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Abstract
Given n colored balls, we want to detect if more than bn/2c of them have the same color, and if so
find one ball with such majority color. We are only allowed to choose two balls and compare their
colors, and the goal is to minimize the total number of such operations. A well-known exercise
is to show how to find such a ball with only 2n comparisons while using only a logarithmic
number of bits for bookkeeping. The resulting algorithm is called the Boyer–Moore majority
vote algorithm. It is known that any deterministic method needs d3n/2e − 2 comparisons in the
worst case, and this is tight. However, it is not clear what is the required number of comparisons
if we allow randomization. We construct a randomized algorithm which always correctly finds
a ball of the majority color (or detects that there is none) using, with high probability, only
7n/6 + o(n) comparisons. We also prove that the expected number of comparisons used by any
such randomized method is at least 1.019n.
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1 Introduction

A classic exercise in undergraduate algorithms courses is to construct a linear-time constant-
space algorithm for finding the majority in a sequence of n numbers a1, a2, . . . , an, that is, a
number x such that more than bn/2c numbers ai are equal to x, or detect that there is no
such x. The solution is to sweep the sequence from left to right while maintaining a candidate
and a counter. Whenever the next number is the same as the candidate, we increase the
counter; otherwise we decrease the counter and, if it drops down to zero, set the candidate
to be the next number. It is not difficult to see that if the majority exists, then it is equal to
the candidate after the whole sweep, therefore we only need to count how many times the
candidate occurs in the sequence. This simple yet beautiful solution was first discovered by
Boyer and Moore in 1980; see [4] for the history of the problem.

The only operation on the input numbers used by the Boyer–Moore algorithm is testing
two numbers for equality, and furthermore at most 2n such checks are ever being made.
This suggests that the natural way to think about the algorithm is that the input consists
of n colored balls and the only possible operation is comparing the colors of any two balls.
Now the obvious question is how many such comparisons are necessary and sufficient in the
worst possible case. Fischer and Salzberg [11] proved that the answer is d3n/2e − 2. Their
algorithm is a clever modification of the original Boyer–Moore algorithm that reuses the
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results of some previously made comparisons during the verification phase. They also show
that no better solution exists by an adversary-based argument. However, this argument
assumes that the strategy is deterministic, so the next step is to allow randomization.

Surprisingly, not much seems to be known about randomized algorithms for computing
the majority in the general case. For the special case of only two colors, Christofides [5]
gives a randomized algorithm that uses 2

3 (1− ε
3 )n comparisons in expectation and returns

the correct answer with probability 1− ε, and he also proves that this is essentially tight;
this improves on a previous lower bound of Ω(n) by De Marco and Pelc [15]. Note that in
the two-color case any deterministic algorithm needs precisely n−B(n) comparisons, where
B(n) is the number of 1s in the binary expansion of n, and this is tight [17, 2, 19]. For
a random input, with each ball declared to be red or blue uniformly at random, roughly
2n/3 comparisons are sufficient and necessary in expectation to find the majority color [3].
However, to the best of our knowledge upper and lower bounds on the expected number of
comparisons without any restrictions on the number of colors have not been studied before.

Related work include oblivious algorithms studied by Chung et al. [6], that is, algorithms
in which subsequent comparisons do not depend on the previous answers, and finding majority
with larger queries [14, 9, 18]. Another generalization is finding a ball of plurality color, that
is, the color that occurs more often than any other [1, 12, 13].

We consider minimizing the number of comparisons mostly as an academic exercise, and
believe that a problem with such a simple formulation deserves to be thoroughly studied.
However, it is possible that a single comparison is so expensive that their number is the
bottleneck. Such a line of thought motivated a large body of work studying the related
questions of the smallest number of comparisons required to find the median element;
see [7, 8, 16] and the references therein. Of course, the simplest Boyer–Moore algorithm has
the advantage of using only two sequential scans over the input and a logarithmic number of
bits, while our algorithm needs more space and random access to the input.

Given that the original motivation of Boyer and Moore was fault-tolerant computing, we
find it natural to consider Las Vegas algorithms, that is, the number of comparisons depends
on the random choices of the algorithm but the answer is always correct. This way the result
will be correct even if the source of random bits is compromised; an adversary that is able to
control the random number generator can only influence the running time.

Model. We identify balls with numbers 1, 2, . . . , n. We write cmp(i, j) for the result of
comparing the colors of balls i and j (true for equality, false for inequality). We consider
randomized algorithm that, after performing a number of such comparisons, either finds
a ball of the majority color or detects that there is no such color. A majority color is a
color with the property that more than bn/2c balls are of such color. The algorithm should
always be correct, irrespectively of the random choices made during the execution. However,
the colors of the balls are assumed to be fixed in advance, and therefore the number of
comparisons is a random variable. We are interested in minimizing its expectation.

