
Estimating The Makespan of The Two-Valued
Restricted Assignment Problem
Klaus Jansen1, Kati Land∗2, and Marten Maack3

1 Institute of Computer Science, University of Kiel, Kiel, Germany
kj@informatik.uni-kiel.de

2 Institute of Computer Science, University of Kiel, Kiel, Germany
kla@informatik.uni-kiel.de

3 Institute of Computer Science, University of Kiel, Kiel, Germany
mmaa@informatik.uni-kiel.de

Abstract
We consider a special case of the scheduling problem on unrelated machines, namely the Re-
stricted Assignment Problem with two different processing times. We show that the configuration
LP has an integrality gap of at most 5

3 ≈ 1.667 for this problem. This allows us to estimate the
optimal makespan within a factor of 5

3 , improving upon the previously best known estimation
algorithm with ratio 11

6 ≈ 1.833 due to Chakrabarty, Khanna, and Li [2].

1998 ACM Subject Classification F.2.2 Sequencing and Scheduling, G.1.6 Optimization

Keywords and phrases unrelated scheduling, restricted assignment, configuration LP, integrality
gap, estimation algorithm

Digital Object Identifier 10.4230/LIPIcs.SWAT.2016.24

1 Introduction

Scheduling on unrelated machines is a problem where we are given a set J of jobs and a setM
of machines, and the processing time of job j ∈ J on machine i ∈ M is given by pij . The
task is to find an assignment σ : J →M , called the schedule, that minimizes the makespan,
i.e. the maximum load maxi∈M

∑
j∈σ−1(i) pij of a machine.

Lenstra, Shmoys, and Tardos [6] proved that it is NP-hard to approximate the makespan
with a factor less than 1.5. On the other hand, they presented an algorithm with approxi-
mation ratio 2. The algorithm uses a rounding procedure for the following, natural linear
programming formulation, which is commonly known as the assignment linear program (LP):∑

i∈M
xij = 1 for each j ∈ J (1)∑

j∈J
pijxij ≤ T for each i ∈M (2)

xij = 0 for each i ∈M, j ∈ J with pij > T (3)
xij ≥ 0 for each i ∈M, j ∈ J . (4)

Here, T is the desired makespan. We denote the above LP by ALP(T). It is clear that
there is a schedule with makespan T if and only if ALP(T) has an integral solution. Note
that equation 3 strengthens the otherwise intuitive formulation by forbidding fractional
assignments if the whole job cannot be feasibly processed on a machine.

∗ Research was supported by German Research Foundation (DFG) project JA 612/15-1.

© Klaus Jansen, Kati Land, and Marten Maack;
licensed under Creative Commons License CC-BY

15th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2016).
Editor: Rasmus Pagh; Article No. 24; pp. 24:1–24:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SWAT.2016.24
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

24:2 Estimating The Makespan of The Two-Valued Restricted Assignment Problem

Closing this gap between approximability and inapproximability is a major open problem in
scheduling theory. Since 1990, the approximation ratio was slightly improved to 2−1/|M | [7].
Because no substantial progress has been made for more than 20 years, the focus has
shifted towards special cases of the problem. One important special case is the so called
Restricted Assignment Problem, where for each job j ∈ J there is a number pj such that
{pij | i ∈ M} ⊆ {pj ,∞}. A natural interpretation is that for each job j there is a
set M(j) ⊆M of machines on which j may be processed, and the processing time is the same
on each of these machines. The restricted assignment case may look easier than the general
problem, but the inapproximability bound of 1.5− ε still holds, even if we further restrict
that |M(j)| ≤ 2 and pj ∈ {1, 2} for each job j [3].

A breakthrough was achieved by Svensson [9], who considered another, stronger LP
formulation, the configuration LP. To introduce it, we require some notation. For each set
J ′ ⊆ J of jobs we define p(J ′) =

∑
j∈J′ pj . We also abbreviate p(j) = p({j}) for a single

job j. A configuration for a machine i is a set C ⊆ J with
∑
j∈C pij ≤ T We denote the

set of all configurations for machine i that respect the target makespan T by C(i, T). The
configuration LP CLP(T) is defined as∑

C∈C(i,T)

xi,C ≤ 1 for each i ∈M (5)

∑
i∈M

∑
C∈C(i,T)
j∈C

xi,C ≥ 1 for each j ∈ J (6)

xi,C ≥ 0 for each i ∈M , C ∈ C(i, T). (7)

The first constraint enforces that at most one configuration is assigned to each machine,
and the second constraint ensures that each job is completely assigned. Svensson [9] proved
that the integrality gap of the configuration LP is at most 33/17 ≈ 1.941 for the Restricted
Assignment Problem.

Usually, the integrality gap of an integer linear program is defined by supI
OPT(I)

OPTLP(I) ,
where OPT(I) and OPTLP(I) denote the optimal integer and fractional solutions of the
LP. In this case however, we have a feasibility program. One therefore defines OPT(I) =
min{T | CLP(T) has a feasible integer solution} and OPTLP(I) analogously. Indeed, with
this definition, OPT(I) is equal to the makespan of an optimal schedule. We will write OPT
or OPTLP instead of OPT(I) and OPTLP(I) if the instance is clear from the context.

