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Abstract
We present a pseudo-polynomial time (1+ε)-approximation algorithm for computing the integral
and average Fréchet distance between two given polygonal curves T1 and T2. The running time
is in O(ζ4n4/ε2) where n is the complexity of T1 and T2 and ζ is the maximal ratio of the lengths
of any pair of segments from T1 and T2.

Furthermore, we give relations between weighted shortest paths inside a single parameter
cell C and the monotone free space axis of C. As a result we present a simple construction of
weighted shortest paths inside a parameter cell. Additionally, such a shortest path provides an
optimal solution for the partial Fréchet similarity of segments for all leash lengths. These two
aspects are related to each other and are of independent interest.
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1 Introduction

Measuring similarity between geometric objects is a fundamental problem in many areas of
science and engineering. Applications arise e.g., when studying animal behaviour, human
movement, traffic management, surveillance and security, military and battlefield, sports
scene analysis, and movement in abstract spaces [9, 10, 11]. Due to its practical relevance,
the resulting algorithmic problem of curve matching has become one of the well-studied
problems in computational geometry. One of the prominent measures of similarities between
curves is given by the Fréchet distance and its variants.

In the well-known dog-leash metaphor, the (standard) Fréchet distance is described as
follows: suppose a person walks a dog, while both have to move from the starting point to
the ending point on their respective curves T1 and T2. Each pair of walks induces a matching
between T1 and T2. The Fréchet distance is the minimum leash length required over all
possible pairs of walks, if neither person nor dog is allowed to move backwards.

In this paper, we study the integral and average Fréchet distance originally introduced by
Buchin [4]. The integral Fréchet distance is defined as the minimal integral of the distances
between points that are matched by a pair of walks. The average Fréchet distance is defined
as the integral Fréchet distance divided by the sum of the lengths of T1 and T2.
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Figure 1 Left: A matching between T1 and T2. Right: The partial Fréchet similarity is unstable
for distance thresholds between δ1 and δ2 where δ1 ≈ δ2. In particular, for a leash length of δ1, the
partial Fréchet similarity of T1 and T2 is equal to zero, whereas for a leash length of δ2, it is close to
|T1|+ |T2|. Furthermore, the traditional Fréchet distance is significantly enlarged by the peak of T1.

1.1 Related Work
Alt and Godau [1] showed how to compute the Fréchet distance between two polygonal curves
T1 and T2 in O(n2 log(n)) time, where n is the complexity of T1 and T2. In the presence of
outliers though, the Fréchet distance may not provide an appropriate result. This is due to
the fact that the Fréchet distance measures the maximum of the matched distances. Thus,
one large "peak" may substantially increase the Fréchet distance, see Figure 1 left.

To overcome the issue of outliers, Buchin et al. [3] introduced the partial Fréchet similarity
and showed how to compute it in O(n3 log(n)) time, where distances are measured w.r.t.
the L1 or L∞ metric. The partial Fréchet similarity measures the cost of a matching as the
lengths of the parts of T1 and T2 which are made up of matched point pairs whose distance
to each other is upper-bounded by a given threshold δ ≥ 0, see Figure 1 right. De Carufel et
al. [5] showed that the partial Fréchet similarity w.r.t. to the L2 metric cannot be computed
exactly over the rational numbers. Motivated by that, they gave a (1± ε)-approximation
algorithm guaranteeing a pseudo-polynomial running time. An alternative perspective on
the partial Fréchet similarity is the partial Fréchet dissimilarity, i.e., the minimization of the
portions on T1 and T2 which are involved in distances that are larger than δ.

Unfortunately, both the partial Fréchet similarity and dissimilarity are highly dependent
on the choice of δ as provided by the user. As a function of δ, the partial Fréchet distance
is unstable, i.e., arbitrarily small changes of δ can result in arbitrarily large changes of the
partial Fréchet (dis)similarly, see Figure 1 right.

An approach related to the integral Fréchet distance is dynamic time warping (DTW),
which arose in the context of speech recognition [12]. Here, a discrete version of the integral
Fréchet distance is computed via dynamic programming. This is not suitable for general
curve matching (see [7, p. 204]). Efrat et al. [7] worked out an extension of the idea of
DTW to a continuous version. In particular, they compute shortest path distances on a
combinatorial piecewise linear 2-manifold that is constructed by taking the Minkowski sum
of T1 and T2. Furthermore, they gave two approaches dealing with that manifold. The first
one does not yield an approximation of the integral Fréchet distance. The second one does
not lead to theoretically provable guarantees.

1.2 Contributions
We present the first (pseudo-)polynomial time algorithm that approximates the integral
Fréchet Distance, FS(T1, T2), up to a multiplicative error of (1 + ε).

As a by-product, we show that a shortest weighted path πab between two points a and b
inside a parameter cell C can be computed in constant time. We also make the observation
that πab provides an optimal matching for the partial Fréchet similarity for all leash length
thresholds. This provides a natural extension of locally correct Fréchet matchings that were
first introduced by Buchin et al. [2]. They suggest to: “restrict to the locally correct matching
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that decreases the matched distance as quickly as possible.”[2, p. 237]. The matching induced
by πab fulfils this requirement.

