresponds
to the prev-encoded suffix of Pi$i or Pi#i for some pattern Pi. We maintain a link from



A. Ganguly, W.-K. Hon, and R. Shah 10:5

the leaf corresponding to the string prev(Pi[j, |Pi|])$i to the leaf corresponding to the string
prev(Pi[j + 1, |Pi|])$i. Likewise, for the leaf corresponding to prev(Pi[j, |Pi|])#i. This will
help us in recognizing the suffix link of a node v implicitly.

For any node u, with slight abuse of notation, denote by prev(u) the string obtained
by concatenating the encoded edge labels from root to u. As described in Section 2.1, (i)
at each node u in the GST we maintain strDepth(u) = |prev(u)| explicitly, and (ii) each
edge is labeled by two pointers to the start and end positions of its label in a particular
pattern. Using these and the WTs over the patterns, we can find the desired encoding of any
character on an edge in O(log σ) time (see Section 2.1). Furthermore, at each node we use
the Dynamic Perfect Hashing technique of Dietzfelbinger et al. [11] such that given the next
(encoded) character of the text, we can navigate to the appropriate edge (if any) in constant
time. Moreover, we can update (both insert and delete) the hash table in amortized O(1)
time. The total space needed to maintain the hash tables over all nodes is O(n logn) bits.

Using the data structure of Sadakane and Navarro [27], we maintain a dynamic succinct
representation of the GST (see Fact 4). The weight (for the purpose of wla queries) of a node
u is strDepth(u) ≤ n. Clearly, the GST satisfies the min-heap property.

I Fact 4 ([27]). Given a dynamic tree with m weighted nodes, where a node’s weight is
greater than that of its parent. By encoding the tree topology in 2m + o(m) bits, we can
support the following operations in O(logm) time:

Inserting or deleting a node.
Lowest common ancestor (LCA) of two nodes.
For any node, find its (i) pre-order rank, (ii) node-depth, (iii) parent, (iv) number of
children, (v) ith leftmost child, (vi) number of sibling to its left, (vii) number of leaves in
its subtree, and (viii) ith leftmost leaf in its subtree.
levelAncestor(v,D) i.e., the node on the root to v path having node-depth D.

Using this, in O(log2m) time, we can find wla(u,W ) i.e., the lowest ancestor (if any) of a
node u that has weight at most W . This is facilitated by O(logm) binary searches on the
node-weights using levelAncestor queries.

For each pattern Pi, we locate the node u (which necessarily exists) such that prev(u) =
prev(Pi). We mark all such nodes with the corresponding pattern, and process the GST with
dynamic nearest marked ancestor queries (see Fact 5). Consider a tree with m nodes, k of
which are marked. Hon et al. [18] argued that by maintaining the order-maintenance data
structure of Dietz and Sleator [10], the relative pre-order rank of two nodes can be compared
in O(1) time. Furthermore, a node can be inserted into the data structure in O(1) time
given either the predecessor or the successor (in pre-order) of the node; the node can also be
deleted in O(1) time. Hon et al. used this to maintain the marked nodes in an interval tree.
A marked node v is an ancestor of a node u iff the pre-order rank of u lies in the interval
[rv, rv′ ], where rv and rv′ are the pre-order ranks of v and of the last visited node in the
subtree of v. The desired location where a new interval has to be inserted (or an existing one
has to be deleted), can found in O(log k) time using the interval tree. Likewise, the smallest
interval which contains a node can be found in O(log k) time; all subsequent intervals that
encloses this smallest interval can be found in O(1) time per interval. The intervals in this
tree are "elastic" in the sense that the pre-order ranks are compared in O(1) time "on the
fly" using the order-maintenance data structure. Note that the pre-order rank of a node’s
successor/predecessor is found using Fact 4 in O(logm) time.2 Summarizing,

2 The predecessor of each node is defined apart from the root. Given a non-root node u, its predecessor is

SWAT 2016



10:6 A Framework for Dynamic Parameterized Dictionary Matching

I Fact 5 ([10, 18]). Given a dynamic tree with m nodes and k ≤ m marked nodes. We can
build an O(m logm)-bit data structure to support the following operations:

Inserting or deleting a marked node in O(logm) time.
Report the K marked ancestors (if any) of a node in O(log k +K) time. J

2.3 Reporting Occurrences
A pattern Pi occurs at a position j in the text iff prev(Pi) is a prefix of prev(T [j, |T |]). To
find all patterns (if any) occurring at position j, we first find the deepest node v (called
locus) such that prev(v) is a prefix of prev(T [j, |T |]). Starting from v, we report all K marked
ancestors of v using Fact 5 in O(log d+K) time.

The task, therefore, is to find the locus of prev(T [j, |T |]) for every j ∈ [1, |T |] starting
with j = 1. First we compute prev(T ) in O(|T | log σ) time. We use the WT and the edge
pointers to traverse the GST starting from the root as follows. If we are at a node x, we use
prev(T )[strDepth(x) + 1] to select the correct edge in O(1) time. If we are inside an edge,
then we use the next character of edge, say c, and verify it with the next character of prev(T ).
If c is static then it is easy. Otherwise, c needs to be encoded (as in Section 2.1) requiring
O(log σ) time. We continue this process until we hit a position (k + 1) in the text such that
the (encoded) character does not match. Let the corresponding edge be (u, v), where u is the
locus of prev(T ). Now, we need to find the locus of prev(T [j, |T |]), where j = 2. We differ
from the strategy of Amir et al. [3] in that we follow the suffix link of v instead of u.3 (If
strDepth(u) = k, then follow the suffix link of u.) Recall that we do not explicitly maintain
suffix links (other than in leaves). The following two cases are to be considered.