Even though the number of variables in CLP(T) may be exponentially large, one can find
an approximate solution it in polynomial time via its dual [1]: If we interpret CLP(T) as
maximizing a zero objective function, the dual is given by

min
∑
i∈M

yi −
∑
j∈J

zj (8)

yi ≥
∑
j∈C

zj for each i ∈M , C ∈ C(i, T) (9)

zj ≥ 0 for each j ∈ J (10)

Finding a violated constraint of the dual is equivalent to |M | knapsack problems, and we
can find an approximate solution to these knapsack problems using an FPTAS. Using this
FPTAS as separation oracle, a solution to CLP(T) can be found. This solution then may
contain configurations C with T < p(C) ≤ (1 + ε)T , where ε > 0 is the chosen precision.

Performing a binary search for the best target makespan T , we can therefore estimate
OPTLP(I) within a factor 1+ε in polynomial time for arbitrary small ε > 0. Using Svenssons

K. Jansen, K. Land, and M. Maack 24:3

Table 1 An instance with integrality gap 3/2.

Job 1 2 3 4 5 6 7

pj 1 1 1 2 1 1 1
M(j) 1 1,2 1,2 2,3 3,4 3,4 4

1 2 3 4

j1

j2

j3

j4

j5

j6

j7

(a) An optimal integral solution
1 2 3 4

j1

j2 j3

j2

j3

j4 j4

j5

j6 j5 j6

j7

(b) An optimal fractional solution

Figure 1 Solutions for the instance given in Table 1.

bound on the integrality gap then allows us to estimate the optimum makespan OPT(I)
within a factor of 33/17 + ε in polynomial time, where ε > 0 is again an arbitrary small
constant. It is a major open problem to find a polynomial rounding procedure whose
approximation guarantee matches the integrality gap.

Better results have been obtained when the instances have further restrictions. For
example, if |M(j)| ≤ 2 for each j ∈ J , there is a 1.75-approximation [3]. Recently, Huang
and Ott [4] gave improved algorithms for the case that the constraint |M(j)| ≤ 2 only applies
to big jobs.

We will in particular investigate the case of only two types of jobs: small jobs with
processing time s and big jobs with processing time b. Even in this case the integrality gap
is at least 3

2 , as the instance given in Table 1 and its solutions depicted in Figure 1 show.
Svensson [9] proved that the integrality gap of the configuration LP in this case is at

most 5
3 + s if b = OPTLP = 1. Kolliopoulos and Moysoglou [5] pointed out that this bound

also holds for OPTLP < 2b and generalizes to 5
3 + s

OPTLP
when b < OPTLP < 2b. Note that

if OPTLP ≥ 2b, the analysis of Lenstra, Shmoys, and Tardos [6] bounds the integrality gap
of the assignment LP by 1.5, and the configuration LP is at least as strong.

Kolliopoulos and Moysoglou [5] developed a (2 − s
b)-approximation for the case that

b is a multiple of s. By rounding general instanes to this form when s
b ≥ 0.2 and using

Svenssons result when s
b < 0.2, the makespan can be estimated within a factor of 1.883.

Recently, Chakrabarty, Khanna, and Li [2] found a (2− s
b)-approximation for the general

case and therefore improved the estimation ratio to 1.833. They also presented a constructive
algorithm with approximation ratio 2− δ for a very small δ > 0.

Our Contribution

In section 2, we conduct a tighter analysis of Svensson’s [9] local search algorithm that
depends on the structure of the fractional solution. In particular, we distinguish the cases
that OPTLP−b or OPTLP is a multiple of s. Note that either OPTLP−b or OPTLP must be
a multiple of s, because a configuration of length OPTLP either contains one big job, or only
small jobs. As result, we present better bounds on the integrality gap of the configuration
LP. A peculiarity of these bounds is that they are piecewise linear functions with infinitely

SWAT 2016

24:4 Estimating The Makespan of The Two-Valued Restricted Assignment Problem

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 11

1.2

1.4

1.6

1.8

2

5
3

s
b

va
lu

e
of

bo
un

d
Bound from Theorem 2, OPTLP − b is a multiple of s
Bound from Theorem 1
Bound from Corollary 11

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 11

1.2

1.4

1.6

1.8

2

5
3

s
b

va
lu

e
of

bo
un

d

Bound from Theorem 2, OPTLP is a multiple of s

Figure 2 Comparison of bounds on the integrality gap for OPTLP = b.

many discontinuities. Our bounds are largest in the case OPTLP = b, for which they are
depicted in Figure 2.

We improve this bound further in Sections 3 and 4 and obtain our main result:

I Theorem 1. The integrality gap of the configuration LP for the Restricted Assignment
Problem with two different processing times is at most 5

3 .

