
Deterministic Sub-Linear Space LCE Data
Structures With Efficient Construction∗

Yuka Tanimura1, Tomohiro I2, Hideo Bannai3, Shunsuke Inenaga4,
Simon J. Puglisi5, and Masayuki Takeda6

1 Department of Informatics, Kyushu University, Japan
yuka.tanimura@inf.kyushu-u.ac.jp

2 Kyushu Institute of Technology, Japan
tomohiro@ai.kyutech.ac.jp

3 Department of Informatics, Kyushu University, Japan
bannai@inf.kyushu-u.ac.jp

4 Department of Informatics, Kyushu University, Japan
inenaga@inf.kyushu-u.ac.jp

5 Department of Computer Science, University of Helsinki, Finland
puglisi@cs.helsinki.fi

6 Department of Informatics, Kyushu University, Japan
takeda@inf.kyushu-u.ac.jp

Abstract
Given a string S of n symbols, a longest common extension query LCE(i, j) asks for the length
of the longest common prefix of the ith and jth suffixes of S. LCE queries have several import-
ant applications in string processing, perhaps most notably to suffix sorting. Recently, Bille et
al. (J. Discrete Algorithms 25:42–50, 2014, Proc. CPM 2015:65–76) described several data struc-
tures for answering LCE queries that offers a trade-off between data structure size and query time.
In particular, for a parameter 1 ≤ τ ≤ n, their best deterministic solution is a data structure of
size O(nτ) which allows LCE queries to be answered in O(τ) time. However, the construction time
for all deterministic versions of their data structure is quadratic in n. In this paper, we propose a
deterministic solution that achieves a similar space-time trade-off of O(τ min{log τ, log n

τ }) query
time using O(nτ) space, but we significantly improve the construction time to O(nτ).

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases longest common extension, longest common prefix, sparse suffix array

Digital Object Identifier 10.4230/LIPIcs.CPM.2016.1

1 Introduction

Given a string S of n symbols, a longest common extension query LCE(i, j) asks for the
length of the longest common prefix of the ith and jth suffixes of S.

The ability to efficiently answer LCE queries allows optimal solutions to many string
processing problems. Gusfield’s book [4], for example, lists several applications of LCEs to
basic pattern matching and discovery problems, including: pattern matching with wildcards,
mismatches and errors; the detection of various types of palindromes (maximal, complimented,
separated, approximate); and the detection of repetitions and approximate repetitions.

∗ HB, SI, MT were supported by JSPS KAKENHI Grant Numbers 25280086, 26280003, 25240003.

© Yuka Tanimura, Tomohiro I, Hideo Bannai, Shunsuke Inenaga, Simon J. Puglisi,
and Masayuki Takeda;
licensed under Creative Commons License CC-BY

27th Annual Symposium on Combinatorial Pattern Matching (CPM 2016).
Editors: Roberto Grossi and Moshe Lewenstein; Article No. 1; pp. 1:1–1:10

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CPM.2016.1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

1:2 Deterministic Sub-Linear Space LCE Data Structures With Efficient Construction

Table 1 Deterministic solutions to LCE.

Data Structure Preprocessing Trade-off range Reference
Space Query Space Time

1 n 1 1 - naïve computation
n 1 n n - suffix array + RMQ
n
τ

τ2 n
τ

n2

τ
1 ≤ τ ≤

√
n [3]

n
τ

τ log2 n
τ

n
τ

n2 1 ≤ τ ≤ n [2], Section 2
n
τ

τ n
τ

n2+ε 1 ≤ τ ≤ n [2], Section 4
n
τ

τ log2 n
τ

n
τ

nτ + n log n
τ

1 ≤ τ ≤ n This work, Theorem 9
n
τ

τ log τ n
τ

nτ 1 ≤ τ ≤ n
logn This work, Theorem 10

n
τ

τ min{log τ, log n
τ
} n

τ
nτ 1 ≤ τ ≤ n This work, Corollary 12

Lempel-Ziv parsing [6] and suffix sorting [7, 5] are two more fundamental string processing
problems to which LCEs are key.

Without preprocessing, answering an arbitrary query LCE(i, j) requires O(n) time: we
simply compare the suffixes starting at positions i and j character by character until we find
a mismatch. To answer queries faster we could build the suffix tree and preprocess it for
lowest-common-ancestor queries. This well-known solution answers queries in O(1) time and
the data structure is of O(n) size and takes O(n) time to construct.

In recent years, motivated by scenarios where O(n) space is prohibitive, several authors
have sought data structures that achieve a trade-off between data structure size and query
time [13, 3, 2]. The best trade-off to date is due to Bille et al. [2], where they describe a data
structure of size O(n/τ) which allow LCE queries to be answered in O(τ) time.