2 Preliminaries

Let T1, T2 : [0, n] → R2 be two polygonal curves. We denote the first derivative of a
function f by f ′. By, || · ||p, we denote the p-norm and by dp(·, ·) its induced Lp metric.
The lengths |T1| and |T2| of T1 and T2 are defined as

∫ n
0 ||(T1)′(t)||2 dt and

∫ n
0 ||(T2)′(t)||2 dt,

respectively. To simplify the exposition, we assume that |T1| = |T2| = n and that T1
and T2 each have n segments. A reparametrization is a continuous function α : [0, n] →
[0, n] with α(0) = 0 and α(n) = n. A reparameterization α is monotone if α(t1) ≤
α(t2) holds for all 0 ≤ t1 ≤ t2 ≤ n. A (monotone) matching is a pair of (monotone)
reparametrizations (α1, α2). The Fréchet distance of T1 and T2 w.r.t. d2 is defined as
D (T1, T2) = inf(α1,α2) maxt∈[0,n] d2(T1(α1(t)), T2(α2(t))).

For a given leash length δ ≥ 0, Buchin et al. [3] define the partial Fréchet similarity
P(α1,α2)(T1, T2) w.r.t. a matching (α1, α2) as∫

d2(T1(α1(t)),T2(α2(t)))≤δ

(
|| (T1 ◦ α1)′ (t) ||2 + || (T2 ◦ α2)′ (t) ||2

)
dt

and the partial Fréchet similarity as Pδ(T1, T2) = supα1,α2 P(α1,α2)(T1, T2).
Given a monotone matching (α1, α2), the integral Fréchet distance FS,(α1,α2) (T1, T2) of

T1 and T2 w.r.t. (α1, α2) is defined as:∫ n

0
d2(T1 (α1 (t)) , T2 (α2 (t)))

(
|| (T1 ◦ α1)′ (t) ||2 + || (T2 ◦ α2)′ (t) ||2

)
dt

and the integral Fréchet distance as FS (T1, T2) = inf(α1,α2) FS,(α1,α2) (T1, T2) [4]. Note that
the derivatives of (T1 ◦ α1)(·) and (T2 ◦ α2)(·) are measured w.r.t. the L2-norm because
the lengths of T1 and T2 are measured in Euclidean space. Furthermore, (T1 ◦ α1)′(t) and
(T1◦α1)′(t) are well defined for all t ∈ [0, n] because (T1◦α1)′(·) and (T1◦α1)′(·) are piecewise
continuously differentiable. The average Fréchet distance is defined as FS(T1, T2)/(|T1| +
|T2|) [4].

The parameter space P of T1 and T2 is an axis aligned rectangle. The bottom-left corner s
and upper-right corner t correspond to (0, 0) and (n, n), respectively. We denote the x- and
the y-coordinate of a point a ∈ P by a.x and a.y, respectively. A point b ∈ P dominates a
point a ∈ P , denoted by a ≤xy b, if a.x ≤ b.x and a.y ≤ b.y hold. A path π is (xy-) monotone
if π(t1) ≤ π(t2) holds for all 0 ≤ t1 ≤ t2 ≤ n. Thus, a monotone matching corresponds to a
monotone path π with π(0) = s and π(n) = t. By inserting n+1 vertical and n+1 horizontal
parameter lines, we refine P into n rows and n columns such that the i-th row (column) has
a height (resp., width) that corresponds to the length of the i-th segment on T1 (resp., T2).
This induces a partitioning of P into cells, called parameter cells.

For a, b ∈ P with a ≤xy b, we have ||ab||1 =
∫ b.x
a.x
||(T1)′(t)||2 dt +

∫ b.y
a.y
||(T2)′(t)||2 dt.

This is equal to the sum of the lengths of the subcurves between T1(a.x) and T1(b.x) and
between T2(a.y) and T2(b.y). Thus, we define the length |π| of a path π : [0, n] → P as∫ n

0 ||(π)′(t)||1 dt. Note that for the paths inside the parameter space the 1-norm is applied,
while the lengths of the curves in the Euclidean space are measured w.r.t. the 2-norm. As
FS(T1, T2) measures the length of T1 and T2 at which each (T1(α1(t)), T2(α2(t))) is weighted
by d2(T1(α1(t)), T2(α2(t))), we consider the weighted length of π defined as follows:

Let w(·) : P → R≥0 be defined as w((x, y)) := d2(T1(x), T2(y)) for all (x, y) ∈ P . The
weighted length |π|w of a path π : [a, b]→ P is defined as

∫ b
a
w (π (t)) ||(π)′ (t) ||1dt.

SWAT 2016
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Figure 2 A weighted shortest xy-monotone path πab between two points a, b ∈ C, where a ≤xy b.

I Observation 1 ([4]). Let π be a shortest weighted monotone path between s and t inside P .
Then, we have |π|w = FS (T1, T2).

Motivated by Observation 1, we approximate FS(T1, T2) by approximating the length
of a shortest weighted monotone path π ⊂ P connecting s and t. Let δ ≥ 0 be chosen
arbitrarily, but fixed. Inside each parameter cell C, the union of all points p with w(p) ≤ δ
is equal to the intersection of an ellipse E with C. Observe that E can be computed in
constant time [1]. E is characterized by two focal points F1 and F2 and a radius r such that
E = {p ∈ R2 | d2(p, F1) + d2(p, F2) ≤ r}. The two axes ` (monotone) and ~ (not monotone)
of E , called the free space axes, are defined as the line induced by F1 and F2 and the bisector
between F1 and F2. If E is a disc, ` and ~ are the lines with gradients 1 and −1 and which
cross each other in the middle of E . Note that the axes are independent of the value of δ.

