
Online Dominating Set∗

Joan Boyar1, Stephan J. Eidenbenz2, Lene M. Favrholdt3,
Michal Kotrbčík4, and Kim S. Larsen5

1 University of Southern Denmark, Odense, Denmark
joan@imada.sdu.dk

2 Los Alamos National Laboratory, Los Alamos, USA
eidenben@lanl.gov

3 University of Southern Denmark, Odense, Denmark
lenem@imada.sdu.dk

4 University of Southern Denmark, Odense, Denmark
kotrbcik@imada.sdu.dk

5 University of Southern Denmark, Odense, Denmark
kslarsen@imada.sdu.dk

Abstract
This paper is devoted to the online dominating set problem and its variants on trees, bipartite,
bounded-degree, planar, and general graphs, distinguishing between connected and not necessar-
ily connected graphs. We believe this paper represents the first systematic study of the effect
of two limitations of online algorithms: making irrevocable decisions while not knowing the fu-
ture, and being incremental, i.e., having to maintain solutions to all prefixes of the input. This
is quantified through competitive analyses of online algorithms against two optimal algorithms,
both knowing the entire input, but only one having to be incremental. We also consider the
competitive ratio of the weaker of the two optimal algorithms against the other. In most cases,
we obtain tight bounds on the competitive ratios. Our results show that requiring the graphs
to be presented in a connected fashion allows the online algorithms to obtain provably better
solutions. Furthermore, we get detailed information regarding the significance of the necessary
requirement that online algorithms be incremental. In some cases, having to be incremental fully
accounts for the online algorithm’s disadvantage.

1998 ACM Subject Classification F.1.2 [Modes of Computation] Online Computation, G.2.2
[Graph Theory] Graph Algorithms, I.1.2 [Algorithms] Analysis of Algorithms

Keywords and phrases online algorithms, dominating set, competitive analysis, graph classes,
connected graphs

Digital Object Identifier 10.4230/LIPIcs.SWAT.2016.21

1 Introduction

We consider online versions of a number of NP-complete graph problems, dominating set
(DS), and variants hereof. Given an undirected graph G = (V,E) with vertex set V and
edge set E, a set D ⊆ V is a dominating set for G if for all vertices u ∈ V , either u ∈ D
(containment) or there exists an edge {u, v} ∈ E, where v ∈ D (dominance). The objective
is to find a dominating set of minimum cardinality.

In the variant connected dominating set (CDS), we add the requirement that D be
connected (if G is not connected, D should be connected for each connected component

∗ Supported in part by the Danish Council for Independent Research and the Villum Foundation.

© Joan Boyar, Stephan J. Eidenbenz, Lene M. Favrholdt, Michal Kotrbčík, and Kim S. Larsen;
licensed under Creative Commons License CC-BY

15th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2016).
Editor: Rasmus Pagh; Article No. 21; pp. 21:1–21:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SWAT.2016.21
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

21:2 Online Dominating Set

of G). In the variant total dominating set (TDS), every vertex must be dominated by
another, corresponding to the definition above with the “containment” option removed.
We also consider independent dominating set (IDS), where we add the requirement that
D be independent, i.e., if {u, v} ∈ E, then {u, v} 6⊆ D. In both this introduction and the
preliminaries section, when we refer to dominating set, the statements are relevant to all the
variants unless explicitly specified otherwise.

The study of dominating set and its variants dates back at least to seminal books by
König [19], Berge [3], and Ore [21]. The concept of domination readily lends itself to
modelling many conceivable practical problems. Indeed, at the onset of the field, Berge [3]
mentions a possible application of keeping all points in a network under surveillance by
a set of radar stations, and Liu [20] notes that the vertices in a dominating set can be
thought of as transmitting stations that can transmit messages to all stations in the network.
Several monographs are devoted to domination [14], total domination [15], and connected
domination [12], and we refer the reader to these for further details.

We consider online [5] versions of these problems. More specifically, we consider the
vertex-arrival model where the vertices of the graph arrive one at a time and with each
vertex, the edges connecting it to previous vertices are also given. The online algorithm must
maintain a dominating set, i.e., after each vertex has arrived, D must be a dominating set
for the subgraph given so far. In particular, this means that the first vertex must always
be included in the solution, except for the case of total dominating set. Since the graph
consisting of a single vertex does not have a total dominating set at all, we allow an online
algorithm for TDS to not include isolated vertices in the solution, unlike the other variants
of DS. If the online algorithm decides to include a vertex in the set D, this decision is
irrevocable. Note, however, that not just a new vertex but also vertices given previously
may be added to D at any time. An online algorithm must make this decision without any
knowledge about possible future vertices.

Defining the nature of the irrevocable decisions is a modelling issue, and one could
alternatively have made the decision that also the act of not including the new vertex in D
should be irrevocable, i.e., not allowing algorithms to include already given vertices in D
at a later time. The main reason for our choice of model is that it is much better suited
for applications such as routing in wireless networks for which domination is intensively
studied; see for instance [10] and the citations thereof. Indeed, when domination models a
(costly) establishment of some service, there is no reason why not establishing a service at
a given time should have any inherent costs or consequences, such as preventing one from
doing so later. Furthermore, the stricter variant of irrevocability results in a problem for
which it becomes next to impossible for an online algorithm to obtain a non-trivial result
in comparison with an optimal offline algorithm. Consider, for example, an instance where
the adversary starts by giving a vertex followed by a number of neighbors of that vertex. If
the algorithm ever rejects one of these neighbors, the remaining part of the sequence will
consist of neighbors of the rejected vertex and the neighbors must all be selected. This shows
that, using this model of irrevocability, online algorithms for DS or TDS would have to select
at least n− 1 vertices, while the optimal offline algorithm selects at most two. For CDS it
is even worse, since rejecting any vertex could result in a nonconnected dominating set. A
similar observation is made in [18] for this model; their focus is on a different model, where
the vertices are known in advance, and all edges incident to a particular vertex are presented
when that vertex arrives.