However, as described in [2], their deterministic data structure requires O(n2) time to
construct if only O(n/τ) working space is allowed. This is a major drawback, because it does
not allow the space-query time trade-off to be passed on to applications—indeed, construction
of the data structure would become a time bottleneck in all the applications listed above.
We note that Bille et al. [2] also proposed randomized solutions which achieve the same
space-query time trade-off with subquadratic preprocessing time. In this paper, we focus on
determinstic solutions.

The main contributions of this article are as follows:

1. We describe a new data structure for LCEs that has size O(nτ), query time O(τ log τ),
and, critically, can be constructed in O(nτ) time.

2. We show how to combine the new data structure with one of Bille et al. to derive a
structure that has O(τ min{log τ, log n

τ }) query time and the same space and construction
bounds as the new structure. As a side result, we also show how this particular structure
of Bille et al. can be constructed efficiently.

Table 1 summarizes our results and previous work on the deterministic version of the problem.
In the next section we lay down notation and some basic algorithmic and data structural

tools. Then, in Section 3, we introduce our new LCE data structures, beginning with a a
slightly modified version of one of Bille et al.’s data structures, followed by the new and
combined data structures. Section 4 deals with efficient construction. We finish, in Section 5,
by noting that our new structures lead directly to improved (deterministic) bounds for the
sparse suffix sorting problem.

Y. Tanimura, T. I, H. Bannai, S. Inenaga, S. J. Puglisi, and M. Takeda 1:3

2 Preliminaries

Let Σ = {1, . . . , σ} denote the alphabet, and Σ∗ the set of strings. If w = xyz for some
strings w, x, y, z, then x, y, and z are respectively called a prefix, substring, and suffix of w.
For any string w, let |w| denote the length of w, and for any 0 ≤ i < |w|, let w[i] denote the
ith character of w, i.e., w = w[0] · · ·w[|w| − 1]. For convenience, let w[i] = 0 when i ≥ |w|.
For any 0 ≤ i ≤ j, let w[i..j] = w[i] · · ·w[j], and for any 0 ≤ i < |w|, let w[i..] = w[i..|w| − 1].
We denote x ≺ y if a string x is lexicographically smaller than a string y.

For any string w, let lcpw(i, j) denote the length of the longest common prefix of w[i..]
and w[j..]. We will write lcp(i, j) when w is clear from the context. Since lcpw(i, i) = |w| − i,
we will only consider the case when i 6= j. Note that answering an LCE query LCE(i, j) is
equivalent to computing lcpw(i, j).

For any integers i ≤ j, let [i..j] denote the set of integers from i to j (including i and j),
and for 0 ≤ p < τ , let [i..j]τp = {k | k ∈ [i..j], k mod τ = p}.

For any string w of length n and 0 ≤ p < τ , let ŵτ,p denote a string of length d(|w| − p)/τe
over the alphabet {1, . . . , στ} such that ŵτ,p[i] = w[p + τi..p + τ(i + 1) − 1] for any i ≥ 0.
We call ŵτ,p the meta-string of w wrt. sampling rate τ and offset p, and each character of
ŵτ,p is called a meta-character.

In the rest of the paper, we assume a polynomially bounded integer alphabet, i.e., for
some constant c ≥ 0, σ = O(nc) for any input string w of length n.

I Definition 1 ([12]). The suffix array SAw of a string w of length n is an array of size n
containing a permutation of [0..n− 1] that represents the lexicographic order of the suffixes
of w, i.e., w[SAw[0]..] ≺ · · · ≺ w[SAw[n− 1]..]. The inverse suffix array ISAw is an array of
size n such that ISAw[SAw[i]] = i for all 0 ≤ i < n. The LCP array LCPw of a string w of
length n is an array of size n such that LCPw[0] = 0 and LCPw[i] = lcpw(SAw[i− 1], SAw[i])
for 0 < i < n.

I Lemma 2 ([9, 10, 11, 7]). For any string w of length n, the arrays SAw, ISAw, LCPw can
be computed in O(n) time and space.

For any array A and 0 ≤ i ≤ j < |A|, let rmqA(i, j) denote a Range Minimum Query
(RMQ), i.e., rmqA(i, j) = arg mink∈[i..j]{A[k]}. It is well known that A can be preprocessed in
linear time and space so that rmqA(i, j), for any 0 ≤ i ≤ j < |A|, can be answered in constant
time [1]. Since lcpw(i, j) = LCPw[rmqLCPw(i′ + 1, j′)] where i′ = min{ISAw(i), ISAw(j)} and
j′ = max{ISAw(i), ISAw(j)}, it follows that a string of length n can be preprocessed in O(n)
time and space so that for any 0 ≤ i, j < n, lcpw(i, j) can be computed in O(1) time.