To approximate |π|w efficiently we make the following observation that is of independent
interest: Let a, b be two parameter points that lie in the same parameter cell C such
that a ≤xy b. The shortest weighted monotone path πab between a and b (that induces an
optimal solution for the integral Fréchet distance) is the monotone path between a and b
that maximizes its subpaths that lie on ` (see Figure 2 and Lemma 7). Another interesting
aspect of πab is that it also provides an optimal matching for the partial Fréchet similarity
(between the corresponding (sub-)segments) for all leash lengths, as π ∩ Eδ has the maximal
length for all δ ≥ 0, where Eδ := E for a specific δ ≥ 0. Next, we discuss our algorithms.

3 An Algorithm for Approximating Integral Fréchet Distance

We approximate the length of a shortest weighted monotone path between s and t as follows:
We construct two weighted, directed, graphs G1 = (V1, E1, w1) and G2 = (V2, E2, w2) that
lie embedded in P such that s, t ∈ V1 and s, t ∈ V2. Then, in parallel, we compute for G1
and G2 the lengths of the shortest weighted paths between s and t. Finally, we output the
minimum of both values as an approximation for FS(T1, T2).

We introduce some additional terminology. A geometric graph G = (V,E) is a graph
where each v ∈ V is assigned to a point pv ∈ P , its embedding. The embedding of an edge
(u, v) ∈ E (into P ) is pupv. The embedding of G (into P ) is

⋃
(u,v)∈E pupv. For v ∈ V and

e ∈ E, we denote simultaneously the vertex v ∈ V , the edge e ∈ E, and the graph (V,E)
and their embeddings by v, e, and G, respectively. G is monotone (directed) if pu ≤xy pv
holds for all (u, v) ∈ E. Let R ⊆ P be an arbitrarily chosen axis aligned rectangle with
height h and width b. The grid (graph) of R with mesh size σ is the geometric graph that is
induced by the segments that are given as the intersections of R with the following lines:
Let h1, . . . , hk1 be the dhσ e+ 1 equidistant horizontal lines and let b1, . . . , bk2 be the d bσ e+ 1
equidistant vertical lines such that ∂R = R ∩ (h1 ∪ hk1 ∪ b1 ∪ bk2), where ∂R denotes the
boundary of R.
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3.1 Construction of G1

Let µ be the length of a smallest segment from T1 and T2. We construct G1 = (V1, E1) ⊂ P
as the monotone directed grid graph of P with a mesh size of εµ2

40000(|T1|+|T2|) . Furthermore,
we set w1((u, v)) := |uv|w for all (u, v) ∈ E1.

3.2 Construction of G2

For u ∈ P and r ≥ 0, we consider the ball Br(u) with its center at u and a radius of r w.r.t.
the L∞ metric. For the construction of G2 we need the free space axes of the parameter cells
and so called grid balls:

I Definition 2. Let u ∈ P and r ≥ 0 be chosen arbitrarily. The grid ball Gr(u) is defined as
the grid of Br(u) that has a mesh size of ε

456w(u). We say Gr(u) approximates Br(u).

We define G2 as the monotone directed graph that is induced by the arrangement that is
made up of the following components restricted to P :

(1) All monotone free space axes restricted to their corresponding parameter cell.
(2) All grid balls G62w(u)(u) for u := arg minp∈e w(u) and any parameter edge e.
(3) The segments scs and tct if the parameter cells Cs and Ct that contain s and t are
intersected by their corresponding monotone free space axes `s and `t, where cs and ct
are defined as the bottom-leftmost and top-rightmost point of `s ∩ Cs and `t ∩ Ct.

t1

t2

t3

t4

t1 t2

t4

t3

Figure 3 Exemplified construction of G2 for two given polygonal curves T1 and T2. For simplicity,
we only illustrate four grid balls (with reduced radii) and the corresponding point pairs from T1×T2.

Finally, we set w2((v1, v2)) := |v1v2|w for all (v1, v2) ∈ E2. For each edge e ∈ G2, we
choose the point u ∈ e as the center of the corresponding grid ball because the free space
axes of the parameters cells adjacent to e lie close to u.

We analyze our approach as follows: Since G1 is monotone and each edge (p1, p2) ∈ E1 is
assigned to |p1p2|w, we obtain that for each path it holds that π̃ ⊂ G1 between s and t holds
|π|w ≤ |π̃|w. The same argument applies to G2. Hence, we still have to ensure that there is
a path π̃ ⊂ G1 or π̃ ⊂ G2 such that |π̃|w ≤ (1 + ε)|π|w. We say that a path π ⊂ P is low if
w(p) ≤ µ

100 holds for all p ∈ π. For our analysis, we show the following:
Case A: There is a π̃ ⊂ G1 with |π̃|w ≤ (1 + ε)|π|w if there is a shortest path π ⊂ P that
is not low (see Section 3.3).
Case B: Otherwise, there is a π̃ ⊂ G2 with |π̃|w ≤ (1 + ε)|π|w (see Section 3.4).

3.3 Analysis of Case A
In this section, we assume that there is a shortest path π between s and t that is not low.
Furthermore, for any o, p ∈ π, we denote the subpath of π which is between o and p by πop.

SWAT 2016
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First, we prove a lower bound for |π|w (Lemma 5). This lower bound ensures that the
approximation error that we make for a path in G1 is upper-bounded by ε|π|w (Lemma 6).

A cell C of G1 is the convex hull of four vertices v1, v2, v3, v4 ∈ V1 such that C ∩ V1 =
{v1, v2, v3, v4}. As the mesh size of G1 is εµ2

40000(|T1|+|T2|) , we have d1(p1, p2) ≤ εµ2

20000(|T1|+|T2|)
for any two points p1 and p2 that lie in the same cell of G1. The following property of w(·)
is the key in the analysis of the weighted shortest path length of G1:

I Definition 3 ([8]). f : P → R≥0 is 1-Lipschitz if f(x) ≤ f(y) + d1(x, y) for all x, y ∈ P .