An online algorithm can be seen as having two characteristics: it maintains a feasible
solution at any time, and it has no knowledge about future requests. We also define a larger

J. Boyar, S. J. Eidenbenz, L.M. Favrholdt, M. Kotrbčík, and K. S. Larsen 21:3

class of algorithms: An incremental algorithm is an algorithm that maintains a feasible
solution at any time. It may or may not know the whole input from the beginning.

We analyze the quality of online algorithms for the dominating set problems using
competitive analysis [22, 16]. Thus, we consider the size of the dominating set an online
algorithm computes up against the result obtained by an optimal offline algorithm, Opt.

As something a little unusual in competitive analysis, we are working with two different
optimal algorithms. This is with the aim of investigating whether it is predominantly the
requirement to maintain feasible solutions or the lack of knowledge of the future which
makes the problem hard. Thus, we define Optinc to be an optimal incremental algorithm
and Optoff to be an optimal offline algorithm, i.e., it is given the entire input, and then
produces a dominating set for the whole graph. The reason for this distinction is that in
order to properly measure the impact of the knowledge of the future, it is necessary that
it is the sole difference between the algorithm and Opt. Therefore, Opt has to solve the
same problem and hence the restriction on Optinc. While such an attention to comparing
algorithms to an appropriate Opt already exists in the literature, to the best of our knowledge
the focus also on the comparison of different optimum algorithms is a novel aspect of our
work. Previous results requiring the optimal offline algorithm to solve the same problem
as the online algorithm include (1) [7] which considers fair algorithms that have to accept
a request whenever possible, and thus require Opt to be fair as well, (2) [8] which studies
k-bounded-space algorithms for bin packing that have at any time at most k open bins and
requires Opt to also adhere to this restriction, and (3) [4] which analyzes the performance of
online algorithms for a variant of bin packing against a restricted offline optimum algorithm
that knows the future, but has to process the requests in the same order as the algorithm
under consideration.

Given an input sequence I and an algorithm Alg, we let Alg(I) denote the size of the
dominating set computed by Alg on I, and we define Alg to be c-competitive if there exists
a constant α such that for all input sequences I, Alg(I) ≤ cOpt(I) + α, where Opt may
be Optinc or Optoff, depending on the context. The (asymptotic) competitive ratio of Alg
is the infimum over all such c and we denote this CRinc(Alg) and CRoff(Alg), respectively.
In some results, we use the strict competitive ratio, i.e., the inequality above holds without
an additive constant. For these results, when the strict result is linear in n, we write the
asymptotic competitive ratio in Table 2 without any additive constant.

We consider the four dominating set problem variants on various graph types, including
trees, bipartite, bounded-degree (letting ∆ denote the maximum degree), and to some extent
planar graphs. In all cases, we also consider the online variant where the adversary is
restricted to giving the vertices in such a manner that the graph given at any point in
time is connected. In this case, the graph is called always-connected. One motivation is
that graphs in applications such as routing in networks are most often connected. The
connectivity assumption allows us to obtain provably better bounds on the performance
of online algorithms, at least compared to Optoff, and these bounds are of course more
meaningful for the relevant applications.

The results for online algorithms are summarized in Tables 1 and 2. The results for
Optinc against Optoff are identical to the results of Table 2, except that for DS on trees,
CRoff(Optinc) = 2 and for DS on always-connected planar graphs, CRoff(Optinc) = dn/2e.
The results are discussed in the conclusion.

SWAT 2016

21:4 Online Dominating Set

Table 1 Bounds on the competitive ratio of any online algorithm with respect to Optinc.

Graph class DS CDS TDS IDS

Trees 2 1

1Bipartite [n/4, n/2]
Always-connected bipartite n/4
Bounded degree [∆

2 ; ∆ + 1] [∆
2 ; ∆] [∆

2 ; ∆]
Always-connected bounded degree [∆

2 ; ∆ − 1]

Table 2 Bounds on the competitive ratio of any online algorithm with respect to Optoff.

Graph class DS CDS TDS IDS

Trees [2; 3] 1 2
nBipartite n n/2

Always-connected bipartite n/2
Bounded degree [∆; ∆ + 1] ∆ + 1 [∆ − 1; ∆] ∆
Always-connected bounded degree [∆

2 ; ∆ + 1] [∆ − 2; ∆ − 1] [∆ − 1; ∆]
Planar

n n/2 n
Always-connected planar

2 Preliminaries

Since we are studying online problems, the order in which vertices are given is important.
Throughout the paper, we will assume that the indices of the vertices of G, v1, . . . , vn, indicate
the order in which they are given to the online algorithm, and we use Alg(G) to denote
the size of the dominating set computed by Alg using this ordering. When no confusion
can occur, we implicitly assume that the dominating set being constructed by an online
algorithm Alg is denoted by D. We use the phrase select a vertex to mean that the vertex
in question is added to the dominating set in question. We use Gi to denote the subgraph of
G induced by {v1, . . . , vi}. We let Di denote the dominating set constructed by Alg after
processing the first i vertices of the input. When no confusion can occur, we sometimes
implicitly identify a dominating set D and the subgraph it induces. For example, we may
say that D has k components or is connected, meaning that the subgraph of G induced by D
has k components or is connected, respectively.

Online algorithms must compute a solution for all prefixes of the input seen by the
algorithm. Given the irrevocable decisions, this can of course affect the possible final sizes of
a dominating set. When we want to emphasize that a bound is derived under this restriction,
we use the word incremental to indicate this, i.e., if we discuss the size of an incremental
dominating set D of G, this means that D1 ⊆ D2 ⊆ · · · ⊆ Dn = D and that Di is a
dominating set of Gi for each i. Note in particular that any incremental algorithm, including
Optinc, for DS, CDS, or IDS must select the first vertex.