T [j − 1] = T [1] is an s-character: In this case, the suffix link necessarily points to a
node w and prev

(
T [j, |T |]

)
= prev

(
T [j − 1, |T |]

)
[j, |T |]. Our task is to locate the prefix of

prev(w) which equals prev(T [j, k]) (in this case, j = 2). Note that this prefix necessarily
exists. We first locate a leaf ` in the subtree of v. Follow the pointer from ` to the leaf
`′ depicting the starting position of the immediate next suffix as that of `. We use the
query wla(`′, k− j+ 1) to locate a node w′. If strDepth(w′) = k− j+ 1, then we are done.
Otherwise, we use the character prev(T [j, |T |])[strDepth(w′)] to select the proper edge.
The desired location is given by (k − j + 1− strDepth(w′)) on this edge. Finally, we start
matching from T [k + 1] as defined previously until we hit a mismatch, resulting in the
desired locus of prev(T [2, |T |]).
T [j − 1] = T [1] is a p-character: The suffix link of v may point to the middle of an
edge, say (x, y). Also, in this case as the encoding of T has to be modified. Specifically,
prev(T [j, |T |]) and prev(T [j − 1, |T |])[j, |T |] may no longer be the same. Observe that for
any j′, if prev(T )[j′] points to a location before j, then the desired encoding at j′ is 0.
Thus, we can easily update the encoding in O(1) time as characters are read. The correct
position to start matching from T [k + 1] can be found as described in the previous case
by initially choosing a leaf in the subtree of v.

Summarizing, every time we locate the locus of prev(T [j, |T |]), we truncate the character
T [j] by following the suffix link, obtain the encoding of prev(T [j + 1, |T |]) if required, and

its parent v if u is the leftmost child of v; otherwise, the predecessor is the rightmost leaf in the subtree
of its immediate left sibling. For the root node, its successor is its leftmost child.

3 This is because if the first character of the current suffix (in this case, T [1]) is parameterized, then the
suffix link from u can point to the middle of an edge (u′, v′). Suppose, after reading the next characters
we found a mismatch on the edge itself. Taking the suffix link from u′ will push back us further and we
may end up comparing too many characters.



A. Ganguly, W.-K. Hon, and R. Shah 10:7

then use the next characters of the text to find the locus of prev(T [j + 1, |T |]). By repeating
the process, we will have located the locus of prev(T [j, |T |]) for every j ∈ [1, |T |].

The space occupied by the index is clearly O(n logn) bits. Choosing the correct outgoing
edge (if any) at any node takes O(1) time. Finding the leaf for an implicit suffix link operation
takes O(logn) time. Each weighted level ancestor query takes O(log2 n) time and WT query
takes O(log σ) time. Therefore, the time to find the loci is O(|T | log2 n), and the total time
to report all occurrences is O(|T | log2 n+ occ).

2.4 Handling Updates

We assume the pattern Pi that is to be inserted is not present in the dictionary. Likewise, for
deletion, the pattern is present in the dictionary. Both can be easily verified in O(|Pi| log σ)
time by traversing the GST.

Insertion: To modify the GST, we use the algorithm of Kosaraju [21] which constructs
the parameterized suffix tree PST of a string S in O(|S| log σ) time. The algorithm, an
adaptation of the McCreight’s construction algorithm [24] for the traditional suffix tree,
creates the PST by successively inserting the suffixes at positions 1, 2, . . . , |S|. Suffix links in
the case of PST may point to the middle of an edge. These are termed as bad suffix links
while the others (pointing to a node) are termed as good suffix links. Contrary to McCreight’s
algorithm, it no longer holds that every node other than the last entered leaf and its parent
have good suffix links defined. For a node v, if prev(v) starts with an s-character then the
suffix link of v is necessarily good. This allows insertion of suffixes starting with s-characters
to remain the same as in case of McCreight’s algorithm. Baker [5] showed that bad nodes
(i.e., nodes with bad suffix links) have an outgoing edge labeled by a 0 and also form a chain
in the PST. The number of bad nodes in this chain is at most |Σp|. Baker used this crucial
observation to locate the desired bad suffix link to be followed for entering the next suffix,
culminating in an O(|S|(|Σp|+ log σ)) construction algorithm.