This bound also allows us to estimate the optimal makespan within a factor of 5
3 ≈ 1.667,

improving upon the previously best possible ratio 1.833 [2].
The proof of Theorem 1 is split in two parts. If sb ≤

1
3 , we study the shape of the bounds

we obtained in section 2 more closely in section 3. Our idea is to modify instances for which
the bound from section 2 is larger than 5

3 by scaling one of the processing times s and b such
that we get a better bound for the modified instance. We then bound the integrality gap of
the original instance in terms of the integrality gap of the newly constructed instance.

In section 4, we present an algorithm with approximation ratio 2− s
b . The algorithm is

based on solving an augmented assignment LP and rounding the solution using a technique
due to Shmoys and Tardos [8]. As a corollary, the integrality gap of the augmented assignment
LP and the (stronger) configuration LP is bounded by 2 − s

b , which proves Theorem 1 if
s
b ≥

1
3 . We should note that the approximation ratio 2− s

b was independently obtained by
Chakrabarty, Khanna, and Li [2] using different methods, but they do not use LPs, and
therefore cannot derive any bound on the integrality gap. Moreover, our algorithm has an
additive approximation guarantee of OPTLP + b− s, which might be of independent interest.

2 Bounding the Integrality Gap by Local Search

In this section we present an improved bound on the integrality gap of the configuration
LP. Our proof requires that each configuration in the optimal fractional solution contains
at most one big job. To satisfy the first condition, it is sufficient (but not necessary) that

K. Jansen, K. Land, and M. Maack 24:5

OPTLP < 2b. The argumentation also works for a restricted variant of the problem where
only one big job per configuration is permitted. We further distinguish whether OPTLP − b
or OPTLP is a multiple of s. Note that, if OPTLP − b is not a multiple of s, then OPTLP is,
and vice-versa, so at least one of the cases always holds, and both hold exactly if b is a
multiple of s

We will show the following, see also Figure 2:

I Theorem 2. Consider an instance of the resticted assignment problem with jobs of two
sizes s < b such that each configuration in the optimal fractional solution contains at most
one big job.
1. If OPTLP − b is a multiple of s, then the integrality gap of the CLP is at most

(a) 1 + (b−s)
OPTLP

if 2
5 ≤

s
b <

1
2 and

(b) 1 + d 2
3 (bs − 1)e s

OPTLP
otherwise.

2. If OPTLP is a multiple of s and s
b ≤

2
5 , then the integrality gap of the CLP is at most

(a) 1 +
(
b− b b3s + 2

3c · s
)
· 1

OPTLP
.

An upper bound on the values given in Theorem 2 is 5
3 + 1

3
s

OPTLP
. Recall that Svenssons [9]

bound generalizes to 5
3 + s

OPTLP
for b < OPTLP < 2b [5]. To prove Theorem 2, we utilize

the local search technique due to Svensson [9], but with an improved analysis.
For simplicity, we scale the processing times such that OPTLP = 1 from now on. The

high-level overview is as follows: we use a family (AR)R>0 of algorithms, where each
member AR takes a partial schedule σ, i.e. a feasible schedule for a subset J ′ ⊂ J of the jobs,
and a currently unscheduled job jnew as parameters. It should return a feasible schedule
for J ′ ∪ {jnew}. In addition, AR maintains the invariant that the makespan is at most 1 +R.
Given an instance of the problem for that CLP(1) is feasible, iteratively applying AR to
each job, starting with an empty schedule, yields a schedule for all jobs with makespan at
most 1 + R. Note that we cannot give a polynomial bound on the running time of this
procedure, but the mere existence of the resultant schedule proves that the integrality gap is
bounded by 1 +R. The crucial point is indeed that the algorithm successfully terminates at
all, and we can prove this if R meets certain requirements. A more detailed description of
the algorithm is given in the next section.

2.1 Detailed Description of the Algorithm
The main idea is to move jobs from their current machine to another machine while main-
taining the invariant that the makespan is at most 1 +R. In the beginning, we wish to move
only the unassigned job jnew to some machine. Suppose that all machines in M(j) have too
much load, otherwise we are done. The algorithm then will try to reduce the load on some
machine i ∈ M(jnew) by moving some job j ∈ σ−1(i) away from i. If such a move is again
not immediately possible, the process repeats. Since we are trying to reduce the load on
machine i, moving more jobs to i may be unhelpful, depending on the job’s sizes. Thus the
algorithm needs to store which jobs it currently tries to move and which machines it should
not try to move jobs to, and it does so by the use of blockers. Whenever the algorithm decides
that a move has the potential to be helpful but does not immediately lead to a schedule
with makespan at most 1 + R, a blocker is created. More formally, a move is a pair (j, i),
where j is a job and i ∈ M(j) \ {σ(j)}. We distinguish three types of moves: (j, i) is a small
move if j is small, a big-to-small move if j is big and σ−1(i) contains only small jobs, and
a big-to-big move if j is big and σ−1(i) contains a big job. If assigning σ(j) = i yields a
schedule of makespan at most 1 +R, the move is called valid, otherwise it is invalid. When
a potentially helpful move (j, i) is found to be invalid, a blocker B is created. B is a tuple