Our algorithm relies on sparse suffix arrays. For a string w of length n and any set P ⊆
[0..n−1] of positions, let SSAP [0..|P |−1] be an array consisting of entries of SA that are in P ,
i.e., for any 0 ≤ i < |P |, SSAP [i] ∈ P , and w[SSAP [0]..] ≺ · · · ≺ w[SSAP [|P |−1]..]. The sparse
LCP array SLCPP [0..|P | − 1] is defined analogously, SLCPP [i] = lcpw(SSAP [i− 1], SSAP [i]).

Let 1 ≤ τ ≤ n be a parameter called the sampling rate. When, P = [0..n− 1]τp , for some
0 ≤ p < τ ≤ n, SSAP is called the evenly space sparse suffix array with sampling rate τ and
offset p. Given an evenly spaced sparse suffix array SSAP , we can compute in O(nτ) time,
a representation of the sparse inverse suffix array ISAP as an array X of size O(nτ) where
X[bSSAP [i]/τc] = i, i.e., ISAP [i] = X[bi/τc] for all i ∈ P . By directly applying the algorithm
of Kasai et al. [9], SLCPP can be computed from SSAP and (the representation of) ISAP in
O(n) time and O(nτ) space.

CPM 2016

1:4 Deterministic Sub-Linear Space LCE Data Structures With Efficient Construction

3 Data structure and query computation

Our algorithms are based on the same observation as used in [2].

I Observation 3 ([2]). For any positions i, j, k ∈ [0..n − 1] if lcp(j, k) ≥ lcp(i, j) then,
lcp(i, j) = min{lcp(i, k), lcp(j, k)}.

The observation allows us to reduce the computation of lcp values between a pair of
positions, to the computation of lcp values between another pair of values, both from a
specific subset of positions. For each specific position i, called a sampled position, and for
each such subset S, a position π(i, S) = arg maxi′∈S{lcp(i, i′)} is precomputed. The idea is
that the size of S gets smaller after each reduction, therefore giving a bound on the query
time.

I Corollary 4. For any pair of positions i ∈ S ⊆ [0..n − 1] and j ∈ [0..n − 1], lcp(i, j) =
min{lcp(i, π(j, S)), lcp(j, π(j, S))}.

3.1 Bille et al.’s data structure
We first introduce a slightly modified version of the deterministic data structure by Bille et
al. [2] that uses O(nτ) space and allows queries in O(τ log2 n

τ) time, where τ is a parameter
in the range 1 ≤ τ ≤ n. We note that the modifications do not affect the asymptotic
complexities.

Let t = τ
⌈
log n

τ

⌉
, p = (n− 1) mod t and let P = [0..n− 1]tp be the set of positions called

sampled positions. The data structure of [2] to compute lcp(i, j) for any 0 ≤ i < j < n

consists of two main parts, one for when j − i ≥ t, and the other for when j − i < t. Since
we will use the latter part as is, we will only describe the former. The query time, space,
and preprocessing time of the latter part are respectively, O(τ log n

τ), O(nτ), and O(n) (see
Section 2 of [2]).

Consider a full binary tree where the root corresponds to the interval [0..n− 1], and for
any node, the left and right children split their parent interval almost evenly, but assuring
that the right-most position in the left child is a sampled position. Thus, there will be dn/te
leaves corresponding to intervals of size t (except perhaps for the leftmost interval which may
be smaller), and the height of the tree is O(log n

t). For any internal node v in the tree, let Iv
denote its corresponding interval, and `(v), r(v) respectively the left and right children of v.
For all sampled positions i ∈ Ir(v) ∩ P, a position π(i, I`(v)) = arg maxi′∈I`(v){lcp(i, i′)} and
a value L(i, I`(v)) = lcp(i, π(i, I`(v))) are computed and stored. The size of the data structure
is therefore O(nt log n

t) = O(nτ).
Assume w.l.o.g. that j > i. A query for lcp(i, j) with j − i ≥ t is computed as follows.

First, compare up to δ < t characters of w[i..] and w[j..] until we encounter a mismatch,
in which case we obtain an answer, or j + δ is a sampled position. Let Iv be the interval
such that i + δ ∈ I`(v) and j + δ ∈ Ir(v). From the preprocessing, we obtain a position
π(j + δ, I`(v)) ∈ I`(v), which, from Corollary 4, satisfies:

lcp(i, j) = δ + lcp(i+ δ, j + δ)
= δ + min{lcp(i+ δ, π(j + δ, I`(v))), lcp(j + δ, π(j + δ, I`(v)))}
= δ + min{lcp(i+ δ, π(j + δ, I`(v))), L(j + δ, I`(v))}

Thus, the problem can be reduced to computing lcp(i + δ, π(j + δ, I`(v))), where both
i + δ, π(j + δ, I`(v)) ∈ I`(v), and we apply the algorithm recursively. Note that if j ∈ Ir(v)
we have, from the definition of the intervals, that j + δ ∈ Ir(v), so each recursion takes us

Y. Tanimura, T. I, H. Bannai, S. Inenaga, S. J. Puglisi, and M. Takeda 1:5

1! 2! 3! 4! 5! 6! 7! 8! 9! 10! 11! 12! 13! 14! 15! 16! 17! 18! 19! 20! 21! 22! 23! 24!

