
Factorizing a String into Squares in Linear Time
Yoshiaki Matsuoka1, Shunsuke Inenaga2, Hideo Bannai3,
Masayuki Takeda4, and Florin Manea5

1 Department of Informatics, Kyushu University, Japan
yoshiaki.matsuoka@inf.kyushu-u.ac.jp

2 Department of Informatics, Kyushu University, Japan
inenaga@inf.kyushu-u.ac.jp

3 Department of Informatics, Kyushu University, Japan
bannai@inf.kyushu-u.ac.jp

4 Department of Informatics, Kyushu University, Japa
takeda@inf.kyushu-u.ac.jp

5 Department of Computer Science, Kiel University, Germany
flm@informatik.uni-kiel.de

Abstract
A square factorization of a string w is a factorization of w in which each factor is a square.
Dumitran et al. [SPIRE 2015, pp. 54-66] showed how to find a square factorization of a given
string of length n in O(n logn) time, and they posed a question whether it can be done in O(n)
time. In this paper, we answer their question positively, showing an O(n)-time algorithm for
square factorization in the standard word RAM model with machine word size ω = Ω(logn). We
also show an O(n+ (n log2 n)/ω)-time (respectively, O(n logn)-time) algorithm to find a square
factorization which contains the maximum (respectively, minimum) number of squares.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Squares, Runs, Factorization of Strings

Digital Object Identifier 10.4230/LIPIcs.CPM.2016.27

1 Introduction

Factorization problems are one of the important topics in the study of string algorithms and
combinatorics on strings and their applications. Essentially, the task is to efficiently identify
a decomposition of a string into factors of a specific given form. For instance, we recall
here the various forms of Lempel-Ziv factorizations of a string [21, 22, 19, 20]; this class of
factorizations found many applications in data-compression but also in the efficient detection
of repetitive structures in strings [18, 14]. Similarly, the standard factorization of strings
(also called Lyndon factorization) [17, 8] found applications in data compression, in variants
of the Burrows-Wheeler transform [16]. Both these factorizations were defined in very simple
ways, starting from basic combinatorial concepts: repeats (or repeated occurrences of the
same factor) in a string, or lexicographically minimal factors of a string; they can be both
computed in linear time; see [5] and [8], respectively.

Some other factorizations of strings, whose factors are defined by well-studied combinat-
orial objects, were proposed and analyzed as well in the literature. Closer to the topic of this
paper, we recall here palindromic factorizations of a string (where we want to split that string
into an arbitrary number of non-trivial palindromic factors, or into a minimal or fixed number
of such factors), analyzed already in the seminal paper of Knuth, Morris, and Pratt [13],
as well as in a series of more recent papers in [9, 15, 2, 12]. In [1], Bakobeh et al. consider

© Yoshiaki Matsuoka, Hideo Bannai, Shunsuke Inenaga, Masayuki Takeda, and Florin Manea;
licensed under Creative Commons License CC-BY

27th Annual Symposium on Combinatorial Pattern Matching (CPM 2016).
Editors: Roberto Grossi and Moshe Lewenstein; Article No. 27; pp. 27:1–27:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CPM.2016.27
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

27:2 Factorizing a String into Squares in Linear Time

algorithms for computing closed substrings in strings; a string is closed if it contains proper
substring that occurs in it as a prefix and a suffix, but not elsewhere; more precisely, the
problem of greedily factorizing a string into a sequence of longest closed substrings is solved.
Even more relevant to our study, in [7] it was shown how factorizations into highly repetitive
factors (e.g., repetitions with an exponent greater than 2) can be efficiently computed.

On the other hand, the study of repetitive structures occurring in strings is also one
of the central topics in combinatorics on strings and stringology. Main and Lorentz [18]
proposed an algorithm that decides whether a string w of length n contains a square (i.e.,
two consecutive occurrences of some factor, called root) in O(n logn) time. Their result was
improved by Crochemore [4], who showed how to identify all the squares with a primitive root
of a string w in O(n logn) time. These results hold for general alphabets and are optimal
in a comparison-based model, but if we use the (realistic) RAM model with logarithmic
word size (see [11] and the references therein for a survey of relevant results and techniques
related to this model), and we are only interested in inputs over integer alphabets, we can
actually find all runs of a string in linear time [14, 3]. Thus, we can also construct a succinct
representation of all primitively rooted squares of a string within the same time complexity.

Following these two research directions, in [7], the task of deciding in linear time whether
a string can be split into squares was left as an open problem. In this paper we show that
a square factorization of a string can be indeed computed in linear time, using the RAM
model with logarithmic word size and working under the assumption that the string is
over an integer alphabet. We extend this result by proposing an efficient algorithm for the
computation of such square factorizations with a maximum or minimum number of factors.
Finally, we discuss several connected problems.

2 Preliminaries

Let Σ be an alphabet. An element of Σ∗ is called a string. The empty string ε is the string of
length 0. Let Σ+ be the set of non-empty strings, i.e., Σ+ = Σ∗ −{ε}. For any strings x and
y, we denote by x · y the concatenation of x and y. For a string w = x · y · z, x, y and z are
called a prefix, substring, and suffix of w, respectively. A prefix x of w is called a proper prefix
of w if x 6= w. The length of a string w is denoted by |w|. The i-th character of a string
w is denoted by w[i] for each 1 ≤ i ≤ |w|. For a string w and two integers 1 ≤ i ≤ j ≤ |w|,
let w[i..j] denote the substring of w that begins at position i and ends at position j. For
convenience, let w[i..j] = ε when i > j. For any integers i and j with i ≤ j, we denote
[i, j] = {i, i+ 1, . . . , j}.