Throughout the text, we use standard graph-theoretic notation. In particular, the path
on n vertices is denoted Pn. A star with n vertices is the complete bipartite graph K1,n−1.
A leaf is a vertex of degree 1, and an internal vertex is a vertex of degree at least 2. We use
c(G) to denote the number of components of a graph G. The size of a minimum dominating
set of a graph G is denoted by γ(G). We use indices to indicate variants, using γC(G), γT (G),
and γI(G) for connected, total, and independent dominating set, respectively. This is an

J. Boyar, S. J. Eidenbenz, L.M. Favrholdt, M. Kotrbčík, and K. S. Larsen 21:5

alternative notation for the size computed by Optoff. We also use these indices on Optinc

to indicate which variant is under consideration. We use ∆ to denote the maximum degree
of the graph under consideration. Similarly, n denotes the number of vertices in the graph.

In many of the proofs of lower bounds on the competitive ratio, when the path, Pn, is
considered, either as the entire input or as a subgraph of the input, we assume that it is given
in the standard order, the order where the first vertex given is a leaf, and each subsequent
vertex is a neighbor of the vertex given in the previous step. When the path is a subgraph of
the input graph, we often extend this standard order of the path to an adversarial order of
the input graph – a fixed ordering of the vertices that yields an input attaining the bound.

In some online settings, we are interested in connected graphs, where the vertices are given
in an order such that the subgraph induced at any point in time is connected. In this case, we
use the term always-connected, indicating that we are considering a connected graph G, and
all the partial graphs Gi are connected. We implicitly assume that trees are always-connected
and we drop the adjective. Since all the classes we consider are hereditary (that is, any
induced subgraph also belongs to the class), no further restriction of partial inputs Gi is
necessary. In particular, these conventions imply that for trees, the vertex arriving at any
step (except the first) is connected to exactly one of the vertices given previously, and since
we consider unrooted trees, we can think of that vertex as the parent of the new vertex.

3 The Cost of Being Online

In this section we focus on the comparison of algorithms bound to the same irrevocable
decisions. We do so by comparing any online algorithm with Optinc and Optoff, investigating
the role played by the (absence of) knowledge of the future. We start by using the size of a
given dominating set to bound the sizes of some connected or incremental equivalents.

I Theorem 1. Let G be always-connected, let S be a dominating set of G, and let R be an
incremental dominating set of G. Then the following hold:
1. There is a connected dominating set S′ of G such that |S′| ≤ |S|+ 2(c(S)− 1).
2. There is an incremental connected dominating set R′ of G such that |R′| ≤ |R|+ c(R)− 1.
3. If G is a tree, there is an incremental dominating set R′′ of G such that |R′′| ≤ |S|+ c(S).
Moreover, all three bounds are tight for infinitely many graphs.

Proof. The proof of 1. can be found in the full version of the paper [6].
To prove 2., we label the components of R in the order in which their first vertices arrive.

Thus, let C1, . . . , Ck be the components of R, and, for 1 ≤ i ≤ k, let vji
be the first vertex

of Ci that arrives. Assume that vji arrives before vji+1 for each i = 1, . . . , k − 1. We prove
that for each component Ci of R, there is a path of length 2 joining vji

with Ch in Gji

for some h < i, i.e., a path with only one vertex not belonging to either component. Let
P = vl1 , . . . , vlm

, vji
be a shortest path in Gji

connecting vji
and some component Ch, h < i,

and assume for the sake of contradiction that m ≥ 3. In Gji
, the vertex vl3 is not adjacent

to a vertex in any component Ch′ , where h′ < i, since in that case a shorter path would exist.
However, since vertices cannot be unselected as the online algorithm proceeds, it follows that
in Gl3 , vl3 is not dominated by any vertex, which is a contradiction. Thus, selecting just one
additional vertex at the arrival of vij

connects Ci to an earlier component, and the result
follows inductively. To see that the bound is tight, observe that the optimal incremental
connected dominating set of Pn has n− 1 vertices, while for even n, there is an incremental
dominating set of size n/2 with n/2 components.

To obtain 3., consider an algorithm Alg processing vertices greedily, while always selecting
all vertices from S. That is, v1 and all vertices of S are always selected, and when a vertex v

SWAT 2016

21:6 Online Dominating Set

not in S arrives, it is selected if and only if it is not dominated by already selected vertices,
in which case it is called a bad vertex. Clearly, Alg produces an incremental dominating set,
R′′, of G.

To prove the upper bound on |R′′|, we gradually mark components of S. For a bad vertex
vi, let v be a vertex from S dominating vi, and let C be the component of S containing v.
Mark C. To prove the claim it suffices to show that each component of S can be marked at
most once, since each bad vertex leads to some component of S being marked.

Assume for the sake of contradiction that some component, C, of S is marked twice. This
happens because a vertex v of C is adjacent to a bad vertex b, and a vertex v′ (not necessarily
different from v) of C is adjacent to some later bad vertex b′. Since G is always-connected
and b′ was bad, b and b′ are connected by a path not including v′. Furthermore, v and v′ are
connected by a path in C. Thus, the edges {b, v} and {b′, v′} imply the existence of a cycle
in G, contradicting the fact that it is a tree.