S
3!

S
3! S

3!
S
1!S

1!S
1!S

2!
S
2!

S
2!

!!!!!!

t!

Figure 1 Sets Sk, with k = 1, 2, 3, for the sampled positions specified by black dots.

further down the tree. When an interval corresponding to a leaf node is reached, we have
that j − i < t and use the other data structure (for a description of which we refer the
reader to [2]). Since we compare up to t characters at each level, the total query time is
O(t log n

t) = O(τ log2 n
τ).

3.2 New data structure
Let t = τ dlog τe, p = (n− 1) mod t, and let P = [0..n− 1]tp be the set of sampled positions.
Instead of considering a hierarchy of intervals of positions, we classify the positions according
to their distance to the closest sampled position to their right. Define Sk = {i | (i+d) mod t =
p, d ∈ ([2k−1..2k − 1] ∩ [1..t− 1])} for k = 1, . . . , dlog te (see also Figure 1).

The preprocessing computes and stores for each sampled position i ∈ P and each Sk,
a position π(i, Sk) = arg maxi′∈Sk{lcp(i, i′)}, and a value L(i, Sk) = lcp(i, π(i, Sk)). Also,
SLCPP is computed and preprocessed for range minimum queries so that for any i, j ∈ P,
lcp(i, j) can be computed in constant time. Thus, the space required for the data structure
is O(nt log t) = O(nτ).

A value lcp(i, j) is computed as follows. First, compare up to δ characters of w[i..] and
w[j..] until we encounter a mismatch, in which case we obtain an answer, or, either i+δ or j+δ
is a sampled position. If both i+δ and j+δ are sampled positions, lcp(i, j) = δ+lcp(i+δ, j+δ)
can be answered in constant time. Assume w.l.o.g. that only j + δ is a sampled position,
and let k be such that i+ δ ∈ Sk. Then, from Corollary 4 and the preprocessing, we have

lcp(i, j) = δ + lcp(i+ δ, j + δ)
= δ + min{lcp(i+ δ, π(j + δ, Sk)), lcp(j + δ, π(j + δ, Sk))}
= δ + min{lcp(i+ δ, π(j + δ, Sk)), L(j + δ, Sk)}

and the problem has been reduced to computing lcp(i+ δ, π(j+ δ, Sk)) where both i+ δ, π(j+
δ, Sk) ∈ Sk, and the processes are repeated. Notice that in the next step, at least 2k−1

characters are compared until one of the two positions becomes a sampled position. This
implies that the remaining distance to the closest sampled position of the other position will
be at most 2k−1 − 1, and thus the position will be in Sk′ for some k′ ≤ k − 1. Therefore,
the process will only be repeated at most dlog te times. Because the number of characters
compared in each step is bounded by t and is at least halved every step, the total number of
character comparisons, and thus the query time, is O(t) = O(τ log τ).

3.3 Combining the structures
We can combine the structures described in Sections 3.1 and 3.2, to achieve O(τ log n

τ) query
time using O(nτ) space for 1 ≤ τ ≤ n. Furthermore, we can achieve O(τ min{log τ, log n

τ })
query time by choosing the better structure depending on τ . More precisely, when τ ≤ n

τ

(i.e., τ ≤
√
n), we simply use the structure of Section 3.2, and when τ ≥ n

τ (i.e., τ ≥
√
n),

we use the combined structure. Thus, we assume below that τ ≥ n
τ .

CPM 2016

1:6 Deterministic Sub-Linear Space LCE Data Structures With Efficient Construction

Let t = τ
⌈
log n

τ

⌉
, p = (n − 1) mod t and let P = [0..n − 1]tp be the set of positions

called sampled positions. We consider both the structures described in Section 3.1 and
Section 3.2, with the following modifications. Let dt = 2dlog te−dlog n

t e = O(t
2

n). For Bille
et al.’s data structure, we make two modifications. First, for each node Iv and sampled
position i ∈ Ir(v) ∩ P, we only consider points that are at most dt from the closest sampled
position to the right, i.e., instead of π(i, I`(v)) and L(i, I`(v)), we compute and store a
position π(i, I`(v) ∩ D) = arg maxi′∈I`(v)∩D{lcp(i, i′)} and a value L(i, I`(v) ∩ D), where
D = {i′ | (i′ + d) mod t = p, 0 ≤ d < dt}. In addition to this, we compute and store for all
sampled position i ∈ I`(v) ∩ P, a position π(i, Ir(v) ∩D) = arg maxi′∈Ir(v)∩D{lcp(i, i′)} and
L(i, Ir(v) ∩D) = lcp(i, π(i, Ir(v) ∩D)). This will only double the total size of the structure
and thus the space usage remains O(nτ). For the new data structure, we keep the definitions
of π(i, Sk) and L(i, Sk), but store these values only for k = dlog te −

⌈
log n

t

⌉
, . . . , dlog te.

