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Abstract
This paper presents a simple 7/2-approximation algorithm for the max duo-preservation
string mapping (MPSM) problem. This problem is complementary to the classical and well
studied min common string partition problem (MCSP), that computes the minimal edit
distance between two strings when the only operation allowed is to shift blocks of characters.
The algorithm improves on the previously best known 4-approximation algorithm by computing
a simple local optimum.
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1 Introduction

Within the field of stringology, string comparison is one of the central problems, as its
applications range from data compression to bioinformatics. There are various ways to
measure the similarity of two strings, however the most common measure is the so called edit
distance that counts the minimum number of edit operations that must be performed in order
to transform one string into the other. In the specific field of biology, the edit-distance may
provide some measure of the kinship between different species based on the similarities of their
DNA, as each edit operation can be considered as a single mutation. In data compression, it
may help to store efficiently a set of similar yet different data (e.g., different versions of the
same object). Indeed, when a set of elements all have a short edit-distance towards a single
“base element”, an efficient way to compress the whole set of data might be to store only the
“base” element of the set, and then record all the other elements as series of edit operations.

Obviously, the concept of edit distance changes definition based on the set of edit
operations that are allowed. We tackle the classical case where the only edit operation that

© Nicolas Boria, Gianpiero Cabodi, Paolo Camurati, Marco Palena, Paolo Pasini, and Stefano Quer;
licensed under Creative Commons License CC-BY

27th Annual Symposium on Combinatorial Pattern Matching (CPM 2016).
Editors: Roberto Grossi and Moshe Lewenstein; Article No. 11; pp. 11:1–11:8

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CPM.2016.11
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


11:2 7/2-Approximation for MPSM

A B

a

c

b

d

b

a

c

a

c

b

c

a

b

d

Figure 1 A mapping π that preserves 2 duos.

is allowed is to shift a block of characters, that is, to change the order of the characters in
the string by modifying the position of some substring. In this case, the edit distance can be
measured by solving the min common string partition (MCPS).

The MCSP is a fundamental and widely studied problem in the field of string comparison,
which applications in the field of bioinformatics are described in [7, 13]. Given a string A
let PA denote a partition of A, that is, a set of substrings whose concatenation results in
A. Consider two strings A and B, both with n characters, such that B is a permutation
of A. The MCSP Problem introduced in [13] and [18] asks for two partitions PA of A and
PB of B of minimum cardinalities such that PA is a permutation of PB. The k−MCSP
denotes a natural restriction of the problem where each character of the alphabet has
at most k occurrences in each string. In [13], it is shown that this problem is NP-Hard
and even APX-Hard. This holds also when the number of occurrences of each character
is at most 2, and the result follows from a reduction to max independent set (note
that the problem is trivial when the maximal number of occurrences of each character is
at most one). Since its introduction in [13], the problem has been intensively studied in
various frameworks, such as polynomial approximation [7, 8, 9, 13, 15, 16] and parametric
computation [3, 4, 10, 14]. Regarding polynomial approximation, the best results known so
far are an O(logn log∗ n)-approximation algorithm for the general version of the problem
[9], and an O(k)-approximation for k−MCSP [16]. Regarding parametric computation, the
problem was proved to be Fixed Parameter Tractable (FPT), first with respect to both k
and the cardinality φ of an optimal partition [3, 10, 14], and more recently, with respect to
φ only [4].

In [6], the symmetrical (maximization) version of the problem is introduced and denoted
by max duo-preservation string mapping (MPSM). A duo is defined as a couple of
consecutive characters in a given string. It is clear that when a couple of partitions (PA,PB)
are a solution for a given instance of min common string partition that partition A

and B into φ substrings, this solution is equivalent to a mapping π from characters of A to
characters of B that preserves exactly n− φ duos. A duo is considered preserved when its
two consecutive characters are mapped to two consecutive characters in the other string.
Hence, given two strings A and B, the MPSM problem asks for a mapping π from A to B
that preserves a maximum number of duos. An example of mapping that preserves 2 duos is
provided in Figure 1.

Reminding that MCSP is NP-Hard [13], its maximization version MPSM is also NP-Hard.
However, it is likely that these two problems have different behaviours in terms of ap-
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proximation, inapproximability, and parameterized complexity. Among many others, max
independent set and min vertex cover provide a perfect example of two symmetrical
problems having different characteristics: on the one hand, min vertex cover is easily
2-approximable in polynomial time by taking all endpoints of a maximal matching [12], and
is FPT [5], while on the other hand max independent set is inapproximable within ratio
nε−1 for a given ε ∈ (0, 1) unless P = NP [17], and is W [1]-Hard [11].

In [6], some approximation results are presented for MPSM with the following method. A
graph problem called constrained maximum induced subgraph (CMIS) is defined and
proved to be a generalization of MPSM. Using a solution to the linear relaxation of CMIS,
it is then shown that a randomized rounding provides a k2 expected approximation ratio
for k-CMIS (and thus for k-MPSM), and a 2 expected approximation ratio for 2-CMIS (and
thus for 2-MPSM). In [2], these results were improved by introducing and analysing two
simple approximation algorithms: the first guarantees a 4-approximation ratio (regardless of
the value of k), while the second ensures an approximation ratio 8/5 when k = 2 and ratio 3
when k = 3. Moreover, the problem is shown to be APX-Hard. Very recently, the problem
was shown to be FPT with respect to the number of duos preserved [1].