To see that the bound is tight, let v1, . . . , vm, m ≡ 2 (mod 6), be a path in the standard
order. Let G be obtained from Pm by attaching m pendant vertices (new vertices of degree 1)
to each of the vertices v2, v5, v8, . . . , vm, where the pendant vertices arrive in arbitrary
order, though respecting that G should be always-connected. Each minimum incremental
dominating set of G contains each of the vertices v2, v5, v8, . . . , vm, the vertex v1, and one of
the vertices v3i and v3i+1 for each i, and thus it has size 2(m+ 1)/3. On the other hand, the
vertices v2, v5, v8, . . . , vm form a dominating set S of G with c(S) = (m+ 1)/3. J

Theorem 1 is best possible in the sense that none of the assumptions can be omitted.
Indeed, Proposition 20 implies that it is not even possible to bound the size of an incremental
(connected) dominating set in terms of the size of a (connected) dominating set, much less
to bound the size of an incremental connected dominating set in terms of the size of a
dominating set. Therefore, 1. and 2. in Theorem 1 cannot be combined even on bipartite
planar graphs. The situation is different for trees: Corollary 10 1. essentially leverages the
fact that any connected dominating set D on a tree can be produced by an incremental
algorithm without increasing the size of D.

I Proposition 2. For any graph G, there is a unique incremental independent dominating
set.

Proof. We fix G and proceed inductively. The first vertex has to be selected due to the
online requirement. When the next vertex, vi+1, is given, if it is dominated by a vertex in Di,
it cannot be selected, since then Di+1 would not be independent. If vi+1 is not dominated by
a vertex in Di, then vi+1 or one of its neighbors must be selected. However, none of vi+1’s
neighbors can be selected, since if they were not selected already, then they are dominated,
and selecting one of them would violate the independence criteria. Thus, vi+1 must be
selected. In either case, Di+1 is uniquely defined. J

Since a correct incremental algorithm is uniquely defined by this proposition by a
forced move in every step, Optinc must behave exactly the same. This fills the column for
independent dominating set in Table 1.

We let Parent denote the following algorithm for trees. The algorithm selects the first
vertex. When a new vertex v arrives, if v is not already dominated by a previously arrived
vertex, then the parent vertex that v is adjacent to is added to the dominating set. For
connected dominating set on trees, Parent is 1-competitive, even against Optoff:

J. Boyar, S. J. Eidenbenz, L.M. Favrholdt, M. Kotrbčík, and K. S. Larsen 21:7

I Proposition 3. For any tree T , Parent(T) outputs a connected dominating set of T and

Parent(T) =
{
γC(T) + 1 if v1 is a leaf of T
γC(T) otherwise.

Proof. For trees with at least two vertices, Parent selects the internal vertices plus at most
one leaf. Clearly, the size of the minimal connected dominating set of any tree T equals the
number of its internal vertices. J

To show that for TDS on trees, Parent is 1-competitive against Optinc, we prove:

I Lemma 4. For any incremental total dominating set D for an always-connected graph G,
all Di are connected.

Proof. For the sake of a contradiction, suppose that for some i, the set Di induces a subgraph
of G with at least two components, and let i be the smallest index with this property. It
follows that the vertex vi constitutes a singleton component of the subgraph induced by Di.
Thus, vi cannot be dominated by any other vertex of Di, contradicting that the solution was
incremental. J

I Corollary 5. For any tree T on n vertices,

Optinc
T (T) = Optinc

C (T) =
{

int(T) + 1 if v1 is a leaf of T
int(T) otherwise,

where int(T) is the number of internal vertices of T . Consequently, when given in the standard
order Optinc

C (Pn) = Optinc
T (Pn) = n− 1 for every n ≥ 3.

I Proposition 6. For any n ∈ Z+ and Pn given in the standard order, Optinc(Pn) = dn/2e.

I Proposition 7. For any online algorithm Alg for DS and n > 0, there is a tree T with n
vertices such that the dominating set constructed by Alg for T has at least n− 1 vertices.

Proof. We prove that the adversary can maintain the invariant that at most one vertex is
not included in the solution of Alg. The algorithm has to select the first vertex, so the
invariant holds initially. When presenting a new vertex vi, the adversary checks whether all
vertices given so far are included in Alg’s solution. If this is the case, vi is connected to
an arbitrary vertex, and the invariant still holds. Otherwise, vi is connected to the unique
vertex not included in Di−1. Now vi is not dominated, so Alg must select an additional
vertex. J

I Proposition 8. For any always-connected bipartite graph G, the smaller partite set of G
(plus, possibly, the vertex v1) forms an incremental dominating set.

As a corollary of Proposition 7 and Proposition 8, we get the following result.

I Corollary 9. For any online algorithm Alg for DS on trees, CRinc(Alg) ≥ 2.

I Corollary 10. For trees, the following hold.
1. For DS, CRinc(Parent) = 2 and CRoff(Parent) = 3.
2. For CDS, CRinc(Parent) = CRoff(Parent) = 1.
3. For TDS, CRinc(Parent) = 1 and CRoff(Parent) = 2.

We extend the Parent algorithm for graphs that are not trees as follows. When a vertex
vi, i > 1, arrives, which is not already dominated by one of the previously presented vertices,
Parent selects any of the neighbors of vi in Gi.

SWAT 2016

21:8 Online Dominating Set

I Proposition 11. For any always-connected graph G, the set computed by Parent on G is
an incremental connected dominating set of G.

Proof. We prove the claim by induction on n. Since Parent always selects v1, the statement
holds for n = 1. Consider the graph Gi, for some i > 1, and assume that Di−1 is an
incremental connected dominating set of Gi−1. If vi is already dominated by a vertex in
Di−1, then Parent keeps D unchanged (that is, Di = Di−1) and thus Di is an incremental
connected dominating set of Gi. If vi is not dominated by Di−1, then Parent chooses a
neighbor v of vi in Gi−1. Clearly, this implies that Di is an incremental dominating set of Gi.
Since Di−1 is an incremental connected dominating set of Gi−1 and the vertex v is adjacent
to the only component of Di−1, Di is connected, which concludes the proof. J

I Proposition 12. For DS and CDS on always-connected bipartite graphs, CRoff(Parent) ≤
n/2.