Kosaraju showed that by maintaining two pointers low and high to the lowest and highest
nodes in the chain, the construction algorithm of Baker can be improved to O(|S| log σ) when
Σs is a constant-sized alphabet. Basically, the low and high pointers allow us to binary search
on the chain of bad nodes to locate the proper position, rather than searching the entire
chain. This improves the |Σp| term to log |Σp|. Kosaraju first created two separate suffix
trees: (i) T1 for S with all p-characters replaced by 0 and (ii) T2 for S with all s-characters
replaced by a single s-character. The first tree T1 can be constructed using Baker’s algorithm
and T2 using Kosaraju’s algorithm for the constant-sized static alphabet. Using these trees,
the final suffix tree is created. The trees are pre-processed with the data structure in [7] to
support constant time LCA and strDepth queries for efficiently finding longest common prefix
(LCP) information. For each suffix insertion, the number of such queries is O(log |Σp|).

We show how to update the index for inserting a pattern Pi using the techniques above.
The location to insert the first suffix i.e., prev(Pi) can be found by traversing the GST in
O(|Pi| log σ) time. Each suffix insertion in the GST will incur a cost of O(log σ) for the
O(log |Σp|) number of LCA queries in T1 and T2, and O(logn) time for inserting a constant
number of nodes in the dynamic representation of the GST. Whenever a new node is to be
inserted in the GST, we update the hash table in amortized O(1) time. The data structure
of Fact 5 is modified once (insertion of a marked node corresponding to Pi in GST) and
requires O(logn) time. Finally, when the GST is constructed we will maintain the good
suffix links (constructed by Kosaraju’s algorithm) for each leaf corresponding to each suffix

SWAT 2016



10:8 A Framework for Dynamic Parameterized Dictionary Matching

of Pi. The WT for Pi can be constructed in O(|Pi| log σ) time (see Fact 3). Thus, a pattern
Pi can be inserted into the index in amortized O(|Pi| logn) time.

Deletion: First, we find the locus u of prev(Pi) and unmark u. The time required is
O(|Pi| log σ + logn). Then, we locate the loci of prev(Pi[j, |Pi|]), 1 < j ≤ |Pi|. Let u be any
such locus. Note that there are two edges out of u labeled by $i and #i. Delete these edges
and the corresponding children of u. There are two cases to be considered.

u is a leaf: Remove u and its edge to its parent v. If v has more than one child, then
modify the hash table at v. Otherwise, v is a node with a single child x. Let y be the
parent of v. Add an edge from y to x with the label as the concatenated label of the
edges from y to v and v to x (achieved by assigning the edge pointers appropriately).
Modify the hash table at y. Remove the node v along with its edges.4
u is an internal node: Modify u by treating it as node v in the above case.

Recall that the edge labels are maintained via two pointers to the start and end positions in
a particular pattern. Upon pattern deletion, we may still have existing edges in the GST
which have pointers to the deleted pattern Pi. (This happens as Pi may share a common
prev-encoded prefix with many other patterns.) Relabeling of these edges is achieved as
follows. Each edge can be found while locating the loci of each prev-encoded suffix of Pi.
Consider such an edge (x, y). After deletion, we find a leaf in the subtree of y which is labeled
with a pattern Pi′ and the starting position j′ of the particular suffix. Then the pointers of
the edge are modified easily in O(1) time using Pi′ , j′, strDepth(x), and strDepth(y).

Locating the loci requires O(|Pi| log2 n) time. For each locus, we perform a constant
number of operations, each requiring amortized O(logn) time (for modifying the data
structure of Fact 4 and the hash table). Also, we relabel each edge correctly in O(logn) time.
The number of such edges is bounded by O(|Pi|). Finally, the WT corresponding to Pi can
be easily deleted in O(1) time. Thus, the total time is bounded by O(|Pi| log2 n).

3 Succinct Index

We maintain a WT over each pattern. This occupies n log σ+ o(n log σ) bits (refer to Fact 3).
We design our index by classifying the patterns into long and short based on a parameter ∆
to be defined later. For short patterns (having length less than ∆), we create a compacted
trie and use a rather brute-force approach. On the other hand, reporting the occurrences
of long patterns (having length at least ∆) requires more sophisticated techniques. The set
of occurrences of long patterns and short patterns are mutually disjoint, and are handled
separately as indicated in the following lemmas.

I Lemma 6. Let P be a dictionary consisting of d long patterns. By maintaining each
pattern in a WT and a data structure occupying O( n∆ logn) bits, we can report all occ`
occurrences in O(|T |(∆ log σ+ log2 n) + occ`) time. Also, a long pattern Pi can be inserted in
amortized O( |Pi|

∆ (∆ logn+ log2 n)) time and deleted in amortized O( |Pi|
∆ (∆ log σ + log2 n))

time.

I Lemma 7. Let P be a dictionary consisting of d short patterns. By maintaining each
pattern in a WT and a data structure occupying O(d logn) bits, we can report all occs

4 Observe that there might still be a suffix link from a node v′ pointing to the position corresponding to v
on this new edge because truncating the first character of prev(v′) may lead to merging of two outgoing
edges of v′. Our motivation for implicit representation of suffix links is due to this property of PST.



A. Ganguly, W.-K. Hon, and R. Shah 10:9

occurrences in O(|T |(∆ log σ + log d) + occs) time. Also, a short pattern Pi can be inserted
or deleted, both in amortized O(|Pi| log σ + log d) time.

Theorem 2 is immediate by choosing ∆ = dlogn logσ ne, where ε > 0 is an arbitrarily small
constant. We proceed to prove the above two lemmas.