Contributions. We construct a randomized algorithm, which always correctly determines a
ball of the majority color or detects that there is none, using 7n/6 + o(n) comparisons with
high probability (in particular, in expectation). We also show that the expected number of
comparisons used by any such algorithm must be at least 1.019n. Therefore, randomization
allows us to circumvent the lower bound of Fischer and Salzberg and construct a substantially
better algorithm. Most probably our lower bound can be slightly strengthened, but achieving
7n/6, which we conjecture to be the answer, seems to require a different approach.
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2 Preliminaries

We denote the set of balls (items) by M = {1, 2, . . . , n}. We write color(x) for the color of
ball x, and cmp(x, y) returns true if the colors of balls x and y are identical.

An event occurs with very high probability (w.v.h.p.) if it happens with probability at
least 1 − exp(−Ω(log2 n)). Observe that the intersection of polynomially many very high
probability events also happens with very high probability.

I Lemma 1 (Symmetric Chernoff Bound). The number of successes for n independent coin
flips is w.v.h.p. at most n

2 +O(
√
n logn).

I Lemma 2 (Sampling). Let X ⊆M such that |X| = m. Let m′ denote the number of hits
on elements from X if we sample uniformly at random k ≤ n elements from M without
replacement. Then w.v.h.p. |m′/k −m/n| = O(k−1/2 logn).

Now we consider a process of pairing the items without replacement (choosing a random
perfect matching on M ; if n is odd then one item remains unpaired). For any X ⊆M , let
uXX be a random variable counting the pairs with both elements belonging to X when
choosing uniformly at random n

2 pairs of elements from M without replacement. Of course
E[uXX ] = |X|(|X|−1)

2(n−1) .

I Lemma 3 (Concentration for Pairs). For any X ⊆M w.v.h.p.∣∣∣∣uXX − |X|22n

∣∣∣∣ = O
(√
|X| logn

)
.

I Lemma 4 (Pairs in Partition). Let F = {X1, . . . , Xm} be a partition of M . Then w.v.h.p.∣∣∣∣∣∑
X∈F

uXX −
∑
X∈F

|X|2

2n

∣∣∣∣∣ = O(n2/3 logn).

I Lemma 5. Let X ⊆M such that |X| = m. Let k(m′,m, n) denote the number of draws
without replacement until we hit m′ elements from X. Then w.v.h.p.

k(m′,m, n) ≤ n

m
m′ +O

( n√
m
· logn

)
.

3 Algorithm

In this section we describe a randomized algorithm for finding majority. Recall that the
algorithm is required to always either correctly determine a ball of the majority color or
decide that there is no such color, and the majority color is a color of more than bn/2c balls.
For simplicity we will assume for the time being that n is even, as the algorithm can be
adjusted for odd n in a straightforward manner without any change to the asymptotic cost.
Hence to prove that there is a majority color, it is sufficient to find n/2 + 1 balls with the
same color. In such case our algorithm will actually calculate the multiplicity of the majority
color. To prove that there is no majority color, it is sufficient to partition the input into n/2
pairs of balls with different colors.

The algorithm consists of three parts. Intuitively, by choosing a small random sample we
can approximate the color frequencies and choose the right strategy: (i) There is one color
with a large frequency. We use algorithm heavy. In essence, we have only one candidate
for the majority, and we compute the frequency of the candidate in a naive manner. If the
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frequency is too small, we need to form sufficiently many pairs of balls with different colors
among the balls that are not of the candidate color. This can be done by virtually pairing the
non-candidate color elements, and testing these pairs until we find enough of them that have
distinct colors. Additionally, we show that one sweep through the pairs is enough. (ii) There
are two colors with frequencies close to 0.5. Now we use algorithm balanced. In essence,
we can now reduce the size of the input by a pairing process, and then find the majority
recursively. If the recursion finds the majority, the necessary verification step is speeded up
by reusing the results of the comparisons used to form the pairs. (iii) All frequencies are
small. We use light which, as balanced, applies pairing and recursion. However, if the
recursive call reports the majority, we construct enough pairs with different colors: whenever
we find a pair of elements with both colors different than the majority color found by the
recursive call, we pair them with elements of the majority color. Here we speeded up the
process by reusing the results of the comparisons used to form the pairs as well.

We start with presenting the main procedure of the algorithm; see Algorithm 1. The
parameters are chosen by setting α = 1

3 , ε = n−1/10 and β = 0.45. In fact we could chose any
β ∈ (β1, β2), where β1 = 1− 1√

3 ≈ 0.4226 and β2 ≈ 0.47580 is a root to p3−19p2−8p+8 = 0.

Algorithm 1: majority(M)
1 if |M | = 1 then return M [1] is the majority with multiplicity 1 in M
2 sample M ′ ⊆M such that |M ′| = nα

3 let v1, v2, . . . , vk be the representatives of the colors in M ′
4 let qi|M ′| be the frequency of color(vi) in M ′, where q1 ≥ q2 ≥ . . . ≥ qk
5 if q1, q2 ∈ [ 1

2 − 4ε, 1
2 + 4ε] then

6 return balanced(M)
7 else if q1 ≥ β and q2

1 ≥ q2
2 + . . .+ q2

k + 2ε then
8 return heavy(M,v1)
9 else

10 return light(M)

Before we proceed to describe the subprocedures, we elaborate on the sampling performed
in line 4. Intuitively, we would like to compute the frequencies of all colors in M . This
would be too expensive, so we select a small sample M ′ and claim that the frequencies
of all colors in M ′ are not too far from the frequencies of all colors in M . Formally, let
p1, p2, p3, . . . , p` be the frequencies of all colors in M , that is there are pi · n balls of color
i in M and let qi be the frequency of color i in the sample M ′. By Lemma 2, w.v.h.p.
|pi − qi| = O(n−α/2 logn) = o(ε). We argue that

∑
i q

2
i is a good estimation of

∑
i p

2
i .