Thus, although the value of t has changed, the total size of the data structure is still
O(nt log n

t) = O(nτ).
Queries lcp(i, j) are answered as follows: First use the new data structure recursively

using the original algorithm until the problem is reduced to a query between a sampled
position and another position not in any Sk (k ∈ [dlog te −

⌈
log n

t

⌉
.. dlog te]). This means

that the distance from either of the query positions to the closest sampled position is at
most dt. The total number of character comparisons conducted is O(t) = O(τ log n

τ). Then,
we switch to Bille et al.’s structure using the original algorithm with the exception that we
continue until either i+δ or j+δ (instead of just j+δ) is a sampled position when comparing
up to δ characters of w[i..] and w[j..]. Since the distance to the closest sampling position is at
most O(t

2

n) and by definition of π(i, I`(v)∩D) and π(i, Ir(v)∩D), we have that this condition
holds for all following recursive calls. Thus, at most O(t

2

n) character comparisons will be
conducted at each level, for a total of O(t

2

n log n
t) = O(t(nt)−1 log n

t) = O(t) = O(τ log n
τ).

4 Building the structures

Bille et al. [2] describe a preprocessing that runs in O(n2) time1 and O(nτ) space. Here, we
show that this can be reduced to O(τn + n log n

τ) time using the same space. While the
algorithm of [2] builds the sparse suffix array containing only the suffixes starting at sampled
positions and applies pattern matching, our trick is to build a sparse suffix array and sparse
LCP array that includes other suffixes as well, in several (namely τ) rounds, so that the
suffixes with maximum LCP with respect to each sampled position can be found by scans of
the suffix array.

For integer alphabets, sparse suffix arrays and sparse LCP arrays can be constructed in
O(n) time if O(n) space is allowed, simply by first building the (normal) suffix array and
LCP array and removing the unwanted elements. For constant size alphabets, the evenly
spaced sparse suffix array and sparse LCP array with sampling rate τ can be constructed in
O(n) time and O(nτ) space [8]. However, when the alphabet size σ is not constant, this is
O(n log σ) time and O(nτ) space, since the computation is based on character comparisons.
(Notice that simple application of linear time algorithms for computing the suffix array for

1 However, we believe the analysis in Section 2.5 of [2] is not entirely correct; although the size of |I| is
halved at each level, their numbers double, and so the time complexity should be O(n · n+ n · (n/2) ·
2 · · ·+ n · (n/t) · t) = O(n2 log n

t) time. Also, they assume that the evenly spaced sparse suffix array
can be constructed in O(n) time and O(nτ) space for the integer alphabet. However, the paper they cite
assumes a constant size alphabet and to the best of our knowledge, we do not know of an algorithm
achieving such space-time trade-off.

Y. Tanimura, T. I, H. Bannai, S. Inenaga, S. J. Puglisi, and M. Takeda 1:7

the meta string will not achieve O(n) time and O(nτ) space, since the use of radix sort implies
Ω(σ) space for the buckets.) Repeated τ times, this results in O(nτ log σ) time using O(nτ)
space.

We first describe a technique to compute the sparse suffix array and the corresponding LCP
array that contains two sets of evenly spaced suffixes, namely for offsets p and q, and to repeat
this τ times, namely for offsets p = (n− 1) mod τ and q = (n− 1) mod τ, . . . , (n− τ) mod τ ,
so that the total time for their construction is O(nτ) time using O(nτ) space. Then, we
describe the construction of the data structures of Section 3 using this technique.

4.1 Common tools
For any string (or meta-string) w and 0 ≤ i < |w|, let CAw denote an array containing a
permutation of [0..|w| − 1] such that w[CAw[i]] ≤ w[CAw[j]] for any 0 ≤ i < j < |w|, i.e.,
CAw is an array of positions sorted according to the character at each position. (Note that
CAw is not necessarily unique.)

I Lemma 5. For any string w and 0 ≤ p < τ , CAŵτ,p can be computed in O(n log τ) time
using O(nτ) space.

Proof. Since each character of w can be represented in O(logn) bits, the length of each
meta-character of ŵτ,p is O(τ logn) bits. We simply use LSD radix sort with a bucket size of
n
τ , i.e., we bucket sort using log(n/τ) bits at a time. Thus, O(τ logn

log(n/τ)) rounds of bucket sort
is conducted on n

τ items, resulting in O(n logn
log(n/τ)) = O(n(log τ+log(n/τ))

log(n/τ)) = O(n log τ) time
giving the result. J

I Lemma 6. For any string w and 0 ≤ p < τ , CAŵτ,p can be computed from CAŵτ,p′ , where
p′ = (p+ 1) mod τ , in O(nτ log τ) time and O(nτ) space.