In what follows, we will assume the total length n of the patterns remains reasonably
stable. This assumption is natural as we can use the following strategy of Overmars [28],
or its subsequent improvement by Mäkinen and Navarro [23]. Roughly speaking, apart
from maintaining the wavelet trees over the patterns, we will maintain three copies of the
remaining component of the data structures in Lemmas 6 and 7. Specifically, apart from
the data structures due to the choice of ∆ above, we will keep two more copies, one for
∆ = ∆−1, and the other for ∆ = ∆1, where ∆k = dlog(2kn) logσ(2kn)e. Whenever the total
length of the pattern doubles, we discard the structure for ∆−1, and start building another
structure by considering ∆ = ∆2. Likewise, when the total length halves, we discard the
structure for ∆1, and start building a structure by considering ∆ = ∆−2. Amortized per
operation cost is O(1). Whenever, a pattern is inserted or deleted, we will modify all three
copies simultaneously; a search query can be answered using any one of the copies. Clearly,
the space-and-time bounds claimed in Lemmas 6 and 7 are not affected.

3.1 Long Patterns (Proof of Lemma 6)
For a string S and ∆, we use head(S) to denote the largest prefix of S whose length is
a multiple of ∆ and tail(S) is the remaining (possibly empty) suffix of S. We begin by
obtaining prev(head(Pi)) for every Pi ∈ P. We encode tail(Pi) from left to right using the
same encoding that was used for head(Pi). More specifically, the desired encoding of the jth
character in the tail is given by prev(Pi)[|head(Pi)| + j]. Then two equal-length strings S
and S′ are a p-match iff (i) prev(head(S)) = prev(head(S′)), and (ii) the encoded tails (as
described here) of both S and S′ are equal.

The Index: Note that in this case the number of patterns d ≤ n/∆. We begin by sampling
suffixes of each pattern head with sampling factor ∆. Specifically, for each pattern Pi, we
obtain prev(Pi[k, |head(Pi)|]) for the suffixes starting at k = 1, 1 + ∆, 1 + 2∆, . . . . Starting
from left, we group every ∆ characters of these encoded suffixes. Let Σ′ be an alphabet such
that each character in Σ′ corresponds to such a ∆-length substring. Replace the ∆-length
substring by the corresponding character from Σ′. Create a generalized suffix tree Thead for all
these suffixes of all the patterns. (If the pattern length is not a multiple of ∆, then we ignore
its tail.) As in Section 2, we will append each condensed suffix with the special characters $i
and #i. Note that Thead has O(n/∆) nodes. Therefore,

∑
u δ(u) = O(n/∆), where δ(u) is

the number of outgoing edges of a node u. At each node u, we maintain strDepth(u), which
is necessarily a multiple of ∆. Also, for each leaf `, we maintain the pointers which will be
used to find suffix links implicitly. The total space required is O((n/∆) logn) bits.

Now, let us concentrate on how to navigate to a particular child of a node u. Consider all
the outgoing edges of u. Create a compacted trie Thead(u) by treating the labels of these edges
mapped to their corresponding ∆-length string. Note that each leaf in Thead(u) corresponds
to a child of u in Thead. Also, each edge in Thead(u) is labeled by a prev-encoded substring of
a pattern Pi, and each outgoing edge of a node begins with a unique character from such
a substring. As in the case of the linear space index, (i) at each edge of Thead(u) maintain
the start and end pointers, and (ii) at each node maintain a dynamic perfect hashtable for
navigating to the correct child based on the first (encoded) character of the edge. Since

SWAT 2016



10:10 A Framework for Dynamic Parameterized Dictionary Matching

the number of nodes in Thead(u) is at most 2δ(u), the total space needed to maintain this
information over all nodes in Thead is O(

∑
u δ(u) logn) = O((n/∆) logn) bits.

Now, we focus on the tail of each pattern. Consider a pattern Pi. First, we obtain the
encoded tail of Pi (as described in the beginning of this section). Create two copies of the
resultant tail, each of which is obtained by appending the s-characters $i and #i. Locate the
(distinct) node u in Thead such that prev(u) is same as prev(head(Pi)). Note that u is defined,
and we call it the head-node of Pi. Consider all patterns which have the same head-node u.
Create a compacted trie for the encoded tails of all those patterns, and let u be the root of
that trie. We call this the tail-trie of u, and denote it by Ttail(u). The parent of each leaf
in Ttail(u) corresponds to a pattern, say Pj , in the dictionary. We mark all such nodes in
Ttail(u), and label them with the corresponding pattern index j. If there is a pattern Pj with
an empty tail, then the corresponding tail-trie contains the head-node u, which is marked,
and two leaves labeled by $j and #j . The space occupied by each node for marking and
labeling is O(logn) bits. Each edge in Ttail(u) is labeled by a substring (of length less than
∆) of the encoded tail of a pattern. As in case of head tries, we maintain the two pointers
on the edge to the corresponding pattern, and a perfect dynamic hash table to navigate to
the correct child based on the first (encoded) character of the edge. This occupies O(logn)
bits for each node and edge. Since there are d patterns, the number of nodes and edges in
all tail-tries combined is O(d). Since d ≤ n/∆, the total space occupied for maintaining all
tail-tries is O((n/∆) logn) bits.