I Lemma 6. Let pi be the frequency of color i in M and qi be its frequency in M ′, where
M ′ ⊆M a random sample without replacement of size nα. Then w.v.h.p.∣∣∣∣∣∑

i

p2
i −

∑
i

q2
i

∣∣∣∣∣ = O(n−α/3 logn) = o(ε).

Proof. Let m = nα. We analyze the following two sampling methods.

1. Partition the elements of M into n
2 disjoint pairs uniformly at random. Select m

2 of
these pairs uniformly at random. Denote by A1 and A2 the pairs with both elements of
the same colors in the first and the second pairing, respectively. By Lemma 4, w.v.h.p.
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∣∣|A1| − n
2
∑
i p

2
i

∣∣ = O(n2/3 logn). Observe that by Lemma 2 w.v.h.p.
∣∣|A2| − m

n |A1|
∣∣ =

O(m1/2 logn). Thus, by the triangle inequality, w.v.h.p.∣∣∣∣∣ |A2|
m/2 −

∑
i

p2
i

∣∣∣∣∣ = O(n−1/3 logn) +O(m−1/2 logn).

2. Partition the elements of M ′ into m
2 disjoint pairs uniformly at random, and denote by B

all pairs with both elements of the same color. By Lemma 4, w.v.h.p.
∣∣|B| − m

2
∑
i q

2
i

∣∣ =
O(m2/3 logn), or equivalently

∣∣∣ |B|m/2 −
∑
i q

2
i

∣∣∣ = O(m−1/3 logn).

Now, because A2 and B have identical distributions, by the triangle inequality we have∣∣∣∣∣∑
i

p2
i −

∑
i

q2
i

∣∣∣∣∣ = O(n−1/3 logn) +O(m−1/2 logn) +O(m−1/3 logn) = O(m−1/3 logn).J

Now we present the subprocedures; see Algorithms 2–4.
Algorithm 2: heavy(M,v)
1 cnt← 0, X ← []
2 for i = 1 to |M | do
3 if cmp(v,M [i]) then
4 cnt← cnt + 1
5 else
6 append M [i] to X
7 if cnt > |M |/2 then return color(v) is the majority with multiplicity k in M
8 k ← |M |/2− cnt
9 randomly shuffle X

10 for i = 1 to |X|/2 do
11 if ¬cmp(X[2i− 1], X[2i]) then k ← k − 1
12 if k = 0 then return no majority in M
13 return Boyer–Moore(M) . fallback, 2n comparisons

Algorithm 3: light(M)
1 randomly shuffle M
2 X ← [], Y ← []
3 for i = 1 to |M |/2 do
4 if cmp(M [2i− 1],M [2i]) then
5 append M [2i] to X
6 else
7 append M [2i− 1] and M [2i] to Y
8 run majority(X)
9 if there is no majority in X then return no majority in M

10 let color(v) be the majority with multiplicity k in X
11 cnt← 2k − |X|
12 for i = 1 to |Y | do
13 if ¬cmp(v, Y [2i− 1]) then
14 if ¬cmp(v, Y [2i]) then
15 cnt← cnt− 1
16 if cnt = 0 then return no majority in M
17 return color(v) is the majority with multiplicity (|M |/2 + cnt) in M
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Algorithm 4: balanced(M)
1 randomly shuffle M
2 X ← [], Y ← []
3 for i = 1 to |M |/2 do
4 if cmp(M [2i− 1],M [2i]) then
5 append M [2i] to X
6 else
7 append M [2i− 1] and M [2i] to Y
8 run majority(X)
9 if there is no majority in X then return no majority in M

10 let color(v) be the majority with multiplicity k in X
11 cnt← 2k
12 for i = 1 to |Y |/2 do
13 if cmp(v, Y [2i− 1]) then
14 cnt← cnt + 1
15 else if cmp(v, Y [2i]) then
16 cnt← cnt + 1
17 if cnt ≤ |M |/2 then
18 return no majority in M
19 else
20 return color(v) is the majority with multiplicity k in X

I Lemma 7. Algorithm 1 always returns the correct answer.

