
Optimal Prefix Free Codes with Partial Sorting∗

Jérémy Barbay

Departamento de Ciencias de la Computación (DCC), Universidad de Chile,
Santiago, Chile
jeremy@barbay.cl

Abstract
We describe an algorithm computing an optimal prefix free code for n unsorted positive weights
in less time than required to sort them on many large classes of instances, identified by a new
measure of difficulty for this problem, the alternation α. This asymptotical complexity is within
a constant factor of the optimal in the algebraic decision tree computational model, in the worst
case over all instances of fixed size n and alternation α. Such results refine the state of the art
complexity in the worst case over instances of size n in the same computational model, a landmark
in compression and coding since 1952, by the mere combination of van Leeuwen’s algorithm to
compute optimal prefix free codes from sorted weights (known since 1976), with Deferred Data
Structures to partially sort multisets (known since 1988).

1998 ACM Subject Classification F.2.2 Analysis of Algorithms and Problem Complexitity /
Nonnumerical Algorithms and Problems (Sorting and Searching), E.4 Coding and Information
Theory (Data compaction and compression)

Keywords and phrases Deferred Data Structure, Huffman, Median, Optimal Prefix Free Codes,
van Leeuwen

Digital Object Identifier 10.4230/LIPIcs.CPM.2016.29

1 Introduction

Given n positive weights W [1..n] coding for the frequencies
{
W [i]/

∑n
j=1 W [j]

}
i∈[1..n]

of n

messages, and a number D of output symbols, an Optimal Prefix Free Code [11] is a
set of n code strings on alphabet [1..D], of variable lengths L[1..n] and such that no string
is prefix of another, and the average length of a code is minimized (i.e.

∑n
i=1 L[i]W [i] is

minimal).
Any prefix free code can be computed in linear time from a set of code lengths sat-

isfying the Kraft inequality
∑n
i=1 D

−L[i] ≤ 1. The original description of the code by
Huffman [11] yields a heap-based algorithm performing O(n logn) algebraic operations,
using the bijection between D-ary prefix free codes and D-ary cardinal trees [8]. This
complexity is asymptotically optimal for any constant value of D in the algebraic de-
cision tree computational model1, in the worst case over instances composed of n positive
weights, as computing the optimal binary prefix free code for the weights W [0, . . . , Dn] =
{Dx1 , . . . , Dx1 , Dx2 , . . . , Dx2 , . . . , Dxn , . . . , Dxn} is equivalent to sorting the positive integers
{x1, . . . , xn}. We consider here only the binary case, where D = 2.

Yet, not all instances require the same amount of work to compute an optimal code:

∗ Extended abstract, see the full version [1] on http://arxiv.org/abs/1602.03934 for complete proofs
and comments.

1 The algebraic decision tree computational model is composed of algorithms which can be modelled as a
decision tree where the decision made in each node is based only on algebraic operations on the input.

© Jérémy Barbay;
licensed under Creative Commons License CC-BY

27th Annual Symposium on Combinatorial Pattern Matching (CPM 2016).
Editors: Roberto Grossi and Moshe Lewenstein; Article No. 29; pp. 29:1–29:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CPM.2016.29
http://arxiv.org/abs/1602.03934
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

29:2 Optimal Prefix Free Codes with Partial Sorting

When the weights are given in sorted order, van Leeuwen [14] showed that an optimal
code can be computed using within O(n) algebraic operations.
When the weights consist of r ∈ [1..n] distinct values and are given in a sorted, com-
pressed form, Moffat and Turpin [17] showed how to compute an optimal code using
within O(r(1 + log(n/r))) algebraic operations, which is often sublinear in n.
In the case where the weights are given unsorted, Belal et al. [5, 6] described several
families of instances for which an optimal prefix free code can be computed in linear
time, along with an algorithm claimed to perform O(kn) algebraic operations, in the
worst case over instances formed by n weights such that there is an optimal binary
prefix free code with k distinct code lengths2. This complexity was later downgraded to
O(16kn) in an extended version[4] of their article. Both results are better than the state
of the art when k is finite, but worse when k is larger than logn.

In the context described above, various questions are left unanswered, from the confirm-
ation of the existence of an algorithm running in time O(16kn) or O(kn), to the existence
of an algorithm taking advantage of small values of both n and k, less trivial than running
two algorithms in parallel and stopping both whenever one computes the answer. Given n
positive integer weights, can we compute an optimal binary prefix free code in time better
than O(min{kn, n logn}) in the algebraic decision tree computational model? We answer in
the affirmative for many classes of instances, identified by the alternation measure α defined
in Section 3.1:

I Theorem 1. Given n positive weights of alternation α ∈ [1..n− 1], there is an algorithm
which computes an optimal binary prefix free code using within O(n(1+ logα)) ⊆ O(n lgn)
algebraic instructions, and this complexity is asymptotically optimal among all algorithms
in the algebraic decision tree computational model in the worst case over instances of size n
and alternation α.