Denote the resultant trie by Tlong. We pre-process the head-trie with the data structure
of Fact 4. Likewise, each tail-trie is pre-processed with the data structures of Facts 4 and 5.
In summary, the total space occupied by Tlong is O((n/∆) logn) bits.

Reporting Occurrences: Starting from the position j = 1, we obtain prev(T [j, |T |]) in
O(|T | log σ) time. Use it to traverse the trie Tlong from the root. Each p-character labeling
the edge of Tlong can be properly encoded in O(log σ) time as described in Section 2.1.
Suppose, we have traversed up to node u in Thead and the character j′ in prev(T )[j, |T |],
where j′ − j + 1 = 0 mod ∆. If Ttail(u) is not empty, then use the less than ∆ characters of
prev(T [j, |T |) starting from j′ + 1 to traverse the tail trie, until we find a mismatch or reach
a leaf. The time required is O(∆ log σ). Now, we use the marked ancestor data structure
to report all occurrences starting at j corresponding to those patterns having head-node u.
The time required is O(log d + occj,u) time. After this, by using the first ∆-characters of
prev(T [j, |T |) starting from j′ + 1, we have to select an edge (u, v) in Thead. This is easily
achieved in O(∆ log σ) time by using the navigation trie Thead(u) as follows. If we are at a
node in Thead(u), then use the next character to find the correct edge using the hash table;
otherwise, simply use the edge pointers to encode the next character of the edge, and match
it with the next encoded character of T . In case we were no longer able to reach a leaf in
Thead(u), then we have the following two scenarios. If no match was found with the first ∆
characters starting from u, then we take the suffix link of u. Otherwise, we are necessarily
on an edge to a leaf in Thead(u); in this case, take the suffix link of the node v in Thead
corresponding to this leaf. In either case, we truncate ∆ characters of prev(T ) starting from
j. As described in Section 2, the suffix link is simulated by the implicit suffix link i.e., by
finding a leaf under u or v in the head-trie, and then using the leaf pointer and a wla query.
Following this, the correct position to start matching is located in O(∆ log σ) time using the
navigation trie of the node returned by the wla query. As before, locating a leaf requires
O(logn) time and a wla query takes O(log2 n) time. The number of times we have to select
a proper edge, traverse a tail trie, or follow a suffix link, are all bounded by O(|T |/∆).



A. Ganguly, W.-K. Hon, and R. Shah 10:11

At the end of this process, for j = 1, we have reported occurrences of all patterns which
start at a position of the form j, j + ∆, j + 2∆, . . . . The time required to find the loci and
traversing the tail tries is O(|T | log σ + |T |

∆ (∆ log σ + log2 n)). The time required to report
the occurrences is O( |T |∆ log d+ occj). By repeating with j = 2, 3, . . . ,∆, all occ` occurrences
of long patterns are reported in O(|T |(∆ log σ + log2 n) + occ`) time.

Handling Updates: First we construct the head-trie when a pattern Pi is inserted. We
begin by using Kosaraju’s algorithm to construct a PST for Pi, and then find the locus
of prev(Pi) in Thead; this will take O(|Pi| log σ) time. Now, we will create actual nodes in
Thead only for those suffixes which start at a location of the form k = 1, 1 + ∆, 1 + 2∆, . . . .
For other suffixes, we will create dummy nodes in Thead so as to perform the suffix link
operations correctly. Specifically, suppose we have inserted an actual leaf `j for the suffix
starting at 1 + j∆. Subsequently, we will construct dummy leaves for the suffixes starting
at j′ ∈ [2 + j∆, (j + 1)∆]. Once, the actual leaf `j+1 for the suffix starting 1 + (j + 1)∆
is inserted, we will add the suffix link from `j to `j+1, and delete the intermediate dummy
nodes. However, now we need to find the correct location of a (possibly new) node u in Thead
such that prev(u) is the LCP of the suffixes corresponding to `j and `j+1, which is divisible
by ∆. This can be found in O(log2 n) time using wla-queries on Thead by first finding the
LCP using the PST of Pi. Each actual node insertion will take O(∆ log σ) amortized time
for updating the structure of the navigation trie and the associated hash table, O(log2 n)
time for wla-queries, and O(logn) time for updating the data structure of Fact 4; the number
of these operations is O(|Pi|/∆). We will make O(|Pi|) accesses for updating and querying
the data structure of Fact 4 for inserting and deleting dummy nodes, each requiring O(logn)
time. Thus, the time needed to update Thead is O(|Pi| logn+ |Pi|

∆ log2 n).
Modifying the tail-trie is much simpler. We traverse it with the encoded tail(Pi) starting

from the head node of Pi until no more traversal is possible. Then, simply add the desired
nodes and edges. Modify the data structures of Facts 4 and 5 accordingly (the latter for
including a new marked node). Also, modify the hash table in O(1) amortized time per
update. The time required is O(∆ log σ + log d).

Since |Pi| ≥ ∆, inserting Pi needs amortized O(|Pi| logn+ |Pi|
∆ log2 n) time.