For a string x and positive integer k, let x0 = ε, and xk = xk−1 · x. A string w is called
primitive if there does not exist a string x and an integer k ≥ 2 such that w = xk. For any
non-empty string x, a repetition x2 is called a square. A square x2 is called a primitively
rooted square if x is primitive.

A positive integer p is called a period of string w if w[i] = w[i+ p] for all 1 ≤ i ≤ |w| − p.
For a string w, a triplet (p, s, e) is called a run in w if p ≤ (e− s+ 1)/2, p is the smallest
period of w[s..e], s = 1 or w[s− 1] 6= w[s− 1 + p], and e = |w| or w[e+ 1] 6= w[e+ 1− p].

We call a sequence F = (f1, ..., fm) of m non-empty strings a square factorization of a
string w if fi is a square for each 1 ≤ i ≤ m and the concatenation f1 · · · fm is equal to w; the
integer m is called the size of the factorization. Also, we call F a largest square factorization
(resp. a smallest square factorization) of w if the size m is largest (resp. smallest) among all
square factorizations of w.

I Example 1. F1 = (abaababaab, bb, aa, bb, bb), F2 = (abaababaab, bb, aa, bbbb) and F3 =

Y. Matsuoka et al. 27:3

(abaaba, baabbbaabb, bb) are the square factorizations of a string w = abaababaabbbaabbbb.
F1 is the largest square factorization of w and F3 is the smallest one.

Notice that a string can have more than one largest square factorization and/or one
smallest square factorization. For instance, string w = aabaabaa has two largest square
factorizations: (aa, baabaa) and (aabaab, aa). Notice that they are also smallest square
factorizations of the string.

Let w be a string of length n over an alphabet Σ = [1, n]. Our model of computation
is a standard word RAM model of machine word size ω = Ω(logn), where the following
operations can be performed in O(1) time: Let X,Y be bit arrays of length m ≤ ω each, and
let k be a non-negative integer. We denote by X & Y , X | Y , and X ⊕ Y , the bitwise and,
bitwise or, and bitwise exclusive or of X and Y , respectively. We denote by ∼X the bitwise
negation of X. We denote by X � k the k-bit logical right shift of X. We can also see X as
an unsigned m-bit integer where the most (least) significant bit is X[1] (respectively, X[m]);
arithmetic operations on such integers take constant time.

3 Algorithms

3.1 A linear time algorithm for computing a square factorization
In this subsection we propose an O(n)-time algorithm for computing a square factorization of
a given string w of length n. Note that if a square factorization of w exists, then there clearly
exists a square factorization such that each factor is a primitively rooted square. Therefore
we only consider primitively rooted squares in w.

For any run λ = (p, s, e) in w, we denote ρ(λ) = p,SqBegRange(λ) = [s, e− 2p+ 1] and
SqEndRange(λ) = [s+2p, e+1]; namely, for any position k ∈ [1, |w|+1], k ∈ SqBegRange(λ) iff
w[k..k+2ρ(λ)−1] is a primitively rooted square, and k ∈ SqEndRange(λ) iff w[k−2ρ(λ)..k−1]
is a primitively rooted square. Also, we denote by R all runs in w.

I Lemma 2 ([3, 14]). |R| < n. Also, R can be computed in O(n) time.

I Lemma 3 ([6]). For any string v, the number of prefixes of v which are also primitively
rooted squares is O(log |v|).

I Corollary 4.
∑
λ∈R |SqBegRange(λ)| =

∑
λ∈R |SqEndRange(λ)| = O(n logn).

Proof. Clearly, both
∑
λ∈R |SqBegRange(λ)| and

∑
λ∈R |SqEndRange(λ)| are equal to the

number of primitively rooted squares in w. By Lemma 3, the number of primitively rooted
squares beginning at each position of w is O(logn). Thus we obtain

∑
λ∈R |SqBegRange(λ)| =∑

λ∈R |SqEndRange(λ)| = O(n logn). J

Let C be a bit array of length n+ 1 such that C[i] = 1 iff w[i..n] can be factorized into
squares. For convenience, let C[i] = 0 if i < 1 or i > n+ 1. Algorithm 1 is a simple solution
by dynamic programming, which is essentially equivalent to the approach of [7].

Let τ be some integer parameter such that 1 ≤ τ ≤ ω. We split C into blocks of length τ .
For each 1 ≤ j ≤ d(n+ 1)/τe, we call C[(j − 1)τ + 1..jτ] as the j-th block of C.

Let SPRτ = {λ ∈ R | 2ρ(λ) < τ} and LPRτ = {λ ∈ R | 2ρ(λ) ≥ τ}. We call each element
of SPRτ and LPRτ a short period run and a long period run, respectively. Also, for each
position i, we denote Sτ,i = {λSP ∈ SPRτ | i ∈ SqEndRange(λSP)}.

For each 1 ≤ j ≤ d(n+ 1)/τe, letBτ,j = {λLP∈LPRτ | [(j−1)τ+1, jτ]∩SqBegRange(λLP)
6= ∅} and Eτ,j = {λLP ∈ LPRτ | [(j − 1)τ + 1, jτ] ∩ SqEndRange(λLP) 6= ∅}. Also, for each

CPM 2016

27:4 Factorizing a String into Squares in Linear Time

Algorithm 1: A simple algorithm for determining whether w can be factorized into
squares.