Proof. We simply continue the LSD radix sort, and do an extra O(logn
log(n/τ)) rounds of bucket

sort for the preceding character of each meta-character, which results in O(nτ ·
logn

log(n/τ)) =
O(nτ ·

log τ+log(n/τ)
log(n/τ)) = O(nτ log τ) time. J

I Lemma 7. For any string w, 0 ≤ p, q < τ , let P = [0..n− 1]τp and Q = [0..n− 1]τq . Given
CAŵτ,p and CAŵτ,q , SSAP∪Q and SLCPP∪Q can be computed in O(n) time using O(nτ) space.

Proof. We first compute CAw′ for meta-string w′ = ŵτ,p0ŵτ,q. This can be done in O(n) time
and O(nτ) space by merging CAŵτ,p and CAŵτ,q , (and adding |ŵτ,p0| to entries in CAŵτ,q) since
each comparison of meta characters can be done in O(τ) time. Using CAw′ , we then rename
the characters of w′ and create a string w∗ such that w∗[i] = |{w′[j] | w′[j] < w′[i], 0 ≤ j <
|w′|}|+ 1, in O(n) time and O(nτ) space. Since w∗ consists of integers bounded by its length,
we can apply any linear-time suffix sorting algorithm and compute SAw∗ and LCPw∗ in O(nτ)
time and space. As the lexicographic order of suffixes of w∗ (except for SSAw∗ [0] = |ŵτ,p|)
corresponds to the lexicographic order of suffixes of w that start at positions in P ∪Q, we
can obtain SSAP∪Q from SAw∗ by appropriately translating the indices. More precisely, for
1 ≤ i < |w′|, let SSAw∗ [i] = j. If 0 ≤ j < |ŵτ,p|, then SSAP∪Q[i− 1] = jτ + p, and otherwise
(if |ŵτ,p0| ≤ j < |w′|), then SSAP∪Q[i− 1] = (j−|ŵτ,p0|)τ + q. We can also obtain SLCPP∪Q
from LCPw∗ by multiplying a factor of τ and doing up to τ character comparisons per pair
of adjacent suffixes in the suffix array, in a total of O(n) time. J

I Corollary 8. For any string w, let p = n mod τ . The arrays SSAP∪Q and SLCPP∪Q
can be computed successively for each q = p, (p − 1) mod τ, . . . , (p − τ + 1) mod τ , where
P = [0..n− 1]τp and Q = [0..n− 1]τq , in O(nτ) time using O(nτ) space.

CPM 2016

1:8 Deterministic Sub-Linear Space LCE Data Structures With Efficient Construction

Proof. For p = q, we first compute CAŵτ,p = CAŵτ,q using Lemma 5. By applying Lemma 6,
we can successively compute CAŵτ,q for q = (p − 1) mod τ, . . . , (p − τ + 1) mod τ . Thus,
with Lemma 7, we can successively compute SSAP∪Q and SLCPP∪Q in O(nτ) total time and
O(nτ) space. J

4.2 Faster construction of Bille et al.’s data structure
We show that Bille et al.’s data structure can be constructed in O(nτ + n log n

τ) time using
O(nτ) space. Let p = (n− 1) mod τ . Using Corollary 8, we successively compute SSAP∪Q
and SLCPP∪Q for each q = p, (p − 1) mod τ, . . . , (p − τ + 1) mod τ , where P = [0..n − 1]τp
and Q = [0..n− 1]τq . This can be done in a total of O(nτ) time, and O(nτ) space. Recall that
t = τ

⌈
log n

τ

⌉
, and P = [0..n− 1]tp′ , where p′ = (n− 1) mod t. Since t is a multiple of τ , we

have P ⊆ P .
For each q we do the following: SLCPP∪Q is preprocessed in O(nτ) time and space to

answer RMQ in constant time, thus allowing us to compute lcp(i, j) for any i, j ∈ P ∪Q in
constant time. For any interval Iv ⊆ [0..n− 1] corresponding to a node in the binary tree let
Iqv = Iv ∩ (P ∪Q). Note that for Iroot = [0..n− 1], SSAIqroot

= SSAP∪Q. Now, for any node Iv,
assume that SSAIqv is already computed. By simple linear time scans on SSAIqv , we can obtain,
for each sampled position i = SSAIqv [x] ∈ Iqr(v) ∩ P, the two suffixes SSAIqv [j−],SSAIqv [j+] ∈
Iq`(v)∩Q which are lexicographically closest to i, i.e., j− = max{j < x | SSAIqv [j] ∈ Iq`(v)∩Q},
j+ = min{j > x | SSAIqv [j] ∈ Iq`(v) ∩Q}, if they exist. Then, the larger of lcp(i,SSAIqv [j−])
and lcp(i, SSAIqv [j+]) gives π(i, Iq`(v) ∩Q) = arg maxi′∈Iq