In case of deletion, first we find the head-node of the pattern Pi. Then, use the encoded
tail(Pi) to traverse the tail trie, unmark the node labeled by Pi, and delete its two children
(leaves) labeled with $i and #i. Also, the parent u of these leaves are deleted in case u is
a leaf. The parent v of u is modified (if it has a single child) as in the case of linear index.
If u is not a leaf, then it is treated in the same way if it has a single child, or else is left
unmodified. To modify the edge pointers, find the lowest edge e that was traversed, but was
not deleted. Then all the desired edges above e on the traversed path can be renamed by
using any leaf corresponding to a pattern Pi′ under e. The hash table entries are deleted
accordingly. The time required is O(|Pi| log σ + log d).

Deletion in the head trie is achieved by first locating the loci of all the condensed heads
in time O( |Pi|

∆ (∆ log σ + log2 n)). Then, modify the edge labels in the navigation trie, and
the adjoining hash table entries. Also, collapse nodes with a single child into an edge. The
number of such operations is O( |Pi|

∆ ), each requiring O(∆ log σ + logn) time.
Since |Pi| ≥ ∆, deleting Pi needs amortized O( |Pi|

∆ (∆ log σ + log2 n)) time.

3.2 Short Patterns (Proof of Lemma 7)
Processing short patterns is similar to that for tail-tries. We create a compacted trie Tshort for
the strings prev(Pi)$i and prev(Pi)#i. As in case of tail tries, we maintain the two pointers

SWAT 2016



10:12 A Framework for Dynamic Parameterized Dictionary Matching

for each edge, and also maintain the first (encoded) character of the edge in a dynamic perfect
hashtable. Mark a node u if there is a pattern Pi such that prev(v) = prev(Pi). Finally, we
process the trie with the data structures of Facts 4 and 5. Since the number of patterns is at
most d, the number of nodes in the trie is O(d), and the total space is O(d logn) bits.

To find the occurrences of short patterns, first obtain prev(T ) inO(|T | log σ) time. Starting
from j = 1, use prev(T )[j,∆− 1] to traverse the trie Tshort until no more traversal is possible.
The time required is O(∆ log σ). Now, starting the from the last encountered node, we report
all occj occurrences starting at j in O(log d + occj) time. We repeat the process for j =
2, 3, . . . , |T |. The time required to report all occs occurrences is O(|T |(∆ log σ+log d) +occs).

Insertion and deletion is similar as in the case of tail tries. Specifically, use prev(Pi) to
traverse Tshort, and then insert/delete nodes accordingly. The hash table for navigation and
the edge labels are also updated. Summarizing, both insertion and deletion needs amortized
O(|Pi| log σ + log d) time.

4 Semi-Dynamic Dictionary

From the discussions in the previous section, closely observe that the (log2 n)-factor in the
query complexity is due to the wla queries. To improve this, we present Fact 8.

I Fact 8 ([20]). Given a min-heap with m weighted nodes, with weights in [1,m]. We can
build an O(m logm)-bit data structure in O(m) time to support the following operations.

insert a weighted node maintaining the heap property in amortized O(log logm) time.
report wla(u,W ) in worst-case O(log logm) time.

In conjunction with the techniques previously presented, for the semi-dynamic case, where
only search and insert operations are supported, we obtain the following couple of corollaries
to Theorems 1 and 2. The bound in Corollary 10 is attained by choosing ∆ = dlogε n logσ ne
in Lemmas 6 and 7, where ε > 0 is an arbitrarily small constant.

I Corollary 9. By maintaining an O(n logn)-bit index, we can answer search(T ) in O(|T | logn
+ occ) time, and insert(Pi) in amortized O(|Pi| logn) time.

I Corollary 10. By maintaining an (1 + o(1))n log σ +O(d logn)-bit index, we can answer
search(T ) in O(|T | log1+ε n+ occ) time, and insert(Pi) in amortized O(|Pi| logn) time.

References
1 Alfred V. Aho and Margaret J. Corasick. Efficient string matching: An aid to bibliographic

search. Commun. ACM, 18(6):333–340, 1975. doi:10.1145/360825.360855.
2 Stephen Alstrup, Thore Husfeldt, and Theis Rauhe. Marked ancestor problems. In 39th

Annual Symposium on Foundations of Computer Science, FOCS’98, November 8-11, 1998,
Palo Alto, California, USA, pages 534–544, 1998. doi:10.1109/SFCS.1998.743504.

3 Amihood Amir, Martin Farach, Zvi Galil, Raffaele Giancarlo, and Kunsoo Park. Dy-
namic dictionary matching. J. Comput. Syst. Sci., 49(2):208–222, 1994. doi:10.1016/
S0022-0000(05)80047-9.

4 Amihood Amir, Martin Farach, Ramana M. Idury, Johannes A. La Poutré, and Alejandro A.
Schäffer. Improved dynamic dictionary matching. Inf. Comput., 119(2):258–282, 1995.
doi:10.1006/inco.1995.1090.