Input: String w of length n.
1 Compute R;
2 C[1..n]← 0;
3 C[n+ 1]← 1;
4 for i = n+ 1 down to 1 do
5 if C[i] = 1 then
6 foreach λ ∈ R such that i ∈ SqEndRange(λ) do
7 C[i− 2ρ(λ)]← 1;

i ∈ [1, n+ 1], let Pτ,i be a bit array of length τ −1 such that for each k ∈ [1, τ −1], Pτ,i[k] = 1
iff there exists λSP ∈ Sτ,i such that τ − 2ρ(λSP) = k.

I Lemma 5. For any positive τ ,
∑d(n+1)/τe
j=1 |Bτ,j | = O(n+ n

τ logn) and
∑d(n+1)/τe
j=1 |Eτ,j | =

O(n+ n
τ logn).

Proof. For each λ ∈ LPRτ , let xτ,λ be the number of integers j such that [(j − 1)τ +
1, jτ] ∩ SqBegRange(λ) 6= ∅, and yτ,λ be the number of integers j′ such that [(j′ − 1)τ +
1, j′τ] ⊆ SqBegRange(λ). Clearly, xτ,λ ≤ 2 + yτ,λ and τyτ,λ ≤ |SqBegRange(λ)| for each
λ ∈ LPRτ . We obtain

∑d(n+1)/τe
j=1 |Bτ,j | =

∑
λ∈LPRτ

xτ,λ ≤
∑
λ∈LPRτ

(2 + yτ,λ) = 2|LPRτ |+∑
λ∈LPRτ

yτ,λ ≤ 2|LPRτ |+ (
∑
λ∈LPRτ

|SqBegRange(λ)|)/τ = O(n+ n
τ logn). We can obtain∑d(n+1)/τe

j=1 |Eτ,j | = O(n+ n
τ logn) similarly. J

I Lemma 6. For any parameter τ with 1 ≤ τ ≤ ω, all bit arrays Pτ,1, . . . , Pτ,n+1 can be
computed in O(n) time.

Proof. Initially let Pτ,i ← 0 for all 1 ≤ i ≤ n+ 1. Also, for simplicity, we regard Pτ,n+2 = 0.
Then, for each λSP ∈ SPRτ , flip Pτ,s[τ − 2ρ(λSP)] and Pτ,e+1[τ − 2ρ(λSP)] where [s, e] =
SqEndRange(λSP). Finally, let Pτ,i ← Pτ,i ⊕ Pτ,i−1 for i = 2 to n + 1, which can be done
in O(1) time for each operation since τ ≤ ω. This algorithm takes O(n+ |SPRτ |) = O(n)
time. Its correctness follows from the fact that for two different runs λ1 and λ2 in w, if
ρ(λ1) = ρ(λ2), then SqEndRange(λ1) and SqEndRange(λ2) do not overlap. J

In our algorithm, we process the blocks of C in descending order, from the d(n+ 1)/τe-th
block to the first block of C. Suppose that we are going to process the j-th block of C. Here
we assume that Algorithm 1 has already computed C[jτ + 1..n+ 1] correctly.

First, we handle short period runs. We process each i ∈ [(j − 1)τ + 1, jτ] in descending
order. We assume that we have already computed C[i..n+ 1] correctly. In Algorithm 1, if
C[i] = 1, then we perform C[i− 2ρ(λSP)]← 1 for each λSP ∈ Sτ,i. We can confirm that by
the definition of Pτ,i, it is equivalent to performing C[i−τ +1..i−1]← C[i−τ +1..i−1] |Pτ,i.
Thus we can update the short period runs in O(1) time for each position i.

After processing these short period runs, it is guaranteed that C[(j − 1)τ + 1..n + 1]
is computed correctly. Next, we handle each long period run λLP ∈ Eτ,j . Let s, e be
integers such that [s + 2ρ(λLP), e + 2ρ(λLP)] = [(j − 1)τ + 1, jτ] ∩ SqEndRange(λLP). In
Algorithm 1, we perform C[s + k] ← C[s + k] | C[s + k + 2ρ(λLP)] for each k ∈ [0, e − s].
Note that from the definition of long period runs, we obtain e < s + τ ≤ s + 2ρ(λLP),
which means that [s, e] and [s+ 2ρ(λLP), e+ 2ρ(λLP)] do not overlap. Thus the operation

Y. Matsuoka et al. 27:5

Algorithm 2: An O(n + n
τ logn)-time algorithm of determining whether w can be

factorized into squares.
Input: String w of length n, and a parameter τ with 1 ≤ τ ≤ ω.

1 Compute SPRτ and LPRτ ;
2 Compute Eτ,1, . . . , Eτ,d(n+1)/τe from LPRτ ;
3 Compute Pτ,1, . . . , Pτ,n+1 from SPRτ ;
4 C[1..n]← 0; C[n+ 1]← 1;
5 for j = d(n+ 1)/τe down to 1 do
6 for i = min{jτ, n+ 1} down to (j − 1)τ + 1 do
7 if C[i] = 1 then
8 C[i− τ + 1..i− 1]← C[i− τ + 1..i− 1] | Pτ,i;

9 foreach λLP ∈ Eτ,j do
10 Let s, e be integers such that

[s+ 2ρ(λLP), e+ 2ρ(λLP)] = [(j − 1)τ + 1, jτ] ∩ SqEndRange(λLP);
11 C[s..e]← C[s..e] | C[s+ 2ρ(λLP)..e+ 2ρ(λLP)];

C[s + k] ← C[s + k] | C[s + k + 2ρ(λLP)] for each k can be done in parallel. Hence we
perform C[s..e] ← C[s..e] | C[s + 2ρ(λLP)..e + 2ρ(λLP)], which can be done in O(1) time
since |[s, e]| ≤ τ ≤ ω. Therefore it takes O(|Eτ,j |) time for long period runs in the j-th
block of C. By Lemma 5, the computation on long period runs for all blocks can be done in
O(n+ n

τ logn) time.
From above, we obtain Algorithm 2 and Lemma 7.