I Proposition 13. Let G be a graph with n vertices and maximum degree ∆. For any graph
G, γC(G) ≥ γ(G) ≥ n/(∆ + 1) and γT (G) ≥ n/∆.

Proposition 13 implies that any algorithm computing an incremental dominating set is
no worse than (∆ + 1)-competitive.

I Corollary 14. For any algorithm Alg for DS, CRoff(Alg) ≤ ∆ + 1. Furthermore, for
any algorithm Alg for TDS, CRoff(Alg) ≤ ∆.

I Proposition 15. For any algorithm Alg for CDS, CRoff(Alg) ≤ ∆− 1.

In the next result and in Proposition 19 in Section 4 we use layers in an always-connected
graph G defined by letting L assign layer numbers to vertices in the following manner. Let
L(v1) = 0 and for i > 1, L(vi) = 1 + min {L(vj) | vj is a neighbor of vi in Gi}.

Our next aim is to show that for always-connected bipartite graphs, there is an n/4-
competitive algorithm against Optinc. This is achieved by considering the following first
parent algorithm, denoted FirstParent, which generalizes Parent. For DS and CDS,
the algorithm FirstParent always selects v1 and for each vertex vi, i > 1, if vi is not
dominated by one of the already selected vertices, it selects a neighbor of vi with the smallest
layer number. For TDS, we add the following to FirstParent, so that the dominating set
produced is total: If, when vi arrives, vi and vj (j < i) are the only vertices of a component
of size 2, then besides vj , FirstParent also selects vi.

I Theorem 16. For DS, CDS, and TDS on always-connected bipartite graphs, we have
CRinc(FirstParent) ≤ n/4 for n ≥ 4.

Proof. We consider DS and CDS first. Since FirstParent is an instantiation of Parent,
Proposition 11 implies that the incremental dominating set constructed by FirstParent is
connected. Therefore, the fact that for any graph G with at least three vertices Optinc(G) ≤
Optinc

T (G) ≤ Optinc
C (G) + 1 implies that it is sufficient to prove that FirstParent is n/4-

competitive against Optinc. Furthermore, we only need to consider the case Optinc(G) < 4,
since otherwise FirstParent is trivially n/4-competitive. Since G is bipartite, there are no
edges between vertices of a single layer. Our first aim is to bound the number of layers.
Claim: If Optinc(G) < 4, then G has at most 6 layers.

To establish the claim, we prove that if an always-connected graph G has 2k + 1 layers,
then Optinc(G) > k. For the sake of contradiction, suppose that there exist graphs G that
are always-connected with 2k+ 1 layers such that Optinc(G) ≤ k, and among all such graphs

J. Boyar, S. J. Eidenbenz, L.M. Favrholdt, M. Kotrbčík, and K. S. Larsen 21:9

choose one, G, with the smallest number of vertices. Since any dominating set contains
at least one vertex, we have k ≥ 1. Let D be an incremental dominating set of G with
|D| ≤ k and let l be the largest integer such that Gl has 2k− 1 layers. Since G is the smallest
counterexample, we have Optinc(Gl) ≥ k. Recall that Dl is defined as D ∩ Gl. The fact
that D is an incremental dominating set implies that Dl is a dominating set of Gl. We
claim that |Dl| = k, since otherwise Dl would be an incremental dominating set of Gl with
|Dl| < k, contradicting the fact that Optinc(Gl) ≥ k. The fact that |Dl| = k is equivalent to
D ⊆ V (Gl) and, in particular, L(v) ≤ 2k − 1 for each vertex v from D. Let w be a vertex of
G such that L(w) = 2k + 1, such a vertex exists since G has 2k + 1 layers. By the definition
of layers the vertex w does not have a neighbor in any of the first 2k − 1 layers and thus
is not adjacent to any vertex of D, contradicting the fact that D is a dominating set of G.
This concludes the proof of the claim.

In the rest of the proof, we distinguish several cases according to the number of layers of
G. If there are at most two layers, then FirstParent selects only the root v1 and the result
easily follows. Let li denote the size of the i-th layer and si the number of vertices selected
by FirstParent from the i-th layer. For convenience, we will ignore the terms s0 and l0,
both of which are one, which is viable since we are dealing with the asymptotic competitive
ratio. Because FirstParent can add a vertex from the i-th layer to the dominating set
only when a (non-dominated) vertex from the (i+ 1)-st layer arrives, we have

si ≤ li+1. (Ai)

Clearly,

si ≤ li. (Bi)

The letter i in equations (A) and (B) indicates the layer for which the equation is applied. If
there are precisely three layers, then Optinc(G) ≥ 2 and we must prove that s1 + s2 ≤ n/2.
However, s2 = 0, and s1/2 ≤ l1/2 by (B1) and s1/2 ≤ l2/2 by (A1). Adding the last two
inequalities yields s1 ≤ l1/2 + l2/2 = n/2, as required.