Proof. We analyze separately every subprocedure.
balanced(M). If the majority exists then removing two elements with different colors

preserves it. Hence if the recursive call returns that there is no majority in X then indeed
there is no majority in M , and otherwise color(v) is the only possible candidate for the
majority in M . The remaining part of the subprocedure simply verifies it.

heavy(M,v). The subprocedure first checks if color(v) is the majority. Hence it is enough
to analyze what happens if color(v) is not the majority. Then X contains all elements with
other colors. We partition the elements in X into pairs and check which of these pairs
consists of elements with different colors. If the number of elements in all the remaining
pairs is smaller than the number of elements of color color(v), then clearly we can partition
all elements in M into disjoint pairs of elements with different colors, hence indeed there is
no majority. Otherwise, we revert to the simple 2n algorithm, which is always correct.

light(M). Again, if the majority exists then removing two elements with different color
preserves it. Hence we can assume that color(v) is the only possible candidate for the majority.
Then, Y consists of pairs of two elements with different colors. From the recursive call we
also know what is the frequency of color(v) in M \ Y . We iterate through the elements of
Y and check if their color is color(v). However, if the color of the first element in a pair is
color(v), then the second element has a different color. So the subprocedure either correctly
determines the frequency of the majority color(v), or find sufficiently many elements with
different colors to conclude that color(v) is not the majority. J

I Theorem 8. Algorithm 1 w.v.h.p. uses at most 7
6n + o(n) comparisons on an input of

size n. The expected number of comparisons is also at most 7
6n+ o(n).
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Proof. Let T (n) be a random variable counting the comparisons on the given input of size n.
We will inductively prove that T (n) ≤ 7

6n+C ·n9/10 for a fixed constant C that is sufficiently
large. In the analysis we will repeatedly invoke Lemmas 2, 3, 4, 5, 6 and Chernoff bound to
bound different quantities. We will assume that each such the application succeeds. Since
there will be a polynomial number of applications, each on a polynomial number of elements,
this happens w.v.h.p. with respect to the size of the input. We also assume that n is large
enough. Algorithm 1 uses at most O(n2α) = O(n2/3) comparisons in the sampling stage. We
bound the number of subsequent comparisons used by each subprocedure as follows.

balanced(M). We have that p1, p2 = 1
2±O(ε). Thus also

∑
i p

2
i = 1

2±O(ε). By Lemma 4,
|X| = (n2

∑
i p

2
i )±O(n2/3 logn), thus |X| = ( 1

4 ±O(ε))n. Also |Y | = n−2|X| = ( 1
2 ±O(ε))n.

List Y consists of pairs of elements with different colors. Because at most O(εn) of all
elements are not of color 1 or 2, there are at most O(εn) pairs not of the form {1, 2}. Since
the relative order of elements Y [2i− 1] and Y [2i] is random, for each pair {1, 2} we pay 1
with probability 1/2 and pay 2 with probability 1/2, and for any other pair we pay always 2.
Thus the total cost incurred by the loop in line 12 is (by Chernoff bound) at most

O(εn) · 2 + 3
2 |Y |/2 +O(

√
|Y | logn) ≤ 3

8n±O(εn).

Thus the total cost is

T (n) ≤ T
(
( 1

4 + ε)n
)

+ 1
2n+ 3

8n+O(εn) ≤ 7
6n+O(n9/10) + C ·

( 1
3n
)9/10

and 7
6n+O(n9/10) + C · ( 1

3 )9/10 · n9/10 ≤ 7
6n+ C · n9/10 for a large enough C.

heavy(M,v). If p1 >
1
2 , then we terminate in line 7 after n comparisons. Thus we can

assume that p1 ∈ [0.45− ε, 1
2 ]. Because by Lemmas 2 and 6 both p2

1 and
∑
i p

2
i are estimated

within an absolute error of o(ε), we have that p2
1 −

∑
i≥2 p

2
i ≥ 2ε− 2o(ε) ≥ ε.

We argue that the loop in line 10 will eventually find sufficiently many pairs of elements
with different colors, and thus return without falling back to the 2n algorithm. By definition,
|X| = (1− p1)n and initially k = (1/2− p1)n. By Lemma 4, after the random shuffle the
number D of pairs of elements (X[2i− 1], X[2i]) with different colors, can be bounded by

D ≥ |X|2 −
∑
j≥2(pjn)2

2|X| − O
(
|X|2/3 log |X|

)
≥

≥ 1− p1

2 n− p2
1 − ε

2(1− p1)n− o(εn) ≥ 1− 2p1

2(1− p1)n+ ε

2n− o(εn) ≥
( 1

2 − p1
)
n;

thus indeed there are sufficiently many pairs. Hence, because the pairs are being considered
in a random order, the total cost can be bounded using Lemma 5 by

T (n) ≤ n+ |X|
D

(
1
2 − p1

)
n+O

(
|X|√
D

log |X|
)
≤

≤ n+ (1− p1)2

2 n+O
(
n/

√
ε

3n logn
)
≤

≤ (1 + 0.552/2)n+O(εn) +O
(√

n

ε
logn

)
= 1.15125n+O(n9/10),

where we used D ≥ ε
2 − o(εn) ≥ ε

3n for a large enough n.
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light(M). We start by bounding |X| and |Y |. By Lemma 4, |X| = n
2
∑
i p

2
i ±O(n2/3 logn),

and by Lemma 3 there are n
2 p

2
1 ± O(n1/2 logn) elements from A1 in X, thus there are

n(p1 − p2
1)±O(n1/2 logn) of elements from A1 in Y (each paired with a non-A1 element).