I Lemma 7. For any parameter 1 ≤ τ ≤ ω, Algorithm 2 determines whether w can be
factorized into squares in O(n+ n

τ logn) time.

Now we describe how to compute a square factorization of w. For a position i, we assume
that C[i] = 1, i.e., w[i..n] can be factorized into squares. First, we determine whether there
exists l ∈ [1, τ − 1] such that C[i+ l] = 1 and Pτ,i+l[τ − l] = 1. This means that there exists
some square factorization of w[i..n] whose first factor is w[i..i+ l − 1]. In this case, we can
spend O(l) time to find such l, if any.

Next, we consider the case where there is no l ∈ [1, τ − 1] s.t. C[i + l] = 1 and
Pτ,i+l[τ − l] = 1. Then, there exists no short period run λSP ∈ Sτ,i+l which satisfies
2ρ(λSP) = l and C[i + l] = 1 for any l. In such a case, from the fact that C[i] = 1,
there must exist some long period run λLP ∈ LPRτ such that i ∈ SqBegRange(λLP) and
C[i+2ρ(λLP)] = 1. We scan all long period runs in Bτ,di/τe and find such λLP in O(|Bτ,di/τe|)
time. Then, we use w[i..i+ 2ρ(λLP)− 1] in the square factorization of w[i..n]. From above,
we obtain Algorithm 3.

I Lemma 8. For any parameter 1 ≤ τ ≤ ω, Algorithm 3 computes a square factorization of
w in O(n+ n

τ logn) time if it exists.

Proof. We analyze the time complexity of Algorithm 3. For a position i with C[i] = 1, if
there exists any short period run λSP ∈ Bτ,i+l such that 2ρ(λSP) = l and C[i+ l] = 1 for any
l ≥ 1, we can compute l = 2ρ(λSP) by scanning Pτ,i+1[τ − 1], Pτ,i+2[τ − 2], . . . , Pτ,i+l[τ − l]
one by one. Note that if such l ∈ [1, τ − 1] exists, then i increases by l, and hence we can
afford to spend O(l) time to find such l. Otherwise, we compute l = 2ρ(λLP) for some
λLP ∈ LPRτ such that i ∈ SqBegRange(LPRτ) and C[i+ 2ρ(λLP)] = 1; it takes O(|Bτ,di/τe|)

CPM 2016

27:6 Factorizing a String into Squares in Linear Time

Algorithm 3: A linear-time algorithm of factorizing w into squares.
Input: String w of length n, and a parameter τ with 1 ≤ τ ≤ ω.
Output: A square factorization of w if it exists; otherwise nil.

1 Compute SPRτ and LPRτ ;
2 Compute Bτ,1, . . . , Bτ,d(n+1)/τe from LPRτ ;
3 Compute Pτ,1, . . . , Pτ,n+1, C by Algorithm 2;
4 if C[1] = 1 then
5 F ← ();
6 i← 1;
7 while i ≤ n do
8 l← 1;
9 while l < τ do

10 if C[i+ l] = 1 ∧ Pτ,i+l[τ − l] = 1 then
11 break;
12 l← l + 1;
13 if l ≥ τ then
14 Find any λLP ∈ Bτ,di/τe such that i ∈ SqBegRange(λLP) and

C[i+ 2ρ(λLP)] = 1;
/* It is guaranteed that such λLP exists. */

15 l← 2ρ(λLP);
16 Append w[i..i+ l − 1] to the end of F ;
17 i← i+ l;
18 return F ;
19 else return nil;

time. Then we use w[i..i + l − 1] for a square factorization of w[i..n] and increase i by l.
Note that in this case, i increases by at least τ . Hence we can afford to spend O(τ) time
before deciding to scan Bτ,di/τe. Moreover, for any 1 ≤ j ≤ d(n+ 1)/τe, Bτ,j is scanned at
most once. Therefore, using Lemma 5, we can show that Algorithm 3 takes O(n+ n

τ logn)
time. J

Optimally, we choose τ = ω. Since ω = Ω(logn), by Lemma 8, we obtain Theorem 9.

I Theorem 9. A square factorization of a string of length n can be computed in O(n) time,
if it exists.

3.2 An algorithm for computing a largest square factorization
In this subsection we propose an algorithm for computing a largest square factorization of w.
Note that any largest square factorization of w consists only of primitively rooted squares,
since otherwise there exist a larger square factorization of w.

Let τ be some integer parameter such that 1 ≤ τ ≤ ω/(blognc+ 1). As with Section 3.1,
we define C,SPRτ ,LPRτ , Sτ,i for each position i ∈ [1, n + 1], and Bτ,j and Eτ,j for each
j ∈ [1, d(n+ 1)/τe].

For each position i of string w, let us denote by T [i] the size of largest square factorization
of w[i..n] if it exists; otherwise T [i] = 0. Algorithm 4 is a simple algorithm which computes
the size of a largest square factorization of each suffix of w in O(n logn) time.

Y. Matsuoka et al. 27:7

Algorithm 4: A simple algorithm for computing the size of largest square factorization
of each suffix of w.