The requirement |f(x)− f(y)| ≤ d1(x, y) is also occasionally used to define 1-Lipschitz
continuity. Note that this alternative definition is equivalent to Definition 3.

I Lemma 4. w(·) is 1-Lipschitz.

Proof. Let (a1, a2), (b1, b2) ∈ P be chosen arbitrarily. The subcurves tT1(a1)T1(b1) ⊂ T1
between T1(a1) and T1(b1) and tT2(a2)T2(b2) ⊂ T2 between T2(a2) and T2(b2) have lengths no
larger than |a1−b2| and |a2−b2|. Thus, d2(T1(a1), T1(b1)) ≤ |a1−b1| and d2(T2(a2), T2(b2)) ≤
|a2 − b2|. Furthermore, w((a1, a2)) is equal to d2(T1(a1), T2(a2)). By triangle inequality,
it follows that w((b1, b2)) = d2 (T1(b1), T2(b2)) ≤ d2(T2(b2), T2(a2)) + d2(T2(a2), T1(a1)) +
d2(T1(a1), T1(b1)) ≤ d1((a1, a2), (b1, b2)) +w((a1, a2)), because d2(T2(b2), T2(a2)) = |b2− a2|,
d2(T2(a2), T1(a1)) = w((a1, a2)), d2(T1(a1), T1(b1)) = |b1 − a1|, and d1((a1, a2), (b1, b2)) =
|b1 − a1|+ |b2 − a2|. J

Lemma 4 allows us to prove the following lower bound for the weighted length of π.

I Lemma 5. |π|w ≥ µ2

20000 .

Proof. Let p ∈ π such that w(p) ≥ µ
100 . Let ψ := π∩B µ

100
(p). We have |ψ|w ≥ µ2

20000 because
w(·) is 1-Lipschitz. Furthermore, ψ ⊂ π implies |ψ|w ≤ |π|w which yields µ2

20000 ≤ |π|w. J

I Lemma 6. There is a path π̃ ⊂ G1 that connects s and t such that |π̃|w ≤ (1 + ε)|π|w.

Proof. Starting from s, we construct π̃ inductively as follows: If π crosses a vertical (hori-
zontal) parameter line next, π̃ goes one step to the right (top). For p ∈ π let hp be the line
with gradient −1 such that p ∈ hp (see the figure on the right). As π and π̃ are monotone,
the point p̃ := hp ∩ p̃ is unique and well defined. For all p, p and p̃ lie in the same cell
of G1 and thus, w(p̃) ≤ w(p) + εµ2

20000(|T1|+|T2|) . This implies |π̃|w ≤ (1 + ε)|π|w because
|π̃| = |π|. To be more precise, we consider π̃, π : [0, 1] → P to be parametrized such that
d1(s, π(t)) = d1(s, π̃(t)) = td1(s, t). We obtain, ||(π̃)′(t)||1 = d1(s, t) = ||(π)′(t)||1 for all
t ∈ [0, 1].

p

p̃

ππ̃

qi

qi+1

ui

ui+1

hp
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Furthermore, the above implies w(π̃(t)) ≤ w(π(t)) + εµ2

20000(|T1|+|T2|) (?). Thus:

|π̃|w =
∫ 1

0
w(π̃(t))||(π̃)′(t)||1 dt

(?)
≤
∫ 1

0

(
w(π(t)) + εµ2

20000(|T1|+ |T2|)

)
||(π)′(t)||1 dt

=
∫ 1

0
w(π(t))||(π)′(t)||1 dt+

εµ2 ∫ 1
0 1 ||(π)′(t)||1 dt

20000(|T1|+ |T2|)

= |π|w + εµ2

20000
Lemma 5
≤ |π|w + ε|π|w = (1 + ε)|π|w. J

The proof of Lemma 6 is omitted due to space constraints. All proofs that are omitted or
just sketched can be found in the Appendix.

3.4 Analysis of Case B
In this section, we assume that there is a shortest monotone low path π between s and t.
First, we make a key observation that is also of independent interest.

I Lemma 7. Let C be an arbitrarily chosen parameter cell and a, b ∈ C such that a ≤xy b.
Furthermore, let ` be the monotone free space axis of C and R the rectangle that is induced
by a and b. The shortest path πab ⊂ C between a and b is given as:

ac1 ∪ c1c2 ∪ c2b, if ` intersects R in c1 and c2 such that c1 <xy c2 and as
ac ∪ cb, otherwise, where c is defined as the closest point from R to `.

Proof. Let ψab ⊂ C by an arbitrary monotone path that connects a and b. In the following,
we show that |πab|w ≤ |ψab|w. For this, we prove the following: Let p ∈ C be chosen arbitrarily
and q be its orthogonal projection onto ` (see the figures right). We show w(r) ≤ w(p) for
r ∈ pq. This implies that there is an injective, continuous function ⊥ : ψab → πab with
w(⊥(p)) ≤ w(p) for all p ∈ ψ. In particular, ⊥(p) is defined as the intersection point of πab
and the line d that lies perpendicular to ` such that p ∈ d. The function ⊥(·) is well defined
and injective as both ψab and πab are monotone paths that connect a and b. Similarly, as in
the proof of Lemma 6, this implies |πab|w ≤ |ψab|w because |πab| = |ψab|.

a

b

`

R

C

ψab

πab

c1

c2 `

p

q

r
Er

C

Ep

To be more precise, consider ψ, π : [0, 1]→ C to be parametrized such that d1(a, ψ(t)) =
d1(a, π(t)) = td1(a, b). This implies ||(ψ)′(t)||1 = d1(a, b) = ||(π)′(t)||1 for all t ∈ [0, 1]. Thus:

|ψab|w =
∫ 1

0
w(ψab(t))||(ψab)′(t)||1 dt ≥

∫ 1

0
w(πab(t))||(πab)′(t)||1 dt = |πab|w.