We know that either p1 ≤ 0.45 + ε or p2
1 −

∑
i≥2(p2

i ) ≤ ε. If there is no majority in X,
then p1 ≤ 1

2 and the total cost is bounded by

T (n) ≤ n

2 + T (|X|) ≤ n

2 + 7
6 |X|+ C · |X|9/10,

which, because |X| ≤ n
4 +O(n2/3 logn), is less than 19

24n+ o(n). Hence we can assume that
there is a majority in X. In such case, cnt is set to

c = n

2

(
p2

1 −
∑
i≥2

p2
i

)
±O(n2/3 logn).

We denote by I the total number of iterations of the loop in line 12. By Lemma 5

I ≤
1
2 |Y |

1
2 |Y | − |A1 ∩ Y |

· c+O(E),

where E = |Y |/
√

1
2 |Y | − |A1 ∩ Y |. Substituting S =

∑
i≥2 p

2
i , by Lemma 4 we have

|Y | =
(
1− p2

1 − S ±O(n−1/3 logn)
)
n,

|Y | − 2|A1 ∩ Y | =
(
(1− p1)2 − S ±O(n−1/3 logn)

)
n,

c = 1
2
(
p2

1 − S ±O(n−1/3 logn)
)
n.

Since p1 ≤ 1
2 and p2 ≤ 1

2 − 3ε (as for a larger p2 the sampled q2 would be sufficiently large
for other subprocedure to be used), we have

(1− p1)2 − S − o(ε) ≥
( 1

2
)2 −

( 1
2 − 3ε

)2 − (3ε)2 − o(ε) = 3ε− 18ε2 − o(ε) ≥ 2ε.

Thus E ≤
√

n
2ε . Now, since |Y | = Θ(n) we can bound I from above by

I ≤ |Y |
|Y | − 2|A1 ∩ Y |

· 1
2(p2

1 − S)n+O(1/ε) · O(n2/3 logn) +O(E) ≤

≤ 1
2

1− p2
1 − S +O(n−1/3 logn)

(1− p1)2 − S −O(n−1/3 logn)
(p2

1 − S)n+O
(
n2/3 logn

ε

)
+O

(√
n

4ε

)
≤

≤ 1
2

1− p2
1 − S

(1− p1)2 − S −O(n−1/3 logn)
(p2

1 − S)n+ O(n2/3 logn)
2ε +O(n23/30 logn),

which, because (1− p1)2 − S is sufficiently large, can be bounded by

I ≤ 1
2

1− p2
1 − S

(1− p1)2 − S
(p2

1 − S)n ·
(

1 + O(n−1/3 logn)
(1− p1)2 − S

)
+O(n23/30 logn) ≤

≤ 1
2

1− p2
1 − S

(1− p1)2 − S
(p2

1 − S)n ·
(

1 + O(n−1/3 logn)
2ε

)
+O(n23/30 logn) ≤

≤ 1
2(1− p2

1 − S) p2
1 − S

(1− p1)2 − S
n+O(n26/30 logn).
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For each of c iterations we pay 2, and for each of the remaining I − c iterations we pay
only 3

2 in expectation (for each iteration independently). Thus, by Chernoff bound the total
cost is

T (n) ≤ 1
2n+ T (|X|) + 3

2(I − c) +O(
√
I − c log(I − c)) + 2c ≤

= n

2

(
1 + 19

6 p
2
1 −

5
6S + 3(p2

1 − S) p1 − p2
1

(1− p1)2 − S

)
+O(n9/10).

We reason that, for a fixed p1, the quantity

1 + 19
6 p

2
1 −

5
6S + 3(p2

1 − S) p1(1− p1)
(1− p1)2 − S

is a decreasing function of S, since p2
1 ≤ (1 − p1)2. If p2

1 − S ≤ ε then simplifying with
either p2

1 − S ≤ 0 or, since (1 − p1)2 − S ≥ 2ε, with 0 ≤ p2
1−S

(1−p1)2−S ≤
1
2 , we obtain that

T (n) ≤ 47
48n + o(n). Otherwise, p1 ≤ 0.45 + ε and substituting S = 0 (since the cost is

decreasing in S) we obtain T (n) ≤ 1.06915n+O(n9/10).