SWAT 2016

24:6 Estimating The Makespan of The Two-Valued Restricted Assignment Problem

consisting of a machine m(B) = i, the set J(B) of jobs we wish to move away from m(B),
and the move mv(B) = (j, i) that caused the creation of B. If (j, i) is a big-to-big move, we
call B a big blocker and set J(B) = {jbig}, where jbig is the single big job on i. Creating this
big blocker will prevent all attempts to move another big job to i. The intuition is that the
move (j, i) only can become valid if jbig is moved away from i and no other big job replaces
it. Note that we use the fact that no two big jobs can be on one machine. If (j, i) is a small
or big-to-small move, we set J(B) = σ−1(i) and call B a small blocker. The algorithm will
not try to move any job to machine i, increasing the likelihood that (j, i) becomes valid. All
blockers are stored in a list L = B0, . . . , Bt in order of creation.

We proceed to describe when the algorithm deems a move potentially helpful. Let
J(L) = {jnew} ∪

⋃t
k=0 J(Bk) be the set of all jobs we wish to move. Define the set of

machines that are contained in a big blocker by MB(L), the set of machines that are
contained in a small blocker by MS(L), and M(L) = MS(L) ∪MB(L). Furthermore denote
the set of small jobs on machine i that cannot be moved to any other machine by Si :=
{j ∈ σ−1(i) | j is small and M(j) \ {i} ⊆Ms(L)}. We now define the potential moves. A
small move (j, i) is a potential move when j ∈ J(L) and i /∈Ms(L). A big-to-small or big-to-
big-move (j, i) is a potential move when j ∈ J(L), i /∈M(L), and p(Si) ≤ 1− b+R. In the
presence of several potential moves, the algorithm chooses one with minimum lexicographical
value, defined as

Val(j, i) =

(0, 0) if (j, i) is valid,
(1, p(σ−1(i))) if (j, i) is small move,
(2, p(σ−1(i))) if (j, i) is big-to-small move, and
(3, 0) if (j, i) is big-to-big move.

(11)

The complete procedure is summarized in Algorithm 1.

Algorithm 1: AR(σ, jnew)
1 Initialize L← empty list
2 while σ(jnew) = ⊥ do
3 Choose a potential move (j, i) of minimum lexicographic value
4 if (j, i) is valid then
5 Let Bk be the blocker in L = B0, . . . , Bt such that j ∈ J(Bk)
6 Remove Bk and all blockers added after it from L: L← B0, . . . , Bk−1

7 Update Schedule: σ(j)← i

8 else if (j, i) is small or big-to-small then
9 Create small blocker B with J(B) = σ−1(i) \ J(L), m(B) = i, mv(B) = (j, i)

10 Append B to L
11 else # then (j, i) is a big-to-big move
12 Let jbig be the big job in σ−1(i)
13 Create big blocker B with J(B) = {jbig}, m(B) = i, mv(B) = (j, i)
14 Append B to L

15 return σ

2.2 Proof of Termination
As already mentioned, the crucial step is to prove that the algorithm is successful in creating
a feasible schedule. This is of course equivalent to the termination of the algorithm. Svensson
proved the termination for the special case R = 2

3 + s.

K. Jansen, K. Land, and M. Maack 24:7

I Lemma 3 ([9]). Let b = 1. Then A 2
3 +s always terminates, unless CLP(1) is infeasible.

We provide a stronger and more general variant of Lemma 3.

I Lemma 4. Let R ≥ s and let each configuration in the optimal solution contain at
most one big job. Define k = bRs c and δ = (k + 1)s − R ∈ (0, s] and define l = bR−bs c
and ε = (l + 1)s− (R− b) ∈ (0, s].
1. If OPTLP − b is a multiple of s and there exists 0 ≤ c ≤ b such that

b+ s−R− δ ≤ c ≤ R+ δ (12)
2R+ 2δ + c+ 2(1− b)− s ≥ 2 (13)
2R+ δ − b− s ≥ 0, (14)

then AR always terminates, unless CLP(1) is infeasible.
2. If OPTLP is a multiple of s and there exists 0 ≤ c ≤ b such that

b+ s−R− ε ≤ c ≤ R+ ε (15)
2R+ 2ε+ c+ 2(1− b)− s ≥ 2 (16)
2R+ δ + ε− b− s ≥ 0, (17)

then AR always terminates, unless CLP(1) is infeasible.

Note that Lemma 3 can be derived from Lemma 4 by setting b = 1, R = 2
3 + s and c = 2

3 ,
but none of the constraints are tight for these values. The improvement is mainly due to
the introduction of ε and δ as the remainder of the division of R − b respectively R by s:
in several parts of the analysis, one can see that some multiple of s is larger than R− b or
R, so we know it is at least the next multiple of s, which we can now express as R− b+ ε

and R+ δ. Since the value of ε and δ can be anywhere in the interval (0, s], the gain varies
greatly, and causes the discontinuities in the resulting bounds. For a more detailed proof of
Lemma 4 we refer our readers to the full version of the paper.