Input: String w of length n.
1 Compute R;
2 C[1..n]← 0; C[n+ 1]← 1;
3 T [i]← 0 for each i ∈ [1, n+ 1];
4 for i = n+ 1 down to 1 do
5 if C[i] = 1 then
6 foreach λ ∈ R such that i ∈ SqEndRange(λ) do
7 C[i− 2ρ(λ)]← 1;
8 T [i− 2ρ(λ)]← max{T [i− 2ρ(λ)], T [i] + 1};

Let b = blognc. For each position i ∈ [1, n+1], let P ′τ,i be a bit array of length (τ−1)(b+1)
such that for each k ∈ [1, (τ − 1)(b + 1)], P ′τ,i[k] = 1 iff there exists λSP ∈ Sτ,i such that
(τ − 2ρ(λSP))(b+ 1) = k. We remark that P ′τ,1, . . . , P ′τ,n+1 can be computed in O(n) time in
a similar way to Lemma 6. Also, let U be an array of bit arrays. For each 1 ≤ i ≤ n+ 1, let
U [i] be a bit array of length b+ 1 such that U [i][1] = C[i], and U [i][2..b+ 1] is the binary
representation of T [i]. Note that T [i] can be represented as an unsigned b-bit integer since
T [i] ≤ n/2. For convenience, we regard U [i] = 0 if i < 1 or i > n+ 1. In addition, for two
integers s, e with s ≤ e, we denote by U [s..e] the concatenation U [s] · U [s+ 1] · · ·U [e], which
we also regard as an unsigned ((b+ 1)(e− s+ 1))-bit integer where the most significant bit is
U [s][1] and the least significant bit is U [e][b+ 1]. To obtain a largest square factorization
quickly, we compute U instead of T and C.

For each 1 ≤ j ≤ d(n+ 1)/τe, we call U [(j − 1)τ + 1..jτ] the j-th block of U . As with
Algorithm 2, we process the blocks of U in descending order, from the d(n+ 1)/τe-th block
to the first block of U . Suppose that we are going to process the j-th block of U . Here we
assume that our algorithm has already computed U [jτ + 1..n+ 1] correctly.

See Algorithm 5 for computing a largest square factorization, where M serves as a
fixed-length (τ(b+ 1)) bit array to specify the runs to be processed at once (Lines 7-8).

First, we handle short period runs. We process each i ∈ [(j−1)τ+1, jτ] in descending order.
We assume that we have already computed U [i..n+1] correctly. As with Algorithm 4, if C[i] =
1, then we perform C[i− 2ρ(λSP)]← 1 and T [i− 2ρ(λSP)]← max{T [i− 2ρ(λSP)], T [i] + 1}
for each λSP ∈ Sτ,i. In other words, if U [i][1] = 1, then we perform U [i−2ρ(λSP)][1]← 1 and
U [i− 2ρ(λSP)][2..b+ 1]← max{U [i− 2ρ(λSP)][2..b+ 1], U [i][2..b+ 1] + 1} for each λSP ∈ Sτ,i.
It is equivalent to performing U [i− 2ρ(λSP)]← max{U [i− 2ρ(λSP)], U [i] + 1} if U [i][1] = 1.
We process all short period runs in Sτ,i in parallel. Note that since 2ρ(λSP) < τ for any
λSP ∈ Sτ,i, we update U [i− τ + 1..i− 1] by taking U [i] and Sτ,i into consideration. We show
the method in Lines 12–17 of Algorithm 5, where M ′ in Line 13 serves as a bit array of
length (τ − 1)(b+ 1). The fact that (τ − 1)(b+ 1) < ω implies that the operations in Lines
12–17 can be performed in constant time.

I Example 10. Here, we explain the situation with some i and λSP ∈ Sτ,i using a concrete
example. Let Y = (U [i] + 1)P ′τ,i where Y is a bit array of length (τ − 1)(b + 1). In this
example, we consider the case when b = 4, τ = 7, P ′τ,i = 00001 00000 00000 00000 00001 00000
in binary representation and U [i] = 10110 in binary representation, which means that C[i] = 1
and T [i] = 6. Then we obtain Y = 10111 00000 00000 00000 10111 00000. Intuitively, we
copy U [i] + 1 to the appropriate positions. After that, in order to update U [i − τ + k]

CPM 2016

27:8 Factorizing a String into Squares in Linear Time

with max{U [i− τ + k], U [i] + 1} for each k ∈ [1, τ − 1] with P ′τ,i[k(b+ 1)] = 1, we perform
U [i− τ + k]← max{U [i− τ + k], Y [(k − 1)(b+ 1) + 1..k(b+ 1)} for each k ∈ [1, τ − 1]. This
remaining part is almost same as Lines 23–26, which we will explain in Example 11.

After processing these short period runs, it is guaranteed that U [(j − 1)τ + 1..n+ 1] is
computed correctly. Next, we handle long period runs in Lines 19–26, where again M ′ serves
as a variable-length (up to τ(b+ 1)) bit array. Consider each long period run λLP ∈ Eτ,j . Let
s, e be integers such that [s+2ρ(λLP), e+2ρ(λLP)] = [(j−1)τ+1, jτ]∩SqEndRange(λLP). In
Algorithm 4, for each k ∈ [0, e−s], we perform C[s+k]← 1 and T [s+k]← max{T [s+k], T [s+
k+ 2ρ(λLP)] + 1} if C[s+k+ 2ρ(λLP)] = 1. Note that from the definition of long period runs,
we obtain e < s+ τ ≤ s+ 2ρ(λLP), which means that [s, e] and [s+ 2ρ(λLP), e+ 2ρ(λLP)] do
not overlap. Thus we process all k’s in parallel. We next analyze Lines 19–26 of Algorithm 5.
Since e− s+ 1 ≤ τ , we obtain (e− s+ 1)(b+ 1) ≤ τ(b+ 1) ≤ ω, which means that we can
perform Lines 19–26 in constant time.