5 Brenda S. Baker. A theory of parameterized pattern matching: algorithms and applications.
In Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing, May
16-18, 1993, San Diego, CA, USA, pages 71–80, 1993. doi:10.1145/167088.167115.

http://dx.doi.org/10.1145/360825.360855
http://dx.doi.org/10.1109/SFCS.1998.743504
http://dx.doi.org/10.1016/S0022-0000(05)80047-9
http://dx.doi.org/10.1016/S0022-0000(05)80047-9
http://dx.doi.org/10.1006/inco.1995.1090
http://dx.doi.org/10.1145/167088.167115


A. Ganguly, W.-K. Hon, and R. Shah 10:13

6 Djamal Belazzougui. Succinct dictionary matching with no slowdown. In Combinatorial
Pattern Matching, 21st Annual Symposium, CPM 2010, New York, NY, USA, June 21-23,
2010. Proceedings, pages 88–100, 2010. doi:10.1007/978-3-642-13509-5_9.

7 Michael A. Bender and Martin Farach-Colton. The LCA problem revisited. In LATIN
2000: Theoretical Informatics, 4th Latin American Symposium, Punta del Este, Uruguay,
April 10-14, 2000, Proceedings, pages 88–94, 2000. doi:10.1007/10719839_9.

8 Sudip Biswas, Arnab Ganguly, Rahul Shah, and Sharma V. Thankachan. Forbidden ex-
tension queries. In 35th IARCS Annual Conference on Foundation of Software Technology
and Theoretical Computer Science, FSTTCS 2015, December 16-18, 2015, Bangalore, In-
dia, pages 320–335, 2015. doi:10.4230/LIPIcs.FSTTCS.2015.320.

9 Ho-Leung Chan, Wing-Kai Hon, Tak Wah Lam, and Kunihiko Sadakane. Dynamic dic-
tionary matching and compressed suffix trees. In Proceedings of the Sixteenth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2005, Vancouver, British Columbia,
Canada, January 23-25, 2005, pages 13–22, 2005. URL: http://dl.acm.org/citation.
cfm?id=1070432.1070436.

10 Paul F. Dietz and Daniel Dominic Sleator. Two algorithms for maintaining order in a list.
In Proceedings of the 19th Annual ACM Symposium on Theory of Computing, 1987, New
York, New York, USA, pages 365–372, 1987. doi:10.1145/28395.28434.

11 Martin Dietzfelbinger, Anna R. Karlin, Kurt Mehlhorn, Friedhelm Meyer auf der Heide,
Hans Rohnert, and Robert Endre Tarjan. Dynamic perfect hashing: Upper and lower
bounds. SIAM J. Comput., 23(4):738–761, 1994. doi:10.1137/S0097539791194094.

12 Guy Feigenblat, Ely Porat, and Ariel Shiftan. An improved query time for succinct dynamic
dictionary matching. In Combinatorial Pattern Matching – 25th Annual Symposium, CPM
2014, Moscow, Russia, June 16-18, 2014. Proceedings, pages 120–129, 2014. doi:10.1007/
978-3-319-07566-2_13.

13 Paolo Ferragina and Giovanni Manzini. Opportunistic data structures with applications. In
41st Annual Symposium on Foundations of Computer Science, FOCS 2000, 12-14 November
2000, Redondo Beach, California, USA, pages 390–398, 2000. doi:10.1109/SFCS.2000.
892127.

14 Arnab Ganguly, Rahul Shah, and Sharma V. Thankachan. Succinct non-overlapping
indexing. In Combinatorial Pattern Matching – 26th Annual Symposium, CPM 2015,
Ischia Island, Italy, June 29 – July 1, 2015, Proceedings, pages 185–195, 2015. doi:
10.1007/978-3-319-19929-0_16.

15 Roberto Grossi, Ankur Gupta, and Jeffrey Scott Vitter. High-order entropy-compressed
text indexes. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, January 12-14, 2003, Baltimore, Maryland, USA., pages 841–850, 2003. URL:
http://dl.acm.org/citation.cfm?id=644108.644250.

16 Roberto Grossi and Jeffrey Scott Vitter. Compressed suffix arrays and suffix trees with
applications to text indexing and string matching (extended abstract). In Proceedings of
the Thirty-Second Annual ACM Symposium on Theory of Computing, May 21-23, 2000,
Portland, OR, USA, pages 397–406, 2000. doi:10.1145/335305.335351.

17 Wing-Kai Hon, Tak Wah Lam, Rahul Shah, Siu-Lung Tam, and Jeffrey Scott Vitter. Com-
pressed index for dictionary matching. In 2008 Data Compression Conference (DCC 2008),
25-27 March 2008, Snowbird, UT, USA, pages 23–32, 2008. doi:10.1109/DCC.2008.62.

18 Wing-Kai Hon, Tak Wah Lam, Rahul Shah, Siu-Lung Tam, and Jeffrey Scott Vitter.
Succinct index for dynamic dictionary matching. In Algorithms and Computation, 20th
International Symposium, ISAAC 2009, Honolulu, Hawaii, USA, December 16-18, 2009.
Proceedings, pages 1034–1043, 2009. doi:10.1007/978-3-642-10631-6_104.