In what follows, we present further improvements on the latter results, namely a polyno-
mial 7/2-approximation algorithm based on a local search technique. In Section 2, we present
briefly a graph generalization of MPSM called max consecutive bipartite matching.
Then, we describe our local search algorithm in Section 3 for which we provide complexity
analysis (Section 4) and bound on the approximation ratio (Section 5). We finally provide
some perspective for future works and possible further improvements on the approximation
guarantee in Section 6.

2 Graph translation of the Problem

We are interested in improving on the best known approximation algorithm for max duo-
preservation string mapping problem, that has approximation ratio 4. In [2], the problem
is shown to be a particular case of the following graph problem, which we denote as max
consecutive bipartite matching. Given a bipartite graph where vertices on both sides
are ordered : A = (a1, ..., an), B = (b1, ..., bn), the max consecutive bipartite matching
problem asks for the maximum matching M such that if (ai, bj) ∈M , then ai+1 can only be
matched to bj+1, and bj+1 can only be matched to ai+1. In other words, sets of matched
consecutive vertices on one side must be matched to consecutive vertices on the other side.

Let us recall briefly why max duo-preservation string mapping is a particular case
of max consecutive bipartite matching. Strings A and B of any instance of max
duo-preservation string mapping can be translated as ordered duo sets DA and DB

(for example, if A = “abc” and B = “bac”, then DA = ((ab), (bc)), and DB = ((ba), (ac))).
Consider the bipartite graph G(I) built in the following way (an example is provided in

Figure 2):
each vertex on the left-hand side represents a duo of the set DA, and each vertex on the
right-hand side represents a duo of DB .
edges exist between two vertices if and only if they represent the same duo (same couple
of characters in the same order)

It is shown in [2] that any feasible solutionM for max consecutive bipartite matching
in the graph G(I) yields a mapping π between strings A and B that preserves at least |M |
duos (and exactly |M | duos if M is inclusion-wise maximal).

CPM 2016
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Figure 2 Graph G(I) when I consists of A = “abcacba” and B = “bcabaca”.

Indeed, such a matching can be seen as a partial mapping, and the number of edges
in the matching is equal to the number of duos that the mapping preserves. The partial
mapping can then be completed in an arbitrary way, since the set of non-mapped characters
in A is a permutation of non-mapped vertices in B.

In the rest of the paper, we will refer only to the max consecutive bipartite matching
problem, bearing in mind that any approximation result that holds for max consecutive
bipartite matching also holds max duo-preservation string mapping.

We call two edges conflicting if they cannot be both part of the same solution, either
because they share a common endpoint or because their endpoints are consecutive on one
side of the graph but not on the other.

In the following, we present an algorithm that produces such a partial mapping based on
local search technique.

3 Local search algorithm

Local search algorithms produce solutions that are defined as local optima. A local optimum
of an optimization problem is a solution that is optimal (either maximal or minimal) within
a neighbouring set of candidate solutions. Starting from any feasible solution, the algorithm
searches an improving solution in the neighbouring set, and repeatedly moves to an improving
neighbouring solution as long as such a solution exists. When no improving neighbouring
solution can be found, then the current solution is by definition a local optimum.

The quality of the local optimum obviously depends on the definition of the neighbouring
set.

We devise a local search algorithm denoted LOCAL, which is based on a neighbourhood
structure N . Given a matching M that is a feasible solution for the problem, the neighbour-
hood of M , called N (M), contains all feasible solutions M ′ such that |M \M ′| ≤ 1 . In
other words M ′ must contain all edges of M apart from possibly one.

While searching for an improving solution in the neighbouring set, the algorithm LOCAL
will first try to improve the solution without removing any edge from the current solution
M . On the one hand, if M is not inclusion-wise maximal, then there is an edge that can be
added to the current solution M without having to remove any edge from it. If on the other
hand M is inclusion-wise maximal, then the algorithm scans every matching M \ {v} (for
each v ∈M) and checks if at least two edges can be added to one of these matchings. The
pseudocode of algorithm LOCAL is provided in Section 4.
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Algorithm 1 algorithm LOCAL
Input: G = (V,E)
Output: M
1: M = ∅,M ′ = ∅
2: if ∃v ∈ E then
3: M ′ ← {v}
4: end if
5: while M 6= M ′ do
6: M ′ ←M

7: for each v ∈ E do
8: if M ∪ {v} is feasible then
9: M ←M ∪ {v}
10: continue
11: end if
12: end for
13: for each v ∈M do
14: for each (u,w) ∈ E × E do
15: if M \ {v} ∪ {u,w} is feasible then
16: M ←M \ {v} ∪ {u,w}
17: break
18: end if
19: end for
20: end for
21: end while
22: return M

4 Complexity analysis

We prove that the algorithm runs indeed in polynomial time. First of all, even starting from
an empty solution, the algorithm will increment the value of its solution by at least one at
each step, so that it will conclude after at most |SOL| ≤ n steps.