Wrapping up. We see that in each subprocedure, the number of comparisons is bounded
by 7

6n+ C · n9/10. Each subprocedure makes at most one recursive call, where the size of
the input is reduced by at least a factor of 2. Thus the worst-case number of comparison
is always bounded by O(n). Recall that the bound on the number of comparisons used
by every recursive call holds w.v.h.p. with respected to the size of the input to the call.
Eventually, the size of the input might become very small, and then w.v.h.p. with respect
to the size of the input is no longer w.v.h.p. with respect to the original n. However, as
soon as this size decreases to, say, n0.1, the number of comparisons is O(n) irrespectively
of the random choices made by the algorithm. Thus w.v.h.p. the number of comparisons
is at most 7

6n + O(n9/10), and the expected number of comparisons is also bounded by
7
6n+O(n9/10). J

4 Lower bound

We consider Las Vegas algorithms. That is, the algorithm must always correctly determine
whether a majority element exists. We will prove that the expected number of comparisons
used by such an algorithm is at least c · n − o(n), for some constant c > 1. By Yao’s
principle, it is sufficient to construct a distribution on the inputs, such that the expected
number of comparisons used by any deterministic algorithms run on an input chosen from
the distribution is at least c · n− o(n). The distribution is that with probability 1

n every ball
has a color chosen uniformly at random from a set of n colors. With probability 1− 1

n every
ball is black or white, with both possibilities equally probable. We fix a correct deterministic
algorithm A and analyze its behavior on an input chosen from the distribution. As a warm-up,
we first prove that A needs n− o(n) comparisons in expectation on such input.

4.1 A lower bound of n − o(n)
In every step A compares two balls, thus we can describe its current knowledge by defining
an appropriate graph as follows. Every node corresponds to a ball. Two nodes are connected
with a negative edge if the corresponding balls have been compared and found out to have
different colors. Two nodes are connected with a positive edge if the corresponding balls
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are known to have the same colors under the assumption that every ball is either black or
white (either because they have been directly compared and found to have the same color, or
because such knowledge has been indirectly inferred from the assumption). After every step of
the algorithm the graph consists of a number of components C1, C2, . . .. Every components is
partitioned into two parts Ci = Ai ·∪Bi, such that both Ai and Bi are connected components
in the graph containing only positive edges and there is at least one (possibly more than one)
negative edge between Ai and Bi. There are no other edges in the graph. Now we describe
how the graph changes after A compares two balls x ∈ Ci and y ∈ Cj assuming that every
ball is either black or white. If i = j then the result of the comparison is already determined
by the previous comparisons and the graph does not change. Otherwise, i 6= j and assume
by symmetry that x ∈ Ai, y ∈ Aj . The following two possibilities are equally probable:
1. color(x) = color(y), then we merge both components into a new component C = A ·∪B,

where A = Ai ·∪Aj and B = Bi ·∪Bj by creating new positive edges (x, y) and (x′, y′) for
some x′ ∈ Bi, y′ ∈ Bj (if Bi, Bj 6= ∅).

2. color(x) 6= color(y), then we merge both components into a new component C = A ·∪B,
where A = Ai ·∪ Bj and B = Bi ·∪ Aj by creating new positive edges (x, y′) for some
y′ ∈ Bj (if Bj 6= ∅) and (x′, y) for some x′ ∈ Bi (if Bi 6= ∅). We also create a new negative
edge (x, y). Here we crucially use the assumption that every ball is either black or white.

The graph exactly captures the knowledge of A about a binary input.
Any binary input contains a majority and A must report so. However, because with very

small probability the input is arbitrary, this requires some work due to the following lemma.
I Lemma 9. If A reports that a binary input contains a majority element, then the graph
contains a component C = A ·∪B such that |A| > n

2 or |B| > n
2 .

Proof. Assume otherwise, that is, A reports that a binary input contains a majority element
even though both parts of every component are of size less than n

2 . Construct another
input by choosing, for every component C = A ·∪B, two fresh colors cA and cB and setting
color(x) = cA for every x ∈ A, color(y) = cB for every y ∈ B. Every comparison performed
by A is an edge of the graph, so its behavior on the new input is exactly the same as on the
original binary input. Hence A reports that there is a majority element, while the frequency
of every color in the new input is less than n

2 , which is a contradiction. J

From now on we consider only binary inputs. If we can prove that the expected number of
comparisons used by A on such input is n− o(n), then the expected number of comparisons
on an input chosen from our distribution is also n−o(n). Because every comparison decreases
the number of components by one, it is sufficient to argue that the expected size of some
component when A reports that there is a majority is n− o(n). We already know that there
must exist a component C = A ·∪ B such that (by symmetry) |A| > n/2. We will argue
that |B| must also be large. To this end, define balance of a component Ci = Ai ·∪ Bi as
balance(Ci) = (|Ai| − |Bi|)2, and the total balance as

∑
i balance(Ci). By considering the

situation before and after a single comparison, we obtain the following.
I Lemma 10. The expected total balance at termination of algorithm A is n.

Total balance when A reports a majority is a random variable with expected value n. By
Markov’s inequality, with probability 1− 1/n1/3 its value is at most n4/3, which implies that
for any component Ci = Ai ·∪ Bi, we have balance(Ci) ≤ n4/3. If we apply this inequality
to the component C = A ·∪ B with |A| > n/2, we obtain |B| ≥ n/2 − n2/3. Hence with
probability 1− 1/n1/3 there is a component with at least n− n2/3 nodes, which means that
the algorithm must have performed at least n−n2/3−1 comparisons. Therefore the expected
number of comparisons is at least (1− 1/n1/3)(n− n2/3 − 1) = n− o(n).
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4.2 A stronger lower bound
To obtain a stronger lower bound, we extend the definition of the graph that captures the
current knowledge of A. Now a positive edge can be verified or non-verified. A verified positive
edge (x, y) is created only after comparing two balls x and y such that color(x) = color(y).
All other positive edges are non-verified. The algorithm can also turn a non-verified positive
edge (x, y) into a verified positive edge by comparing x and y. By the same reasoning as in
Lemma 9 we obtain the following.