Our second improvement is to not only consider R = 2
3 + s and c = 2

3 , but to allow
larger values for c, and subsequently, smaller values for R, depending on s and b. We have
determined values for R (and c) that satisfy the prerequisites of Lemma 4. In the case that
OPTLP − b is a multiple of s, we can prove that these values are best possible.

I Lemma 5.
1. If OPTLP − b is a multiple of s, the following are the smallest values for R that satisfy

the prerequisites of Lemma 4, case 1:
(a) R = b− s if 2

5 ≤
s
b <

1
2 and

(b) R = d 2
3 (bs − 1)es otherwise.

2. If OPTLP is a multiple of s and s
b ≤

2
5 , then R = b− b b3s + 2

3cs satisfies the prerequisites
of Lemma 4, case 2.

We here show that the claimed values for case 1 satisfy the prerequisites of Lemma 4.
We omit the proofs for case 2 and the optimality in case 1.
I Claim 1. In case (a), i.e. if OPTLP−b is a multiple of s and 2

5 ≤
s
b <

1
2 , the value R = b−s

satisfies the prerequisites of Lemma 4, case 1.

Proof. Recall that k =
⌊
R
s

⌋
and δ = (k+1)s−R. Also note that 1 < R

s ≤
3
2 since 2

5 ≤
s
b <

1
2 .

Therefore k = 1 and δ = 3s− b. Choose c = R+ δ = 2s. It is easily confirmed that 0 ≤ c < b

and conditions (12), (13), and (14) are satisfied. J

SWAT 2016

24:8 Estimating The Makespan of The Two-Valued Restricted Assignment Problem

I Claim 2. In case (b), i.e. if OPTLP − b is a multiple of s and s
b <

2
5 or s

b ≥
1
2 , the value

R = d 2
3 (bs − 1)es satisfies the prerequisites of Lemma 4, case 1.

Proof. Remember that processing times of the jobs satisfy 0 < s < b ≤ 1. Obviously, we
have k = d 2

3 (bs − 1)e and δ = s. Also note that

R =
⌈

2
3

(
b

s
− 1
)⌉

s ≥ 2
3

(
b

s
− 1
)
s = 2

3(b− s). (18)

Now set c = min{b, R+ δ}. Then condition (12) is satisfied because

b−R+ s− δ = b−R ≤ b− 2
3(b− s) = 1

3b+ 2
3s <

2
3b+ 1

3s

= 2
3(b− s) + s ≤ R+ s = R+ δ

(19)

and b−R+ s− δ = b−R ≤ 1−R < 1.
Considering condition (13) we have

2R+ 2δ + c+ 2(1− b)− s ≥ 4
3(b− s) + s+ c+ 2− 2b = −2

3b−
1
3s+ c+ 2, (20)

and the latter is at least 2 if c ≥ 2
3b + 1

3s holds. This is true since b > 2
3b + 1

3s and
R+ δ ≥ 2

3 (b− s) + s = 2
3b+ 1

3s.
To finally prove condition (14), we consider three cases. Note that (14) simplifies to

R ≥ 1
2b since δ = s.

Case 1: s
b <

1
4 . We have R ≥ 2

3 (b− s) > 2
3 (b− 1

4b) = 1
2b.

Case 2: 1
4 ≤

s
b <

2
5 . By the bounds on s

b we get k = 2, so R = 2s ≥ 2 1
4b = 1

2b.
Case 3: s

b ≥
1
2 . In this case k = 1 and R = s ≥ 1

2b. J

3 Improving the Bound by Scaling

In this section we prove our main result, Theorem 1. Remember that the result by Lenstra,
Shmoys, and Tardos [6] shows that the integrality gap is at most 3

2 if OPTLP ≥ 2b. If sb ≥
1
3 ,

we obtain that the integrality gap is at most 2− s
b ≤

5
3 from section 4. Thus we can restrict

our attention to instances I with s
b <

1
3 and OPTLP < 2b. To improve upon the bound from

Theorem 2 for the remaining instances, we use a new scaling technique that considers several
cases, depending on whether OPTLP − b or OPTLP is a multiple of s and the value of sb . We
denote the integrality gap of the configuration LP for an instance I by IG(I) throughout
this section. Remember that we scaled the processing times such that OPTLP = 1.

3.1 Case 1: OPTLP(I) − b is a multiple of s

In this case, the longest configuration of the optimal fractional solution contains a big job,
i.e. there is x ∈ Z≥0 with OPTLP(I) = b + xs. Define k = d 2

3 (bs − 1)e. Then Theorem 2
yields

IG(I) ≤ 1 + ks. (21)

We can prove another bound by scaling s. First, we describe the connection between k
and s

b . Since k ≥ 2
3 (bs − 1) we have s

b ≥
2

3k+2 . Similarly, k − 1 < 2
3 (bs − 1) and therefore

s
b <

2
3k−1 . It follows that

s
b ∈ [2

3k+2 ,
2

3k−1). This interval actually corresponds to one of the
continuous segments of our bound, see also Figure 2. The integrality gap increases as s

b

K. Jansen, K. Land, and M. Maack 24:9

approaches 2
3k−1 and jumps down again at s

b = 2
3k−1 . Therefore, if

s
b is slightly below 2

3k−1 ,
we can increase the processing time s of small jobs to s′ such that s′

b = 2
3k−1 .