19 Ramana M. Idury and Alejandro A. Schäffer. Multiple matching of parameterized pat-
terns. In Combinatorial Pattern Matching, 5th Annual Symposium, CPM 94, Asilo-

SWAT 2016

http://dx.doi.org/10.1007/978-3-642-13509-5_9
http://dx.doi.org/10.1007/10719839_9
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2015.320
http://dl.acm.org/citation.cfm?id=1070432.1070436
http://dl.acm.org/citation.cfm?id=1070432.1070436
http://dx.doi.org/10.1145/28395.28434
http://dx.doi.org/10.1137/S0097539791194094
http://dx.doi.org/10.1007/978-3-319-07566-2_13
http://dx.doi.org/10.1007/978-3-319-07566-2_13
http://dx.doi.org/10.1109/SFCS.2000.892127
http://dx.doi.org/10.1109/SFCS.2000.892127
http://dx.doi.org/10.1007/978-3-319-19929-0_16
http://dx.doi.org/10.1007/978-3-319-19929-0_16
http://dl.acm.org/citation.cfm?id=644108.644250
http://dx.doi.org/10.1145/335305.335351
http://dx.doi.org/10.1109/DCC.2008.62
http://dx.doi.org/10.1007/978-3-642-10631-6_104


10:14 A Framework for Dynamic Parameterized Dictionary Matching

mar, California, USA, June 5-8, 1994, Proceedings, pages 226–239, 1994. doi:10.1007/
3-540-58094-8_20.

20 Tsvi Kopelowitz and Moshe Lewenstein. Dynamic weighted ancestors. In Proceedings of
the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2007, New
Orleans, Louisiana, USA, January 7-9, 2007, pages 565–574, 2007. URL: http://dl.acm.
org/citation.cfm?id=1283383.1283444.

21 S. Rao Kosaraju. Faster algorithms for the construction of parameterized suffix trees (pre-
liminary version). In 36th Annual Symposium on Foundations of Computer Science, Mil-
waukee, Wisconsin, 23-25 October 1995, pages 631–637, 1995. doi:10.1109/SFCS.1995.
492664.

22 Moshe Lewenstein. Parameterized pattern matching. In Encyclopedia of Algorithms, 2015.
doi:10.1007/978-3-642-27848-8_282-2.

23 Veli Mäkinen and Gonzalo Navarro. Dynamic entropy-compressed sequences and full-text
indexes. ACM Transactions on Algorithms, 4(3), 2008. doi:10.1145/1367064.1367072.

24 Edward M. McCreight. A space-economical suffix tree construction algorithm. J. ACM,
23(2):262–272, 1976. doi:10.1145/321941.321946.

25 J. Ian Munro, Gonzalo Navarro, Jesper Sindahl Nielsen, Rahul Shah, and Sharma V.
Thankachan. Top- k term-proximity in succinct space. In Algorithms and Computation –
25th International Symposium, ISAAC 2014, Jeonju, Korea, December 15-17, 2014, Pro-
ceedings, pages 169–180, 2014. doi:10.1007/978-3-319-13075-0_14.

26 Gonzalo Navarro and Veli Mäkinen. Compressed full-text indexes. ACM Comput. Surv.,
39(1), 2007. doi:10.1145/1216370.1216372.

27 Gonzalo Navarro and Kunihiko Sadakane. Fully functional static and dynamic succinct
trees. ACM Trans. Algorithms, 10(3):16:1–16:39, 2014. doi:10.1145/2601073.

28 Mark H. Overmars. The Design of Dynamic Data Structures, volume 156 of Lecture Notes
in Computer Science. Springer, 1983. doi:10.1007/BFb0014927.

29 Kunihiko Sadakane. Compressed text databases with efficient query algorithms based on
the compressed suffix array. In Algorithms and Computation, 11th International Conference,
ISAAC 2000, Taipei, Taiwan, December 18-20, 2000, Proceedings, pages 410–421, 2000.
doi:10.1007/3-540-40996-3_35.

30 Dekel Tsur. Top-k document retrieval in optimal space. Inf. Process. Lett., 113(12):440–443,
2013. doi:10.1016/j.ipl.2013.03.012.

http://dx.doi.org/10.1007/3-540-58094-8_20
http://dx.doi.org/10.1007/3-540-58094-8_20
http://dl.acm.org/citation.cfm?id=1283383.1283444
http://dl.acm.org/citation.cfm?id=1283383.1283444
http://dx.doi.org/10.1109/SFCS.1995.492664
http://dx.doi.org/10.1109/SFCS.1995.492664
http://dx.doi.org/10.1007/978-3-642-27848-8_282-2
http://dx.doi.org/10.1145/1367064.1367072
http://dx.doi.org/10.1145/321941.321946
http://dx.doi.org/10.1007/978-3-319-13075-0_14
http://dx.doi.org/10.1145/1216370.1216372
http://dx.doi.org/10.1145/2601073
http://dx.doi.org/10.1007/BFb0014927
http://dx.doi.org/10.1007/3-540-40996-3_35
http://dx.doi.org/10.1016/j.ipl.2013.03.012

	Introduction
	Roadmap

	Linear Space Index
	Parameterized Suffix Tree
	The Index
	Reporting Occurrences
	Handling Updates

	Succinct Index
	Long Patterns (Proof of Lemma 6)
	Short Patterns (Proof of Lemma 7)

	Semi-Dynamic Dictionary