I Example 11. Here, we explain the situation with some j and λLP ∈ Eτ,j using a concrete
example. Let s, e be integers such that [s + 2ρ(λLP), e + 2ρ(λLP)] = [(j − 1)τ + 1, jτ] ∩
SqEndRange(λLP). Also, let s′ = s + 2ρ(λLP) and e′ = e + 2ρ(λLP). In Lines 19–26, we
update U [s..e] by taking U [s′..e′] into consideration.
1. Let X = U [s..e] and Y = U [s′..e′]. In this example, we consider the case when b =

4, |[s, e]| = 5, X = 10010 00000 00000 00000 11010 in binary representation and Y =
10110 00000 11000 00000 10101 in binary representation, which means that C[s..e] =
(1, 0, 0, 0, 1), T [s..e] = (2, 0, 0, 0, 10), C[s′..e′] = (1, 0, 1, 0, 1) and T [s′..e′] = (6, 0, 8, 0, 5).
Also, let M ′ = 10000 10000 10000 10000 10000 in binary representation.

2. Let Y ′ = Y + ((Y & M ′)� b). Then we obtain Y ′ = 10111 00000 11001 00000 10110.
Intuitively, it represents T [s′ + k] + 1 for each k with C[s′ + k] = 1.

3. Let D = (Y ′ |M ′) − (X & ∼M ′). Then we obtain D = 10101 10000 11001 10000 01100.
Intuitively, it represents (T [s′ + k] + 1)− T [s+ k] for each k.

4. Let D′ = ((D &M ′)� b)(2b − 1). Then we obtain D′ = 01111 01111 01111 01111 00000.
Intuitively, it indicates all positions k such that T [s′ + k] + 1 ≥ T [s+ k].

5. Let Z = D & D′. Then we obtain Z = 00101 00000 01001 00000 00000. Intuitively, it
represents max{(T [s′ + k] + 1)− T [s+ k], 0} for each k.

6. Let Z ′ = Z + X. Then we obtain Z ′ = 10111 00000 01001 00000 11010. Intuitively, it
represents max{T [s′ + k] + 1, T [s+ k]} for each k.

7. Compute Z ′′ = Z ′ | (Y & M ′) to set C[s..e] appropriately. Then we obtain Z ′′ =
10111 00000 11001 00000 11010. Finally, we substitute Z ′′ for U [s..e]. Then we obtain
C[s..e] = (1, 0, 1, 0, 1) and T [s..e] = (7, 0, 9, 0, 10) as a result.

After computing U [1..n+1], we obtain a largest square factorization of w as in Algorithm 3.

I Lemma 12. Algorithm 5 computes a largest square factorization of w in O(n+ n
τ logn)

time for any parameter 1 ≤ τ ≤ ω/(blognc+ 1).

Proof. Clearly, Algorithm 5 requires O(n+
∑d(n+1)/τe
j=1 |Bτ,j |+

∑d(n+1)/τe
j=1 |Eτ,j |) time. There-

fore, from Lemma 5, Algorithm 5 runs in O(n+ n
τ logn) time in total. J

The optimal strategy is to choose τ = bω/(blognc+ 1)c. Thus, we obtain Theorem 13.

I Theorem 13. A largest square factorization of a string of length n can be computed in
O(n+ n

ω log2 n) time.

Y. Matsuoka et al. 27:9

Algorithm 5: An algorithm for computing a largest square factorization of w.
Input: String w of length n, and a parameter τ with 1 ≤ τ ≤ ω/(blognc+ 1).
Output: A largest square factorization of w if it exists; otherwise nil.

1 Compute SPRτ and LPRτ ;
2 Compute Bτ,1, . . . , Bτ,d(n+1)/τe, Eτ,1, . . . , Eτ,d(n+1)/τe from LPRτ ;
3 Compute P ′τ,1, . . . , P ′τ,n+1 from SPRτ ;
4 U [i][1..b+ 1]← 0 for each i ∈ [1, n+ 1];
5 U [n+ 1][1]← 1; /* equivalent to C[n+ 1]← 1 */
6 b← blognc;
7 M [1..τ(b+ 1)]← 0 where M is a bit array of length τ(b+ 1);
8 M [k(b+ 1)− b]← 1 for each k ∈ [1, τ];
9 for j = d(n+ 1)/τe down to 1 do

10 for i = min{jτ, n+ 1} down to (j − 1)τ + 1 do
11 if U [i][1] = 1 then
12 Y ← (U [i] + 1)P ′τ,i where Y is a bit array of length (τ − 1)(b+ 1);
13 M ′ ←M [1..(τ − 1)(b+ 1)];
14 X ← U [i− τ + 1..i− 1];
15 D ← (Y |M ′)− (X &∼M ′);
16 D′ ← ((D &M ′)� b)(2b − 1);
17 U [i− τ + 1..i− 1]← ((D′ &D) +X) | (Y &M ′);

18 foreach λLP ∈ Eτ,j do
19 Let s, e be integers such that

[s+ 2ρ(λLP), e+ 2ρ(λLP)] = [(j − 1)τ + 1, jτ] ∩ SqEndRange(λLP);
20 M ′ ←M [1..(e− s+ 1)(b+ 1)];
21 Y ← U [s+ 2ρ(λLP)..e+ 2ρ(λLP)];
22 Y ′ ← Y + ((Y &M ′)� b);
23 X ← U [s..e];
24 D ← (Y ′ |M ′)− (X &∼M ′);
25 D′ ← ((D &M ′)� b)(2b − 1);
26 U [s..e]← ((D′ &D) +X) | (Y &M ′);