Define the instance I ′ identical to I, but with small jobs having processing time s′ = 2b
3k−1 .

Since s ≤ s′, we have OPT(I) ≤ OPT(I ′). Define α = s′

s = 2b
(3k−1)s . We first prove that

OPTLP(I ′) ≤ αOPTLP(I). For this, let T = OPTLP(I) and consider a feasible solution x of
CLP(T, I). Then x is also a feasible solution of CLP(αT, I ′), since the processing time of a
configuration increases at most by factor α in the modified instance I ′. We therefore have

IG(I) = OPT(I)
OPTLP(I) ≤

OPT(I ′)
OPTLP(I ′) 1

α

≤ αIG(I ′). (22)

Define

s0 = − 1
2k +

√
1

4k2 + 2b
(3k − 1)k ·

(
1 + (k − 1)2b

3k − 1

)
. (23)

We will later show that scaling is beneficial if s ≥ s0. In order to apply Theorem 2 to I ′, we
need to prove that the prerequisites hold. In particular, we show that OPTLP(I ′)− b is a
multiple of s′:

I Lemma 6. Let I be an instance with small processing time s ≥ s0 and OPTLP(I) = b+xs.
Let I ′ be the modified instance with small processing time s′ = 2b

3k−1 . Then OPTLP(I ′) =
b+ xs′.

Proof. We first claim without proof that s0 > 2b
3k . Now consider an optimal fractional

solution to I. We show that this is a solution to I ′ with makespan at most b+ xs′. Let C
be any configuration that occurs in this solution. Denote by ` and `′ the length of C when
small jobs have length s and s′, respectively. Then ` ≤ b+ xs. If C contains a big job, we
have ` = b + ys for some y ≤ x. It follows that `′ = b + ys′ ≤ b + xs′. Otherwise, C only
contains small jobs and ` = ys for some y ∈ N. Define z = y − x ∈ Z. Since OPTLP(I) is
not a multiple of s, we have zs+ xs = ` < OPTLP(I) = b+ xs and therefore zs < b. This
implies z < b

s . Remember that s ≥ s0 >
2b
3k , so

s
b >

2
3k . This implies z < b

s <
3k
2 . Since z is

integral, we also have z ≤ 3k−1
2 . It follows that

`′ = ys′ = zs′ + xs′ ≤ 3k − 1
2

2b
3k − 1 + xs′ = b+ xs′. (24)

Therefore, OPTLP(I ′) ≤ b+ xs′.
Now assume that there is a fractional solution for I ′ with makespan less than b + xs′.

We will show that this implies that OPTLP(I) < b + xs, a contradiction. Let C be any
configuration occurring in the optimal solution and define ` and `′ as before. Then `′ < b+xs′.
If C contains a big job, we have ` = b+ ys for some y ∈ Z≥0. We have b+ ys′ = `′ < b+ xs′,
thus y < x and ` = b+ ys < b+ xs. Otherwise, C contains only small jobs and ` = ys for
some y ∈ N. Define again z = y − x ∈ Z. Then zs′ + xs′ = `′ < b+ xs′, therefore zs′ < b.
This implies ` = ys = zs+ xs < zs′ + xs < b+ xs. J

To apply Theorem 2, we also have to scale I ′ by β = 1
OPTLP(I′) ≤ 1 to obtain the

instance I ′′ with OPTLP(I ′′) = 1. In I ′′ the processing times are b′′ = b ·β and s′′ = s′ ·β ≤ s′.
One can easily see that I ′ and I ′′ have the same integrality gap:

IG(I ′) = OPT(I ′)
OPTLP(I ′) = β ·OPT(I ′)

β ·OPTLP(I ′) = OPT(I ′′)
OPTLP(I ′′) = IG(I ′′). (25)

SWAT 2016

24:10 Estimating The Makespan of The Two-Valued Restricted Assignment Problem

Also s
b <

1
3 implies k ≥ 2 and thus s′

b = 2
3k−1 ≤

2
5 . This finally allows us to apply Theorem 2.

From the definition s′ = 2b
3k−1 we can calculate k − 1 = 2

3 (bs′ − 1). Since k is integral, we
have d 2

3 (bs′ − 1)e = k − 1. The integrality gap of the original instance I is thus bounded by

IG(I) ≤ αIG(I ′)0 = αIG(I ′′) ≤ α(1 + (k − 1)s′′) ≤ α(1 + (k − 1)s′). (26)

We will determine which of the two bounds (21) and (26) is better depending on the values
of s and b.

I Lemma 7. 1 + ks ≥ α(1 + (k − 1)s′) holds if and only if s ≥ s0.