We use the same idea as for three layers also in the cases of four and five layers, albeit
the counting is slightly more complicated. First we deal separately with the case where
Optinc(G) = 2, and, consequently, there are four layers. Note that the two vertices in the
optimal solution are necessarily in layers 0 and 2, and it follows that l2 = 1. Furthermore,
(A1) implies that s1 ≤ 1 and (B2) implies that s2 ≤ 1. Since s3 = 0, FirstParent always
selects at most 3 vertices, which yields the desired result. Assume now that Optinc(G) ≥ 3
and therefore, our aim is to prove that FirstParent(G) ≤ 3n/4. Adding 1/4 times (A1),
3/4 times (B1), 1/2 times (A2), and 1/2 times (B2) yields

s1 + s2 ≤ 3l1/4 + 3l2/4 + l3/2. (1)

If there are four layers, then s3 = 0 and the right-hand side of (1) satisfies 3l1/4+3l2/4+l3/2 ≤
3(l1 + l2 + l3)/4 = 3n/4, which yields the desired result. If there are five layers, we add 3/4
times (A3) and 1/4 times (B3) to (1), which gives s1 + s2 + s3 ≤ 3(l1 + l2 + l3 + l4)/4 = 3n/4,
as required. The last remaining case is that of six layers and Optinc(G) = 3, which is
dealt with similarly to that of four layers and Optinc(G) = 2. In particular, the vertices
selected by Optinc necessarily lie in layers 0, 2, and 4, and thus l0 = l2 = l4 = 1. Now
observing that s5 = 0 and adding (Bi) for all even i to (Ai) for i = 1 and i = 3 yields that
FirstParent(G) ≤ 5, which implies the result in the always-connected case.

For TDS, the additional vertices accepted by FirstParent must by accepted by any
incremental online algorithm, so the result also holds for TDS. J

SWAT 2016

21:10 Online Dominating Set

Figure 1 A two-layer construction; the minimum connected dominating set is depicted in red
(Proposition 18).

I Proposition 17. For DS, CDS, and TDS, we have CRinc(FirstParent) ≤ n/2 for n ≥ 2.

Proof. Since for any graph, FirstParent constructs an incremental dominating set, we
need to consider only the cases where Optinc(G) ≤ 1, Optinc

C (G) ≤ 1, and Optinc
T (G) ≤ 1.

For TDS, either G has no edges, in which case the empty set of vertices is a feasible
solution constructed both by Optinc

T and FirstParent, or G contains an edge, in which
case Optinc

T (G) ≥ 2 and the bound follows. Since Optinc(G) ≤ Optinc
C (G), it is sufficient to

consider the case where Optinc(G) = 1. If, at any point, Gi has more than one component,
then Optinc(Gi) ≥ 2. Thus, if Optinc(Gi) = 1, G is a star and is always-connected. Thus,
the center vertex must arrive as either the first or second request, so FirstParent(G) ≤
2 ≤ n. J

I Proposition 18. For any online algorithm Alg for DS, CDS, or TDS on always-connected
bipartite graphs, CRinc(Alg) ≥ n/4 and CRinc(Alg) ≥ ∆/2.

Proof. We prove that for any online algorithm Alg for DS, CDS, or TDS and for any integer
∆ ≥ 2, there is a bipartite graph G with maximum degree ∆ such that Alg(G) = ∆ ≥ n/2
and Optinc(G) = Optinc

C (G) = Optinc
T (G) = 2. Consider the graph consisting of a root v,

∆ vertices u1, . . . , u∆ adjacent to the root and constituting the first layer, and an additional
∆ − 1 vertices w1, . . . , w∆−1, which will be given in that order, constituting the second
layer, with adjacencies as follows: For i = 1, . . . ,∆ − 1, the i-th vertex wi of the second
layer is adjacent to ∆ − i + 1 vertices of the first layer in such a way that we obtain the
following strict set containment of sets of neighbors of these vertices: N(wi) ⊃ N(wi+1) for
all i = 1, . . . ,∆ − 2. An example of this construction for ∆ = 4 is depicted in Figure 1.
After the entire first layer is presented to the algorithm, the vertices of the first layer are
indistinguishable to the algorithm and D∆+1 does not necessarily contain more than one
vertex. For each i = 1, . . . ,∆− 1, the neighbors of wi are chosen from the first layer in such
a way that N(wi−1) ⊃ N(wi), the degree of wi is ∆− i+ 1, and N(wi) contains as many
vertices not contained in the dominating set constructed by Alg so far as possible. Consider
the situation when the vertex wi arrives. It is easy to see that if the set N(wi) does not
contain a vertex from the dominating set constructed so far, then Alg must select at least
one additional vertex at this time. The last observation implies that Alg selects at least
∆− 1 vertices from the first and second layer, plus the root.

Since there is a vertex u in the first layer that is adjacent to all vertices in the second
layer, {u, v} is an incremental connected dominating set of G, which concludes the proof. J

4 The Cost of Being Incremental

This section is devoted to comparing the performance of incremental algorithms and Optoff.
Since Optoff performs at least as well as Optinc and Optinc performs at least as well as any
online algorithm, each lower bound in Table 2 is at least the maximum of the corresponding

J. Boyar, S. J. Eidenbenz, L.M. Favrholdt, M. Kotrbčík, and K. S. Larsen 21:11

Figure 2 A fan with ∆ = 4 (left; Proposition 24) and an alternating fan with k = 3 and ∆ = 4
(right; Proposition 25).

lower bound in Table 1 and the corresponding lower bound for CRoff(Optinc). Similarly,
each upper bound in Table 1 and corresponding upper bound for CRoff(Optinc) is at least
the corresponding upper bound in Table 2. In both cases, we mention only bounds that
cannot be obtained in this way from cases considered already.

The following result generalizes the idea of Proposition 8.

I Proposition 19. For DS on always-connected graphs, CRoff(Optinc) ≤ n/2.

Proof. For a fixed ordering of G, consider the layers L(v) assigned to vertices of G. It is
easy to see that the set of vertices in the even layers is an incremental solution for DS and
similarly for the set of vertices in odd layers plus the vertex v1. Therefore, Optinc can select
the smaller of these two sets, which necessarily has at most n/2 vertices. J

I Proposition 20. The following hold for the strict competitive ratio:
For DS on bipartite planar graphs, CRoff(Optinc) ≥ n− 1 and CRoff(Optinc) ≥ ∆.
For CDS on bipartite planar graphs, CRoff(Optinc) ≥ n.