27 if U [1][1] = 1 then /* equivalent to C[1] = 1 */
28 F ← ();
29 i← 1;
30 while i ≤ n do
31 l← 1;
32 while l < τ do
33 if U [i+ l] + 1 = U [i] ∧ P ′τ,i+l[(τ − l)(b+ 1)] = 1 then break;
34 l← l + 1;
35 if l ≥ τ then
36 Find any λLP ∈ Bτ,di/τe such that i ∈ SqBegRange(λLP) and

U [i+ 2ρ(λLP)] + 1 = U [i];
37 l← 2ρ(λLP);
38 Append w[i..i+ l − 1] to the end of F ;
39 i← i+ l;
40 return F ;
41 else return nil;

CPM 2016

27:10 Factorizing a String into Squares in Linear Time

4 Other problems and further work

In this section we discuss several connected problems. The first such problem is that of
computing a smallest square factorization of a string (i.e., a square factorization with a
minimum number of factors). Unlike the factorizations produced as solutions to the previous
problems, in such a factorization the square factors we use are no longer necessarily primitively
rooted. Thus, it seems that a slightly different strategy might be needed to solve this problem.
Next, we propose an O(n logn) time algorithm for computing a smallest square factorization
of a string w of length n, over Σ = [1, n].

Following Lemma 3, let us assume that x2
1, . . . , x

2
k are all the primitively rooted squares

starting at position i of w, with |xj | < |xj+1| for 1 ≤ j ≤ k − 1. If there exists a position i′
of w where x2

h starts, for some h ≤ k, we have that the primitively rooted squares whose root
is shorter than x2

h starting at i′ are exactly x2
1, . . . , x

2
h−1, so x2

h is the h-th primitively rooted
square occurring at both positions i and i′, in the list of such squares ordered increasingly
w.r.t. their length.

Further, we can produce for each i ≤ n the list of all primitively rooted squares starting
at i in O(n logn) time; there are at most 2 logn such squares for each i. We define the
(n + 1) × (1 + 2 logn) matrix Q, where, for 1 ≤ i ≤ n and 1 ≤ j ≤ 2 logn we have that
Q[i][j] is the number of factors in a smallest square factorization of w[i..n], such that the
first square of this factorization is a power of the j-th primitively rooted square in the
list of primitively rooted squares starting at i, ordered increasingly w.r.t. their length (or
undefined, if there are less than j primitively rooted squares starting at i). Moreover,
Q[i][0] = min{Q[i][j] | 1 ≤ j ≤ 2 logn}, and Q[n+ 1][j] = 0 for all 0 ≤ j ≤ 2 logn.

The values stored in this matrix can be computed by dynamic programming. Assume we
are computing Q[i][j] with i ≤ n and 1 ≤ j ≤ 2 logn, and there are at least j primitively
rooted squares starting at position i of w; at this point in our computation we already know
all the values stored in the arrays Q[i′][·] for i′ > i. When x2

j occurs also at position i+ 2|xj |,
by the preliminary remark we made, we get that x2

j is the j-th primitively rooted square
in the list of such squares occurring at position i+ 2|xj |; so we can compute Q[i][j] as the
minimum between Q[i+ 2|xj |][0] + 1 and Q[i+ 2|xj |][j]. Indeed, either the first square in
the factorization of w[i..n] is x2

j , and then we continue with the smallest square factorization
of w[i + 2|xj |..n]; or the first square in the factorization of w[i..n] is x2k

j for some k > 1,
and the smallest square factorization of w[i+ 2|xj |..n] started with x2k−2

j . The case when
x2
j does not occur at i + 2|xj | is much simpler: we just set Q[i][j] as Q[i + 2|xj |][0] + 1.

Finally, after computing Q[i][j] for all 1 ≤ j ≤ 2 logn, we set Q[i][0] as their minimum.
Clearly, this process can be easily implemented in O(n logn) time, with the help of data
structures allowing us to test whether some primitively rooted square x2

j occurring at position
i also occurs at some other position i+ 2|xj |, like, e.g., the data structures SqBegRange and
SqEndRange.

The number of factors in a smallest square factorization of w can be now found in Q[1][0],
while this factorization can be effectively obtained by tracing back the computation of Q[1][0]
via dynamic programming. Thus, we have shown the following result.

I Theorem 14. A smallest square factorization of w can be obtained in O(n logn) time.

We conjecture that a more efficient implementation of the above solution can be obtained
using and extending the ideas in the previous section.

Two other open problems connected to square factorizations of strings are the following.
The first one is inspired by the work of [15]: given a string w and a number k decide whether
w has a square factorization with exactly k factors. The second one follows the line of

Y. Matsuoka et al. 27:11

research in [2]: given a string w decide whether there exists a square factorization of w whose
factors are each two distinct (i.e., a diverse square factorization of w). While we expect that
the first problem can be solved efficiently, we conjecture that the second one is NP-Complete.

The strategy employed in Section 3.1 seems to also lead to an improvement in deciding
whether a string w1, of length n, can be obtained from other string w2, of length m < n,
by iterated prefix-suffix duplication [10]. Prefix-suffix duplication is a string operation that
rewrites a string u = xwy into xu (prefix-duplication) or uy (suffix-duplication). Accordingly,
in the respective problem one asks whether there exists a sequence of prefix-suffix duplications
that can be applied to w1 so that in the end we get w2; state-of-the-art algorithms [10]
solved this problem in O(n2 logn) time or, alternatively, in O(n logn) time if we allow only
suffix-duplications or only prefix-duplications to be applied in order to obtain w1 from w2.
We conjecture that using the ideas of Section 3.1 we can shave a logn factor from both
of these complexities. For instance, if we consider the case of only suffix-duplications, we
basically have to decide the existence of a factorization of w into w = x0 · · ·xk such that
x0 = w1 and xi is a primitive string which is a suffix of x0 · · ·xi−1; in other words, xi
is a primitively rooted square centered at position |x0 · · ·xi−1| + 1. This problem greatly
resembles to the problem of factoring a string into squares and we conjecture that it can be
solved by the same methods, within the same linear time complexity.