Proof. We show in Lemma 12 that any algorithm A in the algebraic decision tree computa-
tional model performs within Ω(n lgα) algebraic operations in the worst case over instances
of size n and alternation α. We show in Lemma 9 that the GDM algorithm, a variant of the
van Leeuwen’s algorithm [14], modified to use the deferred data structure from Lemma 5,
performs q ∈ O(α(1+lg n−1

α)) such queries, which yields in Corollary 10 a complexity within
O(n(1+ logα) + α(lgn)(lg n

α)), all within the algebraic decision tree computational model.
As α ∈ [1..n−1] and O(α(lgn)(lg n

α)) ⊆ O(n(1+ logα)) for this range (Lemma 11), the
optimality ensues. J

We discuss our solution in Section 2 in three parts: the intuition behind the general
strategy in Section 2.1, the deferred data structure which maintains a partially sorted list
of weights while supporting rank, select and partialSum queries in Section 2.2, and the
algorithm which uses those operators to compute an optimal prefix free code in Section 2.3.
Our main contribution consists in the analysis of the running time of this solution, described
in Section 3: the formal definition of the parameter of the analysis in Section 3.1, the upper
bound in Section 3.2 and the matching lower bound in Section 3.3. We conclude with a
comparison of our results with those from Belal et al. [5] in Section 4.

2 Note that k is not uniquely defined, as for a given set of weights there can exist several optimal prefix
free codes varying in the number of distinct code lengths used.

J. Barbay 29:3

2 Solution

The solution that we describe is a combination of two results: some results about deferred
data structures for multisets, which support queries in a “lazy” way; and some results about
the relation between the computational cost of sorting and that of computing an optimal
prefix free code. We describe the general intuition of our solution in Section 2.1, the deferred
data structure in Section 2.2, and the algorithm in Section 2.3.

2.1 General Intuition
The algorithm suggested by Huffman [11] starts with a heap of external nodes, selects the
two nodes of minimal weight, pairs them into a new node which it adds to the heap, and
iterates untill only one node is left. Whereas the type of the nodes selected, external or
internal, does not matter in the analysis of the complexity of Huffman’s algorithm, we claim
that the computational cost of optimal prefix free codes can be greatly reduced on instances
where many external nodes are selected consecutively. We define the “EI signature” of an
instance as the first step toward the characterization of such instances:

I Definition 2. Given an instance of the optimal prefix free code problem formed by n

positive weights W [1..n], its EI signature S(W) ∈ {E, I}2n−1 is a string of length 2n − 1
over the alphabet {E, I} (where E stands for “External” and I for “Internal”) marking, at
each step of the algorithm suggested by Huffman [11], whether an external or internal node
is chosen as the minimum (including the last node returned by the algorithm, for simplicity).

The analysis described in Section 3 is based on the number |S|EI of blocks formed only
of E in the EI signature of the instance S. We can already show some basic properties of
this measure:

I Lemma 3. Given the EI signature S of n unsorted positive weights W [1..n], |S|E = n;
|S|I = n − 1; |S| = 2n − 1; S starts with two E; S finishes with one I; |S|EI = |S|IE + 1;
|S|EI ∈ [1..n− 1].

Proof. The three first properties are simple consequences of basic properties on binary trees.
S starts with two E as the first two nodes paired are always external. S finishes with one I
as the last node returned is always (for n > 1) an internal node. The two last properties are
simple consequences of the fact that S is a binary string starting with an E and finishing
with an I. J

For example, the text T = “ABBCCCDDDDEEEEEFFFFFGGGGGGHHHHHHH” has
frequencies W = 1 2 3 4 5 5 6 7 . It corresponds to an instance of size n = 8,
of EI signature S(W) = EEEIEEEEIEIIIII of length 15, which starts with EE, finishes with
I, and contains only α = 3 occurrences of EI, corresponding to a decomposition into α = 3
maximal blocks of consecutive Es.