I Lemma 11. If A reports that a binary input contains a majority element, then the graph
consisting of all verified positive edges contains a connected component with at least n

2 nodes.

Now the goal is to construct a large component in the graph that consists of all verified
positive edges, so it makes sense for A to compare two balls from the same component.
However, without loss of generality, such comparisons are executed after having identified a
large component in the graph consisting of all positive edges. Then, A asks sufficiently many
queries of the form (x, y), where (x, y) is a non-verified edge from the identified component.
In other words, A first isolates a candidate for a majority, and then makes sure that all
inferred equalities really hold, which is necessary because with very small probability the
input is not binary. This allows us to bound the total number of comparisons from below as
follows. We define that a majority edge is an edge between two nodes of the majority color.

I Lemma 12. The expected number of comparisons used by A on a binary input is at least
n− o(n) plus the expected number of non-verified majority edges.

Proof. Recall that if there exists a component C = A ·∪B with |A| > n/2 then with probability
1 − 1/n1/3 we also have |B| ≥ n/2 − n2/3. Set A consists of nodes of the majority color,
although possibly not all nodes of the majority color are there. However, because B is large,
there are at most n2/3 nodes of the majority color outside of A. Also, because we consider
binary inputs chosen uniformly at random, by Chernoff bound |A| ≤ n/2 +O(

√
n logn) with

probability 1− 1/n.
The expected number of comparisons used by A to construct a component C = A ·∪B

such that |A| > n/2 is at least n − n2/3 − 1. Then, A needs to verify sufficiently many
non-verified edges inside A to obtain a connected component of size n/2 in the graph that
consists of verified positive edges. By construction, there are no cycles in the graph that
consists of positive edges. Hence with probability 1− 1/n1/3 − 1/n there will be no more
than n2/3 + O(

√
n logn) non-verified positive edges between nodes outside of B when A

reports a majority. Consequently, the additional verification cost is the expected number of
non-verified majority edges minus n2/3 +O(

√
n logn) = o(n). J

In the remaining part of this section we analyze the expected number of non-verified
majority edges constructed during the execution of the algorithm. We show that this is at
least (c− 1)n− o(n) for some c > 1. Then, Lemma 12 implies the claimed lower bound.

A component C = A ·∪B is called monochromatic when A = ∅ or B = ∅ (by symmetry,
we will assume the latter) and dichromatic otherwise. With probability 1− 1/n1/3, when A
reports a majority there is one large dichromatic component with at least n− n2/3 nodes,
and hence the total number of components is at most n2/3 + 1. It is convenient to interpret
the execution of A as a process of eliminating components by merging two components into
one. Each such merge might create a new non-verified edge. We define that the cost of such a
non-verified edge is the probability that it is a majority edge. We want to argue that because
all but n2/3 components will be eventually eliminated, the total cost of all non-verified edges
that we create is (c− 1)n− o(n).
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We analyze in more detail the merging process in terms of mono- and dichromatic
components. Let predictk be the random variable denoting the probability that, after k steps
of A, a node from the larger part of a component is of the majority color. It is rather difficult
to calculate predictk exactly, so we will use a crude upper bound instead. An important
property of the upper bound will be that it is nondecreasing in k. When A compares two
balls x ∈ Ci and y ∈ Cj with i 6= j to obtain a new component C = A ·∪B there are three
possible cases:
1. Ci and Cj are monochromatic. Then with probability 1

2 the new component C is also
monochromatic, and with probability 1

2 it is dichromatic.
2. Ci is dichromatic and Cj is monochromatic. The new component is dichromatic. With

probability 1
2 we have a new non-verified edge, and with probability at least 1

2 (1−predictk)
we have a new non-verified majority edge.

3. Ci and Cj are dichromatic. Then with probability 1
2 we create a new non-verified edge

inside both A and B, and one of them is a majority edge.

We analyze the expected total cost of all non-verified edges when only one component
remains. When A reports a majority up to n2/3 components might remain, but this changes
only the lower order terms of the bound.

I Lemma 13. The expected total cost of all non-verified edges when only one component
remains is at least

∑2n/3
k=1 E

[
min

( 1
6 ,

1
2 (1− predictk)

)]
.

Proof. We start with n components and need to eliminate all but at most one of them. To
each component we associate credit, 1

2 to each dichromatic and 1
6 to each monochromatic

one. The algorithm can collect the credit from both of the components it merges, but it has
to pay for credit of newly created one. Additionally algorithm has to pay for any non-verified
majority edge created by merging.