References

1 Golnaz Badkobeh, Hideo Bannai, Keisuke Goto, Tomohiro I, Costas S. Iliopoulos, Shunsuke
Inenaga, Simon J. Puglisi, and Shiho Sugimoto. Closed factorization. In Proc. PSC 2014,
pages 162–168, 2014.

2 Hideo Bannai, Travis Gagie, Shunsuke Inenaga, Juha Kärkkäinen, Dominik Kempa, Marcin
Piatkowski, Simon J. Puglisi, and Shiho Sugimoto. Diverse palindromic factorization is np-
complete. In Proc. DLT 2015, volume 9168 of Lecture Notes in Comput. Sci., pages 85–96.
Springer, 2015.

3 Hideo Bannai, Tomohiro I, Shunsuke Inenaga, Yuto Nakashima, Masayuki Takeda, and
Kazuya Tsuruta. The “Runs” Theorem. CoRR, abs/1406.0263, 2014. URL: http://arxiv.
org/abs/1406.0263.

4 Maxime Crochemore. An optimal algorithm for computing the repetitions in a word. Inf.
Process. Lett., 12(5):244–250, 1981.

5 Maxime Crochemore, Lucian Ilie, and William F. Smyth. A simple algorithm for computing
the lempel ziv factorization. In Proc. DCC 2008, pages 482–488. IEEE, 2008.

6 Maxime Crochemore and Wojciech Rytter. Squares, cubes, and time-space efficient string
searching. Algorithmica, 13(5):405–425, 1995. doi:10.1007/BF01190846.

7 Marius Dumitran, Florin Manea, and Dirk Nowotka. On prefix/suffix-square free words. In
Proc. SPIRE 2015, volume 9309 of Lecture Notes in Comput. Sci., pages 54–66. Springer,
2015.

8 Jean-Pierre Duval. Factorizing words over an ordered alphabet. J. Algorithms, 4(4):363–
381, 1983. doi:10.1016/0196-6774(83)90017-2.

9 Gabriele Fici, Travis Gagie, Juha Kärkkäinen, and Dominik Kempa. A subquadratic al-
gorithm for minimum palindromic factorization. J. Discrete Algorithms, 28:41–48, 2014.

10 Jesús García-López, Florin Manea, and Victor Mitrana. Prefix-suffix duplication. J. Com-
put. Syst. Sci., 80(7):1254–1265, 2014. doi:10.1016/j.jcss.2014.02.011.

11 Torben Hagerup. Sorting and searching on the word RAM. In Proc. STACS 1998, volume
1373 of Lecture Notes in Comput. Sci., pages 366–398. Springer, 1998.

CPM 2016

http://arxiv.org/abs/1406.0263
http://arxiv.org/abs/1406.0263
http://dx.doi.org/10.1007/BF01190846
http://dx.doi.org/10.1016/0196-6774(83)90017-2
http://dx.doi.org/10.1016/j.jcss.2014.02.011

27:12 Factorizing a String into Squares in Linear Time

12 Tomohiro I, Shiho Sugimoto, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda.
Computing palindromic factorizations and palindromic covers on-line. In Proc. CPM 2014,,
volume 8486 of Lecture Notes in Comput. Sci., pages 150–161. Springer, 2014.

13 Donald E. Knuth, James H. Morris Jr., and Vaughan R. Pratt. Fast pattern matching in
strings. SIAM J. Comput., 6(2):323–350, 1977. doi:10.1137/0206024.

14 Roman Kolpakov and Gregory Kucherov. Finding maximal repetitions in a word in linear
time. In Proc. FOCS 1999, pages 596–604. IEEE, 1999.

15 Dmitry Kosolobov, Mikhail Rubinchik, and Arseny M. Shur. Palk is linear recognizable
online. In SOFSEM 2015, volume 8939 of Lecture Notes in Comput. Sci., pages 289–301.
Springer, 2015.

16 Manfred Kufleitner. On bijective variants of the Burrows-Wheeler transform. In Proc. PSC
2009, pages 65–79, 2009.

17 Roger C. Lyndon. On Burnside’s problem. Trans. Amer. Math. Soc., 77(2):202–215, 1954.
URL: http://www.jstor.org/stable/1990868.

18 Michael G. Main and Richard J. Lorentz. An O(n logn) algorithm for finding all repetitions
in a string. J. Algorithms, 5(3):422–432, 1984.

19 James A. Storer and Thomas G. Szymanski. Data compression via textural substitution.
J. ACM, 29(4):928–951, 1982. doi:10.1145/322344.322346.

20 Terry A. Welch. A technique for high-performance data compression. IEEE Computer,
17(6):8–19, 1984.

21 Jacob Ziv and Abraham Lempel. A universal algorithm for sequential data compression.
IEEE Trans. Information Theory, 23(3):337–343, 1977.

22 Jacob Ziv and Abraham Lempel. Compression of individual sequences via variable-rate
coding. IEEE Trans. Information Theory, 24(5):530–536, 1978.

http://dx.doi.org/10.1137/0206024
http://www.jstor.org/stable/1990868
http://dx.doi.org/10.1145/322344.322346

	Introduction
	Preliminaries
	Algorithms
	A linear time algorithm for computing a square factorization
	An algorithm for computing a largest square factorization

	Other problems and further work