Finally, we show: w(r) ≤ w(p), for r ∈ pq. Note that w(r) and w(p) are the leash lengths for
r and p that lie on the boundary of the white space inside C, i.e., on the boundary of the
ellipses Er and Ep, respectively. Since r ∈ pq we get Er ⊆ Ep, which implies w(r) ≤ w(p). J

We call a point p ∈ C canonical if p ∈ `. Let Co and Cp be two parameter cells that
share a parameter edge e. Furthermore, let o ∈ `o ⊂ Co and p ∈ `p ⊂ Cp be two canonical
parameter points such that o ≤xy p where `o and `p are the monotone free space axis of Co
and Cp, respectively. Let co be the top-right end point of `o and cp the bottom-left end point
of `p. The following corollary to Lemma 7 characterizes how a shortest path passes through
the parameter edges.

SWAT 2016
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e

o

p

Co

Cp

`o

`p
πopco

cp e

o

p

Co

Cp

`o

`p
πopzp

zo

zcp
co

(a) o ≤xy p (b) o �xy p

Figure 4 Configurations of Corollary 8.

a

b

B62w(u)(u)

G62w(u)(u)
π̃ab

πab

e B62w(u2)(u2)

B62w(u1)(u1)

G62w(u2)(u2)

G62w(u1)(u1)

e2

e1a

b

πab
π̃ab

a

b

B62w(u)(u)

G62w(u)(u) π̃ab

πab

e1

e2

(a) Case (1.) (b) Case (2.1.) (c) Case (2.2.)

Figure 5 Different subcases how πab is approximated by free space axes and grid balls.

I Corollary 8. If co, cp ∈ e and co ≤xy cp, πop is equal to the concatenation of the segments
oco, cocp, and cpp (see Figure 4(a) on right). Otherwise, there is a z ∈ e such that πop is
equal to the concatenation of the segments ozo, zozp, and zpp, where zo ∈ `Co and zp ∈ Cp
such that z is the orthogonal projection of zo and zp onto e (see Figure 4(b)).

3.4.1 Outline of the analysis of Case B
In the following, we apply Lemma 7 and Corollary 8 to subpaths πab of π in order to ensure
that πab is a subset of the union of a constant number of balls (that are approximated by
grid balls in our approach) and monotone free space axes. In particular, we construct a
discrete sequence of points from π which lie on the free space axes, see Section 3.4.2. For
each induced subpath πab, we ensure that πab crosses one or two perpendicular parameter
edges. For the analysis we distinguish between the two cases which we consider separately:

Case 1: πab crosses one parameter edge and
Case 2: πab crosses two parameter edges.

For Case 1, we show that, if πab crosses one edge (e) then πab is a subset of the union of the
two monotone free space axes of the parameter cells that share e and the ball B62w(u)(u) for
u := arg minp∈e w(u) (see Figure 5(a) and Section 3.4.3).

For Case 2, (see Section 3.4.4), we consider the case that πab crosses two parameter
edges e1 and e2. In particular, πab runs through three parameter cells Cq, Cr, and Cs, where
Cq and Cr share e1 and Cr and Cs share e2.

We further distinguish further between two subcases. For this, let u1 := arg minp∈e1 w(p)
and u2 := arg minp∈e2 w(p).

Case 2.1: We show that, if d1(u1, u2) ≥ 6 max{w(u1), w(u2)}, then πab is a subset of the
union of the balls B62w(u1)(u1) and B62w(u2)(u2) and the monotone free space axes of Cq,
Cr, and Cs (see Figure 5(b) and Lemma 13).
Case 2.2: We show that, if d1(u1, u2) ≤ 6 max{w(u1), w(u2)}, then πab is a subset of
the union of the ball B62w(u)(u) and the monotone free space axes of Cq and Cs for
u ∈ {u1, u2} (see Figure 5(c) and Lemma 17).
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t1

t2
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p
q

t1

t2

d`

dh̄

T1(q.x)

T2(q.y)

T2(p.y) T1(p.x)

t1(0)

t2(0)

Figure 6 Duality of parameter points from ` (~) and leashes that lie perpendicular to d` (d~).

For the analysis of the length of a shortest path π̃ ⊂ G2 that lies between s and t, we
construct for πab ⊂ π a path π̃ab ⊂ G2 between a and b such that |π̃ab|w ≤ (1 + ε)|πab|w.
In particular, π̃ab is a subset of the grid balls that approximate the above considered balls
and the free space axes that are involved in the individual (sub-)case for πab (see, Figure 5).
Finally, we define π̃ ⊂ G2 as the concatenation of the approximations π̃ab for all πab.

3.4.2 Separation of a shortest path
In the following, we determine a discrete sequence of canonical points s = p1, ..., pk = t ∈ π
such that πpipi+1 crosses at most two parameter lines for each i ∈ {1, ..., k − 1}. First, we
need the following supporting lemma:

I Lemma 9. For all q1, q2 ∈ π that lie in the same parameter cell with q1 ≤xy q2 we have
q2.y − q1.y − µ

50 ≤ q2.x− q1.x ≤ q2.y − q1.y + µ
50 .