Instances such as this, with very few blocks of E, are easier to solve than instances with
many such blocks. For example, an instance W of length n such that its EI signature S(W)
is composed of a single run of n Es followed by a single run of n − 1 Is (such as the one
described in Figure 1) can be solved in linear time, and in particular without sorting the
weights: it is enough to assign the codelength l = blog2 nc to the n− 2l largest weights and
the codelength l+ 1 to the 2l smallest weights. Separating those weights is a simple select
operation, supported by the data structures described in the following section.

CPM 2016

29:4 Optimal Prefix Free Codes with Partial Sorting

a 4
b 4
c 4
_ 4

16

8

a b

8

c _

Figure 1 Frequencies and code tree for the
text T = “ba_bb_caca_ba_cc”, minimizing
the number of occurrences of “EI” in its EI
signature S(T) = “EEEEIII”.

a 8
b 1
c 2
_ 4

15

a 7

_ 3

b c

Figure 2 Frequencies and code tree for the
text T = “aaaaaaaabcc____”, maximizing
the number of occurrences of “EI” in its EI
signature S(T) = “EEIEIEI”.

We describe two extreme examples. First, consider the text T = “ba_bb_caca_ba_cc”.
Each of the four symbols of its alphabet {a, b, c,_} occurs exactly 4 times, so that an optimal
prefix free code assigns a uniform codelength of 2 bits to all symbols (see Figure 1). There
is no need to sort the symbols by frequency (and the prefix free code does not yield any
information about the order in which the symbols would be sorted by monotone frequencies),
and accordingly the EI signature of this text, S(T) = “EEEEIII”, has a single block of Es,
indicating a very easy instance. The same holds if the text is such that the frequencies of
the symbols are all within a factor of two of each other. On the other hand, consider the
text T = “aaaaaaaabcc____”, where the frequencies of its symbols follow an exponential
distribution, so that an optimal prefix free code assigns different codelengths to almost all
symbols (see Figure 2). The prefix free code does yield a lot of information about the order
in which the symbols would be sorted by monotone frequencies, and accordingly the EI
signature of this text, S(T) = “EEIEIEI”, has three blocks of Es, indicating a more difficult
instance. The same holds with more general distribution, as long as no two pairs of symbol
frequencies are within a factor of two of each other.

2.2 Partial Sum Deferred Data Structure
Given a Multiset W [1..n] on alphabet [1..σ] of size n, Karp et al. [13] defined the first
deferred data structure supporting for all x ∈ [1..σ] and r ∈ [1..n] queries such as rank(x),
the number of elements which are strictly smaller than x in W ; and select(r), the value of
the r-th smallest value (counted with multiplicity) in W . Their data structure supports q
queries in time within O(n(1 + lg q) + q lgn), all in the comparison model.

Karp et al.’s data structure [13] supports only rank and select queries in the comparison
model, whereas the computation of optimal prefix free codes requires to sum pairs of weights
from the input, and the algorithm that we propose in Section 2.3 requires to sum weights
from a range in the input. Such a requirement can be reduced to partialSum queries.
Whereas Partial Sum queries have been defined in the literature based on the positions in
the input array, we define such queries here in a way that depends only on the content of
the Multiset (as opposed to a definition depending on the order in which it is given), so
that it can be generalized to deferred data structures.

I Definition 4. Given n unsorted positive weights W [1..n], a Partial Sum data structure
supports the following queries: rank(x), the number of elements which are strictly smaller
than x in W ; select(r), the value of the r-th smallest value (counted with multiplicity) in
W ; partialSum(r), the sum of the r smallest elements (counted with multiplicity) in W .

For example, given the array A = 5 3 1 5 2 4 6 7 , this definition of the
operators yields rank(5) = 4, select(6) = 5, and partialSum(2) = 3.

J. Barbay 29:5

We describe below how to extend Karp et al.’s deferred data structure [13], which sup-
ports rank and select queries on Multisets, in order to add the support for partialSum
queries, with an amortized running time within a constant factor of the original asymptotic
time. Note that the operations performed by the data structure are not any more within
the comparison model, but rather in the algebraic decision tree computational model, as
they introduce algebraic operations (additions) on the elements of the Multiset. The res-
ult is a direct extension of Karp et al. [13], adding a sub-task taking linear time (updating
partial sums in an interval of positions) to a sub-task which was already taken linear time
(partitioning this same interval by a pivot):

I Lemma 5. Given n unsorted positive weights W [1..n], there is a PartialSum Deferred
Data Structure which supports q operations of type rank, select and partialSum in time
within O(n(1+lg q)+q(1+logn)), all within the algebraic decision tree computational model.