In every step we have three possibilities:
1. Merge two monochromatic components into one. With probability 1

2 the new component
is dichromatic, and with probability 1

2 the new component is monochromatic. Thus the
expected amortized cost for this step is 0.

2. Merge a monochromatic components with a dichromatic component. Then the total
number of monochromatic components decreases by 1 and we add with probability at
least 1

2 (1− predictk) a non-verified majority edge. The expected amortized cost for this
step is 1

2 (1− predictk)− 1
6 .

3. Merge two dichromatic components while adding with probability 1
2 a non-verified majority

edge. The expected amortized cost for this step is 0.
In total algorithm has to pay for initial credits and for each step, making the total expected
cost at least

n

6 +
n−1∑
k=1

E
[
min

(
0, 1

2 (1− predictk)− 1
6
)]
≥

2/3n∑
k=1

E
[
min

( 1
6 ,

1
2 (1− predictk)

)]
. J

We note that by truncating the sum at 2
3n we do not lose any cost estimation, as for k ≥ 2

3n

our estimation for predictk gives 1.
Now we focus deriving an upper bound for the expression obtained in Lemma 13. To

bound predictk we use an approach due to Christofides [5]. At any given step k we will look at
all components with a nonzero balance. Specifically, we introduce two new random variables:
Mk being the largest balance of a component, and Nk being the number of components with
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a nonzero balance. Since at each step, Nk is decreased in expectation at most by 3
2 , we have

E[Nk] ≥ n− 3
2 (k − 1), and w.v.h.p., by Chernoff bound Nk ≥ n− 3

2k −O(
√
k logn).

Since by Lemma 10 the expected sum of balances is n, and each nonzero component
contributes at least 1 to the sum, we have E[Mk] ≤ n− E[Nk − 1] = 3

2k −
1
2 .

Now to proceed, for a component Ci = Ai ·∪ Bi we define δi = ||Ai| − |Bi||, a positive
value such that δ2

i = balance(Ci). Thus, at any given step k, the algorithm observes the
nonzero values δ1, δ2, . . . , δNk

. Without loss of generality we can narrow our focus on a
component C1. We are interested in bounding the probability

Pr(A1 in majority) = Pr(δ1+ε2δ2 . . .+εNk
δNk
≥ 0) = 1

2 + 1
2 Pr(ε2δ2 . . .+εNk

δNk
∈ [−δ1, δ1]),

where ε2, ε3, . . . , εNk
∈ {−1, 1} are drawn independently and uniformly at random. By a

result of Erdős [10], if δ2, . . . , δNk
≥ 1 then the above is maximized for δ2 = . . . = δNk

= 1.
We now approximate binomial distribution using the symmetric case of de Moivre–Laplace

Theorem. Recall that

Φ(x) = 1√
2π

∫ x

−∞
e−t

2/2 dt

is the cumulative distribution function of the normal distribution.

I Theorem 14 (De Moivre–Laplace). Let Sn be the number of successes in n independent
coin flips. Then

Pr
(n

2 + x1
√
n ≤ Sn ≤

n

2 + x2
√
n
)
∼ Φ(2x2)− Φ(2x1).

In our case we are interested in Nk − 1 coin flips and the number of successes in the range
[(Nk − 1)/2 − δ1/2, (Nk − 1)/2 + δ1/2]. Thus probability that 1 is the majority can be
bounded from above by

Pr(A1 is the majority) ≤ 1
2

(
Φ
(

δ1√
Nk − 1

)
− Φ

(
− δ1√

Nk − 1

))
+ 1

2 = Φ
(

δ1√
Nk − 1

)
.

Because Mk is the largest balance of a component, δ1, δ2, . . . , δNk
are bounded from above

by
√
Mk. Additionally, w.v.h.p. Nk ≥ n− 3

2k −O(
√
n logn), thus

predictk ≤ Φ
(√

Mk

n− 3
2k −O(

√
n logn)

)
.

Since Φ(
√
x/const) is a concave function, we can apply expected value, and get

E[predictk] ≤ Φ
(√

E[Mk]
n− 3

2k −O(
√
n logn)

)
∼ Φ

(√
3
2k

n− 3
2k

)
.

Now we are ready to bound the sum from Lemma 13. Using the linearity of expectation
and inequality min( 1

6 ,
1
2x) ≥ 1

6x for x ∈ [0, 1] we obtain:

E

2n/3∑
k=1

min
(

1
6 ,

1
2(1− predictk)

) =
2n/3∑
k=1

E
[

min
(

1
6 ,

1
2(1− predictk)

)]
≥

≥
2n/3∑
k=1

1
6(1− E[predictk]) ≥ n ·

∫ 2/3

0

1
6

(
1− Φ

(√
3
2x

1− 3
2x

))
dx− o(n).
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Finally, we calculate

1 +
∫ 2/3

0

1
6

(
1− Φ

(√
3
2x

1− 3
2x

))
dx ≈ 1.0191289.

I Theorem 15. Any algorithm that reports majority exactly requires in expectation at least
1.019n comparisons.
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