Proof. By triangle inequality we obtain:
d2(T2(q2.y), T2(q1.y)) ≤ d2(T2(q2.y), T1(q2.x))+d2(T1(q2.x), T1(q1.x))+d2(T1(q1.x), T2(q1.y)).
This implies d2(T2(q2.y), T2(q1.y))− µ

50 ≤ d2(T1(q2.x), T1(q1.x)), because
d2(T2(q2.y), T1(q2.x)), d2(T1(q1.x), T2(q1.x)) ≤ µ

100 . Furthermore, d2(T2(q2.y), T2(q1.y)) =
q2.y − q1.y and d2(T1(q2.x), T1(q1.x)) = q2.x − q1.x because q1 and q2 lie in the same
cell. This implies q2.y − q1.y − µ

50 ≤ q2.x − q1.x. A corresponding argument yields that
q2.x− q1.x ≤ q2.y − q1.y + µ

50 . J

I Lemma 10. There are canonical points s = p1, . . . pk = t ∈ π such that for all i ∈
{1, . . . , k − 1} the following holds: (P1) πpipi+1 crosses at most one vertical and at most one
horizontal parameter line which are both not part of ∂P and (P2) the distance of pi to a
parameter line is lower-bounded by µ

6 for all i ∈ {2, . . . , k − 1}.

3.4.3 Analysis of subpaths that cross one parameter edge
We need to show that those parts of π that do not lie on the free space axes are covered by
the balls B62w(u). For this, we use the following geometrical interpretation of the free space
axes ` and ~ of a parameter cell C. Let t1 ∈ T1 and t2 ∈ T2 be the segments that correspond
to C. We denote the angular bisectors of t1 and t2 by d` and d~ such that the start points
t1(0) and t2(0) of t1 and t2 lie on different sides w.r.t. d`, see Figure 6 right. If t1 and t2
are parallel, then d` denotes the line between t1 and t2 and we declare d~ as undefined. We
observe:

I Observation 11. q ∈ `⇔ T1(q.x)T2(q.y)⊥d` and p ∈ ~⇔ T1(p.x)T2(p.y)⊥d~ .

From now on, let o, p ∈ π be two consecutive, canonical points that are given via Lemma 10
such that o ≤xy p. Furthermore, let `o and `p be the free space axes of the parameter cells Co
and Cp such that o ∈ `o ⊂ Co and p ∈ `p ⊂ Cp.

SWAT 2016
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T2(u.y)

T2(o.y) T1(p.x)

T2(p.y)T1(o.x)

Figure 7 Configuration of the Lemmas 12 and 13: The length of the subpath of πop that does
not necessarily lie on ` ∪ ~ is related to w(u).

I Lemma 12. If πop crosses one parameter edge e, points co, cp ∈ e exist and we have
d∞(co, cp) ≤ w(u)

2 where u = arg minp∈e w(p).

Proof. W.l.o.g., we assume that e is horizontal. Let t1, t2 ∈ T1 and t3 ∈ T2 be the segments
that induce parameter cells Co and Cp. Below, we show ∠(t1, t3),∠(t2, t3) ≤ 7◦ and, then, that
d1(c0, cp) ≤ w(u). Let q1 ∈ `o and q2 ∈ `p such that q1.x = cp and q2.x = co, see Figure 7 left.
∠(t1, t3) ≤ 7◦ implies ∠(T1(u.x)T2(u.y), T1(u.x)T2(q2.y)) ≤ 3.5◦. Furthermore, cp = e ∩ `p
implies: cp corresponds to a leash lp = (T1(cp.x), T2(cp.y)) such that T1(cp.x) = T1(u.x) and
T1(cp.x), T2(cp.y)⊥d`o , see Figure 7 right. Thus, d2(T2(q2.y), T2(u.y)) is upper-bounded by
d2(T2(u.y), T2(q2.y)) ≤ d2(T1(u.x), T2(u.y)) tan(3.5◦) ≤ 0.065w(u) < w(u)

2 .
Finally, we show that ∠(t1, t3),∠(t2, t3) ≤ 7◦. We know that d2(T1(o.x), T2(o.y))

and d2(T1(u.x), T2(u.x)) are upper-bounded by µ
100 because π is low. Lemma 10 implies

d2(T1(o.x), T1(u.x)), d2(T2(o.y), T2(u.y)) ≥ µ
6 . Thus, ∠(t1, t3) ≤ arcsin 6

50 ≤ 7◦. A similar
argument implies that ∠(t2, t3) ≤ arcsin 6

50 ≤ 7◦ J

I Lemma 13. πop ⊂ `o ∪Bw(u)(u) ∪ `p (see Figure 5(a)).

Proof. We combine Corollary 8 and Lemma 12. Corollary 8 implies that πop orthogonally
crosses e at a point z that lies between co and cp such that z ∈ zozp ⊂ πop. Lemma 12
implies d1(co, cp) ≤ w(u)

2 . Thus, zozp ⊂ Bw(u)(u). Furthermore, ozo ⊂ `o and zpp ⊂ `p. This
implies πop ⊂ `o ∪Bw(u)(u) ∪ `p because πop = ozo ∪ zozp ∪ zpp. J

I Lemma 14. There is a path π̃op ⊂ G2 between o and p such that |π̃op|w ≤ (1 + ε)|πop|w.