`(v)∩Q
{lcp(i, i′)} and L(i, Iq`(v) ∩Q) =

lcp(i, π(i, Iq`(v) ∩Q)). Since i, SSAIqv [j+], SSAIqv [j−] ∈ P ∪Q, these values can be computed
in constant time, which is O(|Iqv |) total time for all sampled positions i ∈ Iqr(v) ∩ P. Next,
for the child intervals, SSAIq

`(v)
and SSAIq

r(v)
can be computed in O(|Iqv |) time by a simple

scan on SSAIqv , and the computation is performed recursively for each child. Since the union
of Iqv ∩Q over all q is Iv, we have π(i, I`(v)) = π(i, I q̂`(v)) and L(i, I`(v)) = L(i, I q̂`(v)), where
q̂ = arg max0≤q′<τ{lcp(i, π(i, Iq

′

`(v) ∩Q))}, so we can obtain π(i, I`(v)) and L(i, I`(v)) for each
sampled position i and interval Iv by repeating the above process for each q.

Since the processing at each node is linear in the size of the arrays whose total size at a
given level is O(nτ), the total time for the recursion is O(nτ log n

τ) for each q. Thus in total,
the preprocessing can be done in O(nτ + n log n

τ) time.

I Theorem 9. For any string of length n and integer 1 ≤ τ ≤ n, a data structure of size O(nτ)
can be constructed in O(nτ + n log n

τ) time using O(nτ) space, such that for any 0 ≤ i, j < n,
lcp(i, j) can be answered in O(τ log2 n

r) time.

4.3 Fast construction of new data structure
Let p = (n− 1) mod τ . Using Corollary 8, we successively compute SSAP∪Q and SLCPP∪Q
for each q = p, (p−1) mod τ, . . . , (p−τ +1) mod τ , where P = [0..n−1]τp and Q = [0..n−1]τq .
This can be done in a total of O(nτ) time, and O(nτ) space. Recall that t = τ dlog τe, and
P = [0..n− 1]tp′ , where p′ = (n− 1) mod t. Since t is a multiple of τ , we have P ⊆ P .

For each q we do the following: SLCPP∪Q is preprocessed in O(nτ) time and space to
answer RMQ in constant time, thus allowing us to compute lcp(i, j) for i, j ∈ P∪Q in constant
time. Let Sqk = Sk ∩Q for any 1 ≤ k ≤ dlog te. Next, we conduct for each k = 1, . . . , dlog te,
linear time scans on SSAP∪Q so that for each sampled position i = SSAP∪Q[x] ∈ P , the two
suffixes SSAP∪Q[j−],SSAP∪Q[j+] ∈ Sqk which are lexicographically closest to i, i.e., j− =
max{j < x | SSAP∪Q[j] ∈ Sqk}, j+ = min{j > x | SSAP∪Q[j] ∈ Sqk}, if they exist. Then, the

Y. Tanimura, T. I, H. Bannai, S. Inenaga, S. J. Puglisi, and M. Takeda 1:9

larger of lcp(i, SSAP∪Q[j−]) and lcp(i,SSAP∪Q[j+]) gives π(i, Sqk) = arg maxi′∈Sq
k
{lcp(i, i′)}.

Since i, SSAP∪Q[j+], SSAP∪Q[j−] ∈ P ∪Q, these values can be computed in constant time,
resulting in a total of O(nτ log τ) time for all i and k. Since the union of Sqk over all q is Sk, we
have π(i, Sk) = π(i, S q̂k) and L(i, Sk) = L(i, S q̂k), where q̂ = arg max0≤q′<τ{lcp(i, π(i, Sq

′

k))},
so we can obtain π(i, Sk) and L(i, Sk) for each sampled position i and Sk by repeating the
above process for each q, taking O(n log τ) time. Thus, the total time for preprocessing,
dominated by Corollary 8, is O(nτ).

I Theorem 10. For any string of length n and integer 1 ≤ τ ≤ n
logn , a data structure of

size O(nτ) can be constructed in O(nτ) time using O(nτ) space, such that for any 0 ≤ i, j < n,
lcp(i, j) can be answered in O(τ log τ) time.

4.4 Fast construction of combined data structure

The construction of the combined data structure is done using the same algorithms as
described in Sections 4.2 and 4.3, with only minor modifications. For Bille et al.’s data
structure, we only need to consider in addition to sampled positions, the positions in
D = {i′ | (i′ + d) mod t = p, 0 ≤ d < dt} due to the modification introduced for the
combination. This reduces the array sizes (and thus the computation time) needed for the
computation of π(i, I`(v)) and π(i, Ir(v)) (and L(i, I`(v)) and L(i, Ir(v))) to O(nt + n

t ·
t2

n ·
1
τ) =

O(nt + t
τ) = O(n

τ log n
τ

+ log n
τ) for a total of O(nτ + log2 n

τ) = O(nτ) for all levels, and for all
q, we get O(n) time. Thus, the total time for preprocessing is now dominated by Corollary 8,
and is O(nτ).