For a proof we refer our readers to the full version of our work.
It turns out that inqualities (26) and (21) can be combined if b is not too large.

I Lemma 8. If sb <
1
3 , OPTLP(I)− b is a multiple of s, and b ≤ 80

81 , the integrality gap of
the CLP is at most 5

3 .

Proof. We consider two cases.
Case 1: s ≤ s0. Then the integrality gap is at most 1 + ks ≤ 1 + ks0 by inequality (21).
Case 2: s > s0. Remember that we scaled the processing time of small jobs to s′ = αs = 2b

3k−1 .
One can easily see that the term

α(1 + (k − 1)s′) = 2b
(3k − 1)s

(
1 + (k − 1)2b

3k − 1

)
= 1
s

(
2b

3k − 1 + (k − 1)4b2

(3k − 1)2

)
(27)

is monotonically decreasing with respect to s. From Lemma 7 and α = s′

s we also know
that s′

s0
(1 + (k − 1)s′) ≤ 1 + ks0. We therefore have that the integrality gap is bounded by

α(1 + (k − 1)s′) ≤ 1 + ks0 for all s > s0.
For both cases we can compute

1 + ks0 = 1− 1
2 +

√
1
4 + 2bk

(3k − 1) ·
(

1 + (k − 1)2b
3k − 1

)
= 1

2 + 1
2(3k − 1) ·

√
(3k − 1)2 + 8bk(3k − 1 + (k − 1)2b).

(28)

The last term attains its maximum 1
4 · (2 +

√
18b+ 4) at k = 2. It is easy to verify that this

is at most 5
3 as long as b ≤ 80

81 ≈ 0.988. J

In the case that b > 80
81 , we scale the processing time of small jobs to s′ = 2b

3k−1 if s > 2b
3k .

I Lemma 9. If sb <
1
3 , OPTLP(I)− b is a multiple of s, and b > 80

81 , the integrality gap of
the CLP is at most 5

3 .

Proof. In our analysis, we again distinguish the two cases whether small jobs were rounded
or not. We use the same scaled instance I ′ from above, where we scaled s to s′ = 2b

3k−1 .
Remember that OPTLP = b+ xs for x ∈ N.
Case 1: s ≤ 2b

3k . We can directly apply Theorem 2 and obtain the bound

IG(I) ≤ 1 + ks ≤ 1 + k
2b
3k ≤

5
3 . (29)

Case 2: s > 2b
3k . We claim without proof that OPTLP(I ′) ≤ 1 + 1

79s.

K. Jansen, K. Land, and M. Maack 24:11

Similar as in inequality (22), we find that IG(I) ≤ (1 + 1
79s)IG(I ′). As above, we have

to scale I ′ to I ′′ such that OPTLP(I ′′) = 1. Applying Theorem 2 to I ′′ and using s < 2b
3k−1

and b ≤ 1, we obtain

IG(I) ≤
(

1 + 1
79s

)
IG(I ′) =

(
1 + 1

79s
)
IG(I ′′)

≤
(

1 + 1
79s

)(
1 + (k − 1) s′

OPTLP(I ′)

)
≤
(

1 + 1
79s

)
(1 + (k − 1)s′)

<

(
1 + 2

79(3k − 1)

)(
1 + 2(k − 1)

3k − 1

)
=

15k2 − 1096
79 k + 231

79
9k2 − 6k + 1 .

(30)

The last term can be seen to be monotonically increasing for k ≥ 1 and has the limit 5
3 . J

3.2 Case 2: OPTLP(I) is a multiple of s

Using Theorem 2, case (b) with OPTLP = 1 and k = b 1
3
b
s + 2

3c we have

IG(I) ≤ 1 +R = 1 + b− ks. (31)

Since k ≤ 1
3
b
s + 2

3 , we have s
b ≤

1
3k−2 . Similarly, k + 1 > 1

3
b
s + 2

3 and therefore s
b >

1
3k+1 . It

follows that s
b ∈ (1

3k+1 ,
1

3k−2].
Now assume that s

b ≥
1

3k . Then the integrality gap IG(I) is bounded by

1 + b− ks ≤ 1 + b− k b

3k = 1 + 2
3b ≤

5
3 , (32)

since b ≤ 1.
Finally, we have the case that s

b ∈ (1
3k+1 ,

1
3k). Our bound (31) increases when s

b

approaches 1
3k+1 and jumps down when it reaches that value, see also Figure 2. So we create

an instance I ′ by rounding the running time b of big jobs up to b′ = (3k + 1)s. Obviously,
OPT(I ′) ≥ OPT(I). On the other hand, the largest configuration in the fractional optimum
has the height xs for some x ∈ Z≥1, and any configuration that contains a big job has
height b + ys ≤ xs for some y ∈ Z≥0. We assume that b + ys < xs, because otherwise b
and therefore OPTLP(I) − b were also a multiples of s, and we could use the proof from
section 3.1. Then, since b ∈ (3ks, 3ks+ s), we have

xs− (y + 3k)s > b+ ys− ys− 3ks = b− 3ks > 0 (33)
and therefore xs− (y + 3k)s ≥ s. This implies

b′ + ys = (3k + 1)s+ ys = (y + 3k)s+ s ≤ xs− s+ s = xs, (34)

i.e. OPTLP(I ′) = OPTLP(I). In particular,

IG(I) = OPT(I)
OPTLP(I) ≤

OPT(I ′)
OPTLP(I ′) = IG(I ′) (35)

and OPTLP(I ′) is a multiple of s. Note that⌊
1
3
b′

s
+ 2

3

⌋
=
⌊

1
3(3k + 1) + 2

3

⌋
= bk + 1c = k + 1. (36)