At each step, the algorithm first scans all edges that are not in SOL and checks if one
of them does not conflict with any edge of SOL. This is done in O(n2) time. If such an
edge is found, the current step is finished. Otherwise, for each edge u of SOL, the algorithm
considers all sets of at most 6 non-solution edges conflicting with u, and checks if they can
be added to the matching SOL \ {u} without generating any conflict. This is done in O(n6)
time for each edge u of the current solution: each edge of the solution conflicts with O(n)
non-solution edges, so that there are O(n6) candidate combinations of at most 6 non-solution
edges to consider. Considering that, at each step, the current solution has O(n) edges, the
complexity of a single step is O(n7).

In all, the algorithm finishes after at most n steps, each step running in O(n7) time, so
that the overall complexity is O(n8).

The complexity of LOCAL can actually been brought down to O(n4) thanks to the following
observation. If an improvement incrementing the cardinality of the solution by at least one
can be made at some step (by removing an edge u of SOL and adding a set X of at least two
non conflicting edges to SOL), then an improvement incrementing this value by exactly one
is also possible (by removing the same edge u of SOL and adding exactly any couple of edges
of the set X). Thus, instead of scanning all sets of at most 6 non-solution edges conflicting

CPM 2016
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Figure 3 Conflicts among SOL and OPT edges.

with each edge u, it suffices that the algorithm scans only every couple of non-solution edges
conflicting with u. If no improving couple can be found, then no improvement of any kind
can be made, and the current solution is a local optimum.

5 Approximation analysis

We now prove that, indeed, LOCAL improves on the best known 4-approximate algorithm for
max consecutive bipartite matching:

I Theorem 1. The algorithm LOCAL yields a 3.5 approximation ratio for max consecutive
bipartite matching problem.

Consider that the algorithm LOCAL runs on an instance I of max consecutive bipartite
matching and outputs a solution SOL.

The proof is based on counting the conflicts between edges of SOL and edges of an
unknown optimal matching OPT. We denote such number of conflicts by C.

On the one hand, a single edge of SOL cannot be conflicting with more than 6 edges of
OPT (the worst case is shown in Figure 3). Indeed, on the one hand, any edge u can be in
conflict only with edges that share an endpoint with u, or that have an endpoint that is
consecutive to an endpoint of u (immediately after or immediately before), which results
in no more than 6 possible endpoints for edges conflicting with u (the two endpoints of u,
and the four consecutive vertices). On the other hand, any feasible solution including the
optimal one can pick at most one edge per vertex of the graph. This gives us the following
upper bound on the value of C:

C ≤ 6|SOL| . (1)

We recall that, by definition, there is no solution SOL′ in the neighbourhood N (SOL)
of SOL that has more edges than SOL. Hence, given any edge v of SOL the following fact
holds:



N. Boria, G. Cabodi, P. Camurati, M. Palena, P. Pasini, and S. Quer 11:7

I Fact 2. Let v be an edge of solution SOL generated by LOCAL, and OPT be an optimal
solution for the problem. There is at most one edge u of OPT that conflicts only with v in
SOL.

The fact is rather straightforward: suppose that there exist two edges u and t in a solution
OPT that both conflict with a single edge v in SOL. The solution SOL \ {v} ∪ {u, t} is an
admissible matching in the neighbourhood of SOL and it contains more edges. Hence, LOCAL
should have picked it instead of SOL.

Let us denote by k1 the number of edges in OPT that conflict with one edge of SOL only.
Fact 2 yields naturally the following bound:

k1 ≤ |SOL| . (2)

In OPT the remaining |OPT| − k1 edges conflict with at least 2 edges of SOL, which
gives us the following lower bound on the number of conflicts C:

C ≥ k1 + 2(|OPT| − k1) ≥ 2|OPT| − k1 ≥
(2)

2|OPT| − |SOL| . (3)

Combining equations (1) and (3), we can easily get the following bound on the approxim-
ation ratio of LOCAL, which concludes the proof:

OPT
SOL ≤

7
2 .

6 Conclusion and perspectives

We showed that a simple local optimization technique provides a better approximation
guarantee than the previously best known algorithm for MPSM. The analysis of more
complex local optimums that rely on broader (yet polynomial) definitions of neighbourhood
did not lead to immediate further improvements of the approximation guarantee. However,
there are strong hints that, in such optimums, the number of edges that conflict with 6
edges of a global optimum is somehow linked to the number of edges of the global optimum
conflicting with few edges of the local optimum. Namely, if many edges of the local optimum
conflict with 6 edges of the global optimum, then few edges of the global optimum are
expected to conflict few edges of the global optimum, resulting in a tighter version of equation
3, bounding for example the value C(t) where t is the number of edges of the local optimum
that conflict with 6 edges of the global optimum. Analysing such a bound might eventually
lead to further improvements on the approximation ratio.
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