Proof (Sketch). By Lemma 13, the following two intersection points are well defined: Let
zo be the intersection point of `o and ∂B62w(u)(u) that lies on the left or bottom edge of
∂B62w(u)(u). Analogously, let zp be the intersection point of `p and ∂B62w(u)(u) that lies on
the right or top edge of ∂B62w(u)(u). By Lemma 13, we can subdivide πop into the three
pieces ozo ⊂ `o, πzozp , and zpp ⊂ `. As ozo, zpp ⊂ G2, we just have to construct a path
π̃zozp ⊂ G2 between zo and zp such that |πzozp |w ≤ (1 + ε)|π̃zozp |w.

We construct π̃zozp by applying the same approach as used in the proof of Lemma 6 (see
Figure 5(a)). To upper-bound |π̃zozp |w by (1 + ε)|πzozp |w, we first lower-bound |πzozp |w by
1
2w

2(u). By using a similar approach as in the proof of Lemma 6, we can conclude the proof.
Further details are provided in the Appendix. Let ψ := πzozp ∩Bw(u)(u). As |ψ| ≥ w(u) and
w(·) is 1-Lipschitz, we obtain |ψ|w ≥ 1

2w
2(u). Thus, |πzozp |w ≥ 1

2w
2(u) as ψ ⊂ πzozp . J

3.4.4 Analysis of subpaths that cross two parameter edges
Let q and s be two consecutive parameter points from {p2, . . . , pk−1} such that πqs crosses
two parameter edges e1 and e2. By Lemma 10, e1 and e2 are perpendicular to each other
and are adjacent at a point c. Let Cr be the parameter cell such that e1 and e2 are part of
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the boundary of Cr. Furthermore, let Cq and Cs be the parameter cells such that q ∈ Cq
and s ∈ Cs. We denote the monotone free space axis of Cq, Cr, and Cs by `q, `r, and `s,
respectively. Let u1 := arg mina∈e1 w(a) and u2 := arg mina∈e2 w(a).

I Lemma 15. If d1(u1, u2) ≥ 6 max{w(u1), w(u2)}, there is another canonical parameter
point r ∈ `r such that πqs ⊂ `q ∪Bw(u1)(u1) ∪ `r ∪Bw(u2)(u2) ∪ `s.

The proof of Lemma 15 is similar to the proof of Lemma 12.

I Lemma 16. If d1(u1, u2) ≥ 6 max{w(u1), w(u2)}, then there is a path π̃qs ⊂ G2 between
q and s such that |π̃qs|w ≤ (1 + ε)|πqs|w.

Proof. Lemma 15 implies that the following constructions are unique and well defined: Let
z1 (z2) be the intersection point of ∂Bw(u1)(u1) and `q (`r) that lies on the left or bottom
(respectively, right or top) edge of ∂Bw(u1)(u1). Analogously, let z3 (z4) be the intersection
point of ∂Bw(u2)(u2) and `r (`s) that lies on the left or bottom (respectively, right or top)
edge of ∂Bw(u2)(u2). By applying the approach of Lemma 14, for πz1z2 and πz3z4 , we obtain
a path π̃z1z2 ⊂ G2 between z1 and z2 and a path π̃z3z4 ⊂ G2 between z3 and z4 such that
|π̃z1z2 |w ≤ (1 + ε)|πz1z2 |w and |π̃z3z4 |w ≤ (1 + ε)|πz3z4 |w. This concludes the proof because
qz1, z2z3, z4s ⊂ G2. J

I Lemma 17. If d1(u1, u2) ≤ 6 max{w(u1), w(u2)}, then πqs ⊂ `q ∪B62w(u)}(u) ∪ `s where
u := arg maxu∈{u1,u2}{w(u1), w(u2)}.

Lemma 17 implies that the approach taken in the proof of Lemma 14 yields that there
is a path π̃qs ⊂ G2 between q and s such that |π̃qs|w ≤ (1 + ε)|πqs|w If d1(u1, u2) <

6 max{w(u1), w(u2)}. Combining this with Lemmas 14 and 16 yields the following corollary:

I Corollary 18. Let π̃ ⊂ G2 be a shortest path. We have |π|w ≤ |π̃|w ≤ (1 + ε)|π|w.

3.5 “Bringing it all together”

In Sections 3.3 and 3.4, we proved that in Cases A and B, the minimum of the shortest path
lengths in G1 and G2 is no larger than (1 + ε)|π|w, where πw is a shortest path in P .

Next, we discuss that our algorithm has a running time of O( ζ
4n4

ε ). Graph G1 is given
by the arrangement that is induced by Θ( ζ

2n2

ε ) horizontal and Θ( ζ
2n2

ε ) vertical lines because
the corresponding grid has a mesh of size εµ2

40000(|T1|+|T2|) . Thus, |E1| ∈ Θ( ζ
4n4

ε2 ). Graph G2 is
given by the arrangement that is induced by O(n2) free space axis and Θ(n2) grid balls. Each
grid ball has a complexity of Θ( 1

ε ). Thus, |E2| ∈ O(n
4

ε2 ). Applying Dijkstra’s shortest path
algorithm on G1 and G2 takes time proportional to O(|E1|) and O(|E2|). As |E1| ∈ Θ( ζ

4n4

ε2 )
and |E2| ∈ O(n

4

ε2 ) we have to ensure that each edge of E1 ∪E2 can be computed in constant
time to guarantee an overall running time of O( ζ

4n4

ε2 ).

I Lemma 19. All edges of G1 and G2 can be computed in O(1) time.

This leads to our main result.

I Theorem 20. We can compute an (1 + ε)-approximation of FS (T1, T2) in O( ζ
4n4

ε2 ) time.