I Theorem 11. For any string of length n and integer 1 ≤ τ ≤ n, a data structure of size
O(nτ) can be constructed in O(nτ) time using O(nτ) space, such that for any 0 ≤ i, j < n,
lcp(i, j) can be answered in O(τ log n

τ) time.

As noted previously, since τ ≤ n
τ when τ ≤

√
n, and τ ≥ n

τ when τ ≥
√
n, we get the

following by simply choosing the data structure of Theorems 10 and 11, depending on the
value of τ .

I Corollary 12. For any string of length n and integer 1 ≤ τ ≤ n, a data structure of size
O(nτ) can be constructed in O(nτ) time using O(nτ) space, such that for any 0 ≤ i, j < n,
lcp(i, j) can be answered in O(τ min{log τ, log n

τ }) time.

5 Applications

Using the proposed data structure, the lexicographic order between two arbitrary suffixes can
be computed in O(τ min{log τ, log n

τ }) time using O(nτ) space. Thus, using any O(n logn)
comparison based sorting algorithm, we can compute the suffix array of a string of length
n in O(min{log τ, log n

τ }nτ logn) time using O(nτ) working space, excluding the input and
output. The best known deterministic space/time trade-off is O(nτ2) time (for 1 ≤ τ ≤ 4

√
n)

using the same space [7], and our algorithm is better when τ = Ω(log1+ε n) for any ε > 0.

Acknowledgements. The authors thank the anonymous reviewers for careful reading of
the paper and for helpful comments.

CPM 2016

1:10 Deterministic Sub-Linear Space LCE Data Structures With Efficient Construction

References
1 Michael A. Bender and Martin Farach-Colton. The LCA problem revisited. In Proc.

Latin’00, pages 88–94, 2000.
2 Philip Bille, Inge Li Gørtz, Mathias Bæk Tejs Knudsen, Moshe Lewenstein, and

Hjalte Wedel Vildhøj. Longest common extensions in sublinear space. In Proc. CPM
2015, pages 65–76, 2015.

3 Philip Bille, Inge Li Gørtz, Benjamin Sach, and Hjalte Wedel Vildhøj. Time-space trade-offs
for longest common extensions. J. Discrete Algorithms, 25:42–50, 2014.

4 Dan Gusfield. Algorithms on Strings, Trees, and Sequences. Cambridge University Press,
1997.

5 Juha Kärkkäinen. Fast BWT in small space by blockwise suffix sorting. Theor. Comput.
Sci., 387(3):249–257, 2007.

6 Juha Kärkkäinen, Dominik Kempa, and Simon J. Puglisi. Linear time Lempel-Ziv factor-
ization: Simple, fast, small. In Proc. CPM’13, volume 7922 of Lecture Notes in Computer
Science, pages 189–200. Springer, 2013.

7 Juha Kärkkäinen, Peter Sanders, and Stefan Burkhardt. Linear work suffix array construc-
tion. J. ACM, 53(6):918–936, 2006.

8 Juha Kärkkäinen and Esko Ukkonen. Sparse suffix trees. In Proc. COCOON’96, pages
219–230, 1996.

9 Toru Kasai, Gunho Lee, Hiroki Arimura, Setsuo Arikawa, and Kunsoo Park. Linear-time
longest-common-prefix computation in suffix arrays and its applications. In Proc. CPM’01,
pages 181–192, 2001.

10 Dong Kyue Kim, Jeong Seop Sim, Heejin Park, and Kunsoo Park. Linear-time construction
of suffix arrays. In Proc. CPM’03, pages 186–199, 2003.

11 Pang Ko and Srinivas Aluru. Space efficient linear time construction of suffix arrays. In
Proc. CPM’03, pages 200–210, 2003.

12 Udi Manber and Gene Myers. Suffix arrays: A new method for on-line string searches.
SIAM J. Comput., 22(5):935–948, 1993.

13 Simon J. Puglisi and Andrew Turpin. Space-time tradeoffs for longest-common-prefix array
computation. In Proc. ISAAC’08, volume 5369 of Lecture Notes in Computer Science, pages
124–135. Springer, 2008.

	Introduction
	Preliminaries
	Data structure and query computation
	Bille et al.'s data structure
	New data structure
	Combining the structures

	Building the structures
	Common tools
	Faster construction of Bille et al.'s data structure
	Fast construction of new data structure
	Fast construction of combined data structure

	Applications