I Proposition 21. For IDS and for the strict competitive ratio, CRoff(Optinc) ≥ ∆ and
CRoff(Optinc) ≥ n− 1.

I Proposition 22. For IDS on always-connected graphs, ∆− 1 ≤ CRoff(Optinc) ≤ ∆.

Theorem 1 3. implies the following bound on the performance of Optinc on trees.

I Corollary 23. For DS on trees, CRoff(Optinc) ≤ 2.

All of the following results are lower bounds. Specific examples of the families of graphs
used to obtain these lower bounds are depicted in the following figures; the details of the
proofs appear in the full paper [6].

A fan of degree ∆ is the graph obtained from a path P∆ by addition of a vertex v that is
adjacent to all vertices of the path, as in Figure 2. The adversarial order of a fan is defined
by the standard order of the underlying path, followed by the vertex v.

I Proposition 24. For always-connected planar graphs (and, thus, also on general planar
graphs), the following strict competitive ratio results hold.

For DS, CRoff(Optinc) ≥ n/2.
For CDS, CRoff(Optinc) ≥ n− 2.
For TDS, CRoff(Optinc) ≥ n/2− 1.

An alternating fan with k fans of degree ∆ consists of k copies of the fan of degree ∆,
where the individual copies are joined in a path-like manner by identifying some of the
vertices of degree 2, as in Figure 2. Thus, n = k(∆ + 1)− (k − 1) and k = (n− 1)/∆. The
adversarial order of an alternating fan is defined by the concatenation of the adversarial
orders of the underlying fans.

SWAT 2016

21:12 Online Dominating Set

Figure 3 A modular bridge with k = 4 and ∆ = 5 (Proposition 26).

Figure 4 A bridge with k = 4 and ∆ = 6 (Proposition 27).

I Proposition 25. For DS on always-connected graphs, CRoff(Optinc) ≥ (∆− 1)/2.

A modular bridge of degree ∆ with k sections, where k is even, is the graph obtained
from a path on k(∆ − 1) vertices, with an additional k chord vertices. There is a perfect
matching on the chord vertices u1, . . . , uk with u2i is adjacent to u2i−1 for all i = 1, . . . , k/2.
Furthermore, the i-th chord vertex is adjacent to the vertices of the i-th section; see Figure 3
for an example. The adversarial order of a modular bridge is defined by the standard order
of the path, followed by the chord vertices in any order.

I Proposition 26. For TDS on always-connected graphs, CRoff(Optinc) ≥ ∆− 1.

A bridge of degree ∆ with k sections is obtained from a modular bridge of degree ∆− 1
with k sections by joining vertices u2i and u2i+1 by an edge for each i = 1, . . . , k/2− 1; see
Figure 4 for an example. The adversarial order of a bridge is identical with the adversarial
order of the underlying modular bridge.

I Proposition 27. For CDS on always-connected graphs, CRoff(Optinc) ≥ ∆− 2.

A rotor of degree ∆, where ∆ ≥ 2 is even, is a graph obtained from a star, K1,∆, on ∆ + 1
vertices by adding the edges of a perfect matching on the pendant vertices, as in Figure 5.
The adversarial order of a rotor G of degree ∆ is any fixed order such that G2i is a graph
with a perfect matching for each i = 1, . . . ,∆/2 and the central vertex of the original star is
the last vertex to arrive.

I Proposition 28. For CDS, CRoff(Optinc) ≥ ∆ + 1, and for TDS, CRoff(Optinc) ≥ ∆/2.

For any n ≥ 2, the two-sided fan of size n is the graph obtained from a path on n− 2
vertices by attaching two additional vertices, one to the even-numbered vertices of the path
and the other to the odd-numbered vertices of the path. The adversarial order of a two-sided
fan is defined by the standard order of the path, followed by the two additional vertices. See
Figure 5 for an illustration of a two-sided fan of size 10.

I Proposition 29. For any incremental algorithm Alg for CDS or TDS on always-connected
bipartite graphs, CRoff(Alg) ≥ (n− 3)/2 holds for the strict competitive ratio.

5 Conclusion and Open Problems

Online algorithms for four variants of the dominating set problem are compared using
competitive analysis to Optinc and Optoff, two reasonable alternatives for the optimal
algorithm having knowledge of the entire input. Several graph classes are considered, and
tight results are obtained in most cases.

J. Boyar, S. J. Eidenbenz, L.M. Favrholdt, M. Kotrbčík, and K. S. Larsen 21:13

Figure 5 The rotor of degree 8 (left, Proposition 28) and two-sided fan of size 10 (right,
Proposition 29).

The difference between Optinc and Optoff is that Optinc is required to maintain an
incremental solution (as any online algorithm), while Optoff is only required to produce
an offline solution for the final graph. The algorithms are compared to both Optinc and
Optoff, and Optinc is compared to Optoff, in order to investigate why all algorithms tend
to perform poorly against Optoff. Is this due to the requirement to be incremental, or is it
because of the lack of knowledge of the future?

Inspecting the results in the tables, perhaps the most striking conclusion is that the
competitive ratios of any online algorithm and Optinc, respectively, against Optoff, are
almost identical. This indicates that the requirement to maintain an incremental dominating
set is a severe restriction, which can be offset by the full knowledge of the input only to a
very small extent. On the other hand, when we restrict our attention to online algorithms
against Optinc, it turns out that the handicap of not knowing the future still presents a
barrier, leading to competitive ratios of the order of n or ∆ in most cases.

One could reconsider the nature of the irrevocable decisions, which originally stemmed
from practical applications. Which assumptions on irrevocability are relevant for practical
applications, and which irrevocability components make the problem hard from an online
perspective? We expect that these considerations will apply to many other online problems
as well.