SWAT 2016
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Figure 8 First: The definition of local correctness still allowes “unnatural” matchings. Second:
A lexicographic matching. Third: A locally optimal matching that is also optimal w.r.t. integral
Fréchet distance. Fourth: The shortest path π ⊂ P (black) that corresponds to the third matching.

4 Locally optimal Fréchet matchings

In this section, we discuss an application of our observations regarding free space axes to
so-called locally correct (Fréchet) matchings (α1, α2) as introduced by Buchin et al. [2]. For
i ∈ {1, 2} and 0 ≤ a ≤ b ≤ n, we denote the subcurve between Ti(a) and Ti(b) by Ti[a, b].

I Definition 21 ([2]). (α1, α2) is locally correct if D (T1[α1(a), α2(b)], T2[α1(a), α2(b)]) =
maxt∈[α1(a),α2(b)] d2(T1(t), T2(t)), for all 0 ≤ a ≤ b ≤ n.

Buchin et al. [2] suggested to extend the definition of locally correct matchings to “locally
optimal” matchings as a future work. “The idea is to restrict to the locally correct matching
that decreases the matched distance as quickly as possible.”[2, p. 237].

Rote [13] proposed such an extension in terms of the profile of a matching. Roughly
speaking, the profile of a matching measures, for each threshold δ ≥ 0, the amount of time
that d2(T1(α1), T2(α2)) is at least δ. Based on matchings’ profiles, Rote defined an order
of matchings by applying the lexicographic order of their profiles. Without any further
restrictions, the lexicographic order of matchings does not make sense because “otherwise we
could simply traverse the two curves at a larger speed and accordingly scale down the profile
of the considered matching.”[13]. Thus, Rote assumes additionally that the “speed at which
the curves are traversed by parametrizations is bounded by 1”[13].

Rote [13] gives an algorithm to compute a lexicographic matching in O
(
n3 logn

)
time.

In contrast to [13], we do not measure time w.r.t. the integral of parameter values
but w.r.t. the length of traversed subcurves. This has the advantage that we do not
need an additional restriction to the considered matchings because the lengths of traversed
subcurves is invariant w.r.t. the speed in that they are traversed. In the following, we give a
corresponding definition of simply computable locally optimal matchings.

Let (α1, α2) be a locally correct matching. As the function f : t 7→ d2(T1(α1(t)), T2(α2(t)))
is in general not monotone, we ask for a matching that locally increases and decreases the
leash length between two maxima “as fast as possible”. In particular, we measure speed in
terms of the lengths of subcurves being traversed to achieve a required leash length.

More formally, t ∈ [0, n] is the parameter of a local maxima of f if there is a δt > 0 such
that for all 0 ≤ δ ≤ δt : f(t ± δ) ≤ f(t) and f(t + δ) < f(t) or f(t − δ) < f(t). For any
t1, t2 ∈ [0, n] and i ∈ {1, 2}, we denote the restriction of αi to [t1, t2] as αi[t1, t2].

I Definition 22. (α1, α2) is locally optimal if Pδ(T1[α1(t1), α1(t2)], T2[α2(t1), α2(t2)]) =
P(α1[t1,t2],α2[t1,t2])(T1, T2) for all δ ≥ 0 and for all parameters of local maxima t1, t2 ∈ [0, n]
such that [t1, t2] does not contain any further parameter of a local maximum.

By applying a similar approach as in the proof of Lemma 7 we obtain the following:

I Lemma 23. Let C be an arbitrarily chosen parameter cell and a, b ∈ C such that a ≤xy b
and πab the path induced by Lemma 7. Then, Pδ(T1[a.x, b.x], T2[a.y, b.y]) = |Eδ ∩ πab| for all
δ ≥ 0, where Eδ is the free space ellipse of C for the distance threshold δ.
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T2

T2

T1

T1

Figure 9 Left: A locally optimal matching that is also global optimal w.r.t. integral Fréchet
distance and partial Fréchet similarity for any δ ≥ 0. Right: The shortest path that corresponds to
the matching to the left. Following completely the free space axes is allowed because the end points
of the free space axes can be ordered w.r.t. xy-monotonicity.

Lemma 23 implies the following:

I Corollary 24. A locally correct matching can be transformed into a locally optimal Fréchet
matching in O(n). Generally, a locally optimal matching can be computed in O(n3 logn).

Proof. Let π ⊂ P be the path that corresponds to the locally correct matching. Furthermore,
let p1, . . . , p2n ∈ π be the intersection points of π with the parameter grid. For each
i ∈ {1, ..., 2n− 1} we substitute the subpath πpipi+1 by the path between pi and pi+1 which
is induced by Lemma 7. The algorithm from [2] computes a locally correct matching in
O(n3 logn) time. Thus, a locally optimal matching can be computed in O(n3 logn) time. J

5 Conclusion

We presented a pseudo-polynomial (1 + ε)-approximation algorithm for the integral and
average Fréchet distance which has a running time of O( ζ

4n4

ε2 ). In particular, in our approach
we compute two geometric graphs and their weighted shortest path lengths in parallel. It
remains open if one can reduce the complexity of G1 to polynomial with respect to the input
parameters such that using G1 ∪G2 still ensures an (1 + ε)-approximation.

As a byproduct we developed techniques to determine the local nature of an optimal
matching (α1, α2) (without any further restrictions to (α1, α2)) w.r.t. different Fréchet
measures. It remains open how these techniques can be extended such that not only local,
but global optimal matchings can be computed. See Figure 9 for an example. We are
currently investigating this extension.
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