SWAT 2016

24:12 Estimating The Makespan of The Two-Valued Restricted Assignment Problem

Theorem 2, case (b) now yields

IG(I) ≤ IG(I ′) ≤ 1 +R = 1 + b′ − (k + 1)s

= 1 + (3k + 1)s− (k + 1)s = 1 + 2ks < 1 + 2k b

3k = 1 + 2
3b

≤ 1 + 2
3 = 5

3 .

(37)

4 An (OPT + b − s)-Approximation

In this section we present an algorithm for the restricted assignment problem with two
different processing times, which also proves a bound on the integrality gap of the CLP. Here,
we assume that the processing times s < b are positive integers. Our algorithm depends on
a result by Shmoys and Tardos [8] for a variant of unrelated scheduling with costs. Their
algorithm is based on solving and rounding the assignment LP. Consider the assignment
LP ALP(T) for a given makespan T . For i ∈ {1, . . . ,m} and q ∈ {s, b}, let aiq =

∑
j:pij=q xij

denote the fractional number of jobs of size q scheduled on machine i. We strengthen the LP
relaxation by adding two classes of constraints

aib ≤
⌊
T

b

⌋
for each i ∈M (38)

ais ≤
⌊
T

s

⌋
−
⌊
b

s

⌋
aib for each i ∈M . (39)

In the following, OPTLP denotes the optimal makespan of the augmented ALP. Our algorithm
solves the augmented ALP and applies the rounding procedure of Shmoys and Tardos [8] to
the solution.

I Theorem 10. For the restricted assignment problem with two different processing times
s < b there is a polynomial time algorithm that produces a schedule of length at most
min{OPTLP + b, bOPTLP/scs + bOPTLP/bc(b − s)}, yielding a bound of OPTLP + (b − s)
for the case b ≤ OPTLP < 2b. Furthermore the algorithm has a multiplicative performance
guarantee of (2− s

b).

We omit the analysis of the algorithm due to space restrictions. As a corollary we can bound
the integrality gap of the configuration LP.

I Corollary 11. The described algorithm can be modified to work with the CLP yielding the
same bounds. In particular, if an instance of the restricted assignment problem has only two
different processing times s < b, the integrality gap of the CLP is at most 2− s

b .

References
1 Nikhil Bansal and Maxim Sviridenko. The santa claus problem. In Proceedings of the 38th

Annual ACM Symposium on Theory of Computing, (STOC 2006), pages 31–40, 2006.
2 Deeparnab Chakrabarty, Sanjeev Khanna, and Shi Li. On (1, epsilon)-restricted assign-

ment makespan minimization. In Proceedings of the Twenty-Sixth Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA 2015), pages 1087–1101, 2015.

3 Tomáš Ebenlendr, Marek Krčál, and Jiří Sgall. Graph balancing: A special case of schedul-
ing unrelated parallel machines. Algorithmica, 68(1):62–80, 2014.

4 Chien-Chung Huang and Sebastian Ott. A combinatorial approximation algorithm for
graph balancing with light hyper edges. CoRR, abs/1507.07396, 2015.

K. Jansen, K. Land, and M. Maack 24:13

5 Stavros G Kolliopoulos and Yannis Moysoglou. The 2-valued case of makespan minimization
with assignment constraints. Information Processing Letters, 113(1):39–43, 2013.

6 Jan Karel Lenstra, David B Shmoys, and Éva Tardos. Approximation algorithms for
scheduling unrelated parallel machines. Mathematical programming, 46(1-3):259–271, 1990.

7 Evgeny V. Shchepin and Nodari Vakhania. An optimal rounding gives a better approx-
imation for scheduling unrelated machines. Operations Research Letters, 33(2):127–133,
2005.

8 David B Shmoys and Éva Tardos. An approximation algorithm for the generalized assign-
ment problem. Mathematical Programming, 62(1-3):461–474, 1993.

9 Ola Svensson. Santa claus schedules jobs on unrelated machines. In Proceedings of the 43rd
ACM Symposium on Theory of Computing (STOC 2011), pages 617–626, 2011.

SWAT 2016

	Introduction
	Bounding the Integrality Gap by Local Search
	Detailed Description of the Algorithm
	Proof of Termination

	Improving the Bound by Scaling
	Case 1: OPTLP(I) - b is a multiple of s
	Case 2: OPTLP(I) is a multiple of s

	An (OPT+b-s)-Approximation