There is relatively little difference observed between three of the variants of dominating
set considered: dominating set, connected dominating set, and total dominating set. In
fact, the results for total dominating set generally followed directly from those for connected
dominating set as a consequence of Lemma 4. The results for independent dominating set
were significantly different from the others. It can be viewed as the minimum maximal
independent set problem since any maximal independent set is a dominating set. This
problem has been studied in the context of investigating the performance of the greedy
algorithm for the independent set problem. In fact, the unique incremental independent
dominating set is the set produced by the greedy algorithm for independent set.

In yet another orthogonal dimension, we compare the results for various graph classes.
Dominating set is a special case of set cover and is notoriously difficult in classical complexity,
being NP-hard [17], W [2]-hard [11], and not approximable within c logn for any constant
c on general graphs [13]. On the positive side, on planar graphs, the problem is FPT [1],
admits a PTAS [2], and is approximable within log ∆ on bounded degree graphs [9]. On the
other hand, the relationship between the performance of online algorithms and structural
properties of graphs is not particularly well understood. In particular, there are problems
where the absence of knowledge of the future is irrelevant; examples of such problems in this
work are CDS and TDS on trees, and IDS on any graph class. As expected, for bounded
degree graphs, the competitive ratios are of the order of ∆, but closing the gap between ∆/2
and ∆ seems to require additional ideas. On the other hand, for planar graphs, the problem,
rather surprisingly, seems to be as difficult as the general case when compared to Optoff.

SWAT 2016

21:14 Online Dominating Set

When online algorithms for planar graphs are compared to Optinc, we suspect there might
be an algorithm with constant competitive ratio. At the same time, this case is the most
notable open problem directly related to our results. Drawing inspiration from classical
complexity, one could consider more specific graph classes in the quest for understanding
exactly what structural properties make the problem solvable. From this perspective, our
consideration of planar, bipartite, and bounded degree graphs is a natural first step.

Acknowledgment. The authors would like to thank the anonymous referees for constructive
comments.

References
1 J. Alber, H. L. Bodlaender, H. Fernau, T. Kloks, and R. Niedermeier. Fixed parame-

ter algorithms for dominating set and related problems on planar graphs. Algorithmica,
33(4):461–493, 2002.

2 B. S. Baker. Approximation algorithms for NP-complete problems on planar graphs. Jour-
nal of the ACM, 41(1):153–180, 1994.

3 C. Berge. Theory of Graphs and its Applications. Meuthen, London, 1962.
4 M. Böhm, J. Sgall, and P. Veselý. Online colored bin packing. In E. Bampis and O. Svensson,

editors, 12th International Workshop on Approximation and Online Algorithms (WAOA),
volume 8952 of Lecture Notes in Computer Science, pages 35–46. Springer, 2015.

5 A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cambridge
University Press, 1998.

6 J. Boyar, S. J. Eidenbenz, L. M. Favrholdt, M. Kotrbčík, and K. S. Larsen. Online domi-
nating set. Technical Report arXiv:1604.05172 [cs.DS], arXiv, 2016.

7 J. Boyar and K. S. Larsen. The seat reservation problem. Algorithmica, 25(4):403–417,
1999.

8 M. Chrobak, J. Sgall, and G. J. Woeginger. Two-bounded-space bin packing revisited. In
C. Demetrescu and M. M. Halldórsson, editors, 19th Annual European Symposium (ESA),
volume 6942 of Lecture Notes in Computer Science, pages 263–274. Springer, 2011.

9 V. Chvátal. A greedy heuristic for the set-covering problem. Mathematics of Operations
Research, 4(3):233–235, 1979.

10 B. Das and V. Bharghavan. Routing in ad-hoc networks using minimum connected domi-
nating sets. In IEEE International Conference on Communications (ICC), volume 1, pages
376–380, 1997.

11 R. G. Downey and M. R. Fellows. Fixed-parameter tractability and completeness I: Basic
results. SIAM Journal on Computing, 24(4):873–921, 1995.

12 D.-Z. Du and P.-J. Wan. Connected Dominating Set: Theory and Applications. Springer,
New York, 2013.

13 U. Feige. A threshold of lnn for approximating set cover. Journal of the ACM, 45(4):634–
652, 1998.

14 T. W. Haynes, S. Hedetniemi, and P. Slater. Fundamentals of Domination in Graphs.
Marcel Dekker, New York, 1998.

15 M. Henning and A. Yao. Total Domination in Graphs. Springer, New York, 2013.
16 A. R. Karlin, M. S. Manasse, L. Rudolph, and D. D. Sleator. Competitive snoopy caching.

Algorithmica, 3:79–119, 1988.
17 R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller and J. W.

Thatcher, editors, Complexity of Computer Computations, The IBM Research Symposia
Series, pages 85–103. Plenum Press, New York, 1972.

J. Boyar, S. J. Eidenbenz, L.M. Favrholdt, M. Kotrbčík, and K. S. Larsen 21:15

18 G.-H. King and W.-G. Tzeng. On-line algorithms for the dominating set problem. Infor-
mation Processing Letters, 61(1):11–14, 1997.

19 D. König. Theorie der Endlichen und Unendlichen Graphen. Chelsea, New York, 1950.
20 C. L. Liu. Introduction to Combinatorial Mathematics. McGraw-Hill, New York, 1968.
21 O. Ore. Theory of Graphs, volume 38 of Colloquium Publications. American Mathematical

Society, Providence, 1962.
22 D. D. Sleator and R. E. Tarjan. Amortized efficiency of list update and paging rules.

Communications of the ACM, 28(2):202–208, 1985.

SWAT 2016

	Introduction
	Preliminaries
	The Cost of Being Online
	The Cost of Being Incremental
	Conclusion and Open Problems