Proof. Karp et al. [13] described a deferred data structure which supports the rank and
select queries (but not partialSum queries). It is based on median computations and (2, 3)-
trees, and performs q queries on n values in time within O(n(1 + lg q) + q(1 + logn)), all
within the algebraic decision tree computational model. We describe below how to modify
their data structure in a simple way to support partialSum queries with asymptotically
negligible additional cost. At the initialization of the data structure, compute the n partial
sums corresponding to the n positions of the unsorted array. After each median computation
and partitioning in a rank or select query, recompute the partial sums on the range of
values newly partitioned, adding only a constant factor to the cost of the query. When
answering a partialSum query, perform a select query and then return the value of the
partial sum corresponding to the value by the select query: the asymptotic complexity is
within a constant factor of the one described by Karp et al. [13]. J

In the next section we describe an algorithm that uses the deferred data structure de-
scribed above to batch the operations on the external nodes, and to defer the computation
of the weights of some internal nodes for later, so that for many instances the input is not
completely sorted at the end of the execution, which reduces the execution cost.

2.3 Algorithm “Group-Dock-Mix” (GDM)
There are five main phases in the GDM algorithm: the Initialization, three phases (Grouping,
Docking and Mixing, giving it the name “GDM” to the algorithm) inside a loop running until
only internal nodes are left to process, and the Conclusion:

In the Initialization phase, initialize the Partial Sum deferred data structure with the
input, and the first internal node by pairing the two smallest weights of the input.
In the Grouping phase, group the weights smaller than the smallest internal node: this
corresponds to a run of consecutive E in the EI signature of the instance.
In the Docking phase, pair the consecutive positions of those weights (as opposed to the
weights themselves, which can be reordered by future operations) into internal nodes, and
pair those internal nodes until the weight of at least one such internal node becomes equal
or larger than the smallest remaining weight: this corresponds to a run of consecutive I
in the EI signature of the instance.
In theMixing phase, rank the smallest unpaired weight among the weights of the available
internal nodes: this corresponds to an occurrence of IE in the EI signature of the
instance. This is the most complicated (and most costly) phase of the algorithm.

CPM 2016

29:6 Optimal Prefix Free Codes with Partial Sorting

In the Conclusion phase, with i internal nodes left to process, assign codelength l =
blog2 ic to the i − 2l largest ones and codelength l+1 to the 2l smallest ones: this
corresponds to the last run of consecutive I in the EI signature of the instance.

The algorithm and its complexity analysis distinguish two types of internal nodes: pure
nodes, which descendants were all paired during the same Grouping phase; and mixed nodes,
each of which either is the ancestor of such a mixed node, or pairs a pure internal node with
an external node, or pairs two pure internal nodes produced at distinct phases of the GDM
algorithm. The distinction is important as the algorithm computes the weight of any mixed
node at its creation (potentially generating several data structure operations), whereas it
defers the computation of the weight of some pure nodes for later, and does not compute
the weight of some pure nodes.

Before describing each phase more in detail, it is important to observe the following
invariant of the algorithm:

I Lemma 6. Given an instance of the optimal prefix free code problem formed by n > 1
positive weights W [1..n], between each phase of the algorithm, all unpaired internal nodes
have weight within a constant factor of two (i.e. the maximal weight of an unpaired internal
node is strictly smaller than twice the minimal weight of an unpaired internal node).

We now proceed to describe each phase in more details:
Initialization: Initialize the deferred data structure Partial Sum with the input; com-
pute the weight currentMinInternal of the first internal node through the operation
partialSum(2) (the sum of the two smallest weights); create this internal node, of weight
currentMinInternal and children 1 and 2 (the positions of the first and second weights,
in any order); compute the weight currentMinExternal of the first unpaired weight
(i.e. the first available external node) by the operation select(3); setup the variables
nbInternals = 1 and nbExternalProcessed = 2.
Grouping: Compute the position r of the first unpaired weight which is larger than
the smallest unpaired internal node, through the operation rank(currentMinInternal);
pair the ((r − nbExternalProcessed) modulo 2) indices to form b r−nbExternalProcessed

2 c
pure internal nodes; if the number r−nbExternalProcessed of unpaired weights smaller
than the first unpaired internal node is odd, select the r-th weight through the operation
select(r), compute the weight of the first unpaired internal node, compare it with the
next unpaired weight, to form one mixed node by combining the minimal of the two with
the extraneous weight.
Docking: Pair all internal nodes by batches (by Lemma 6, their weights are all within a
factor of two, so all internal nodes of a generation are processed before any internal node
of the next generation); after each batch, compare the weight of the largest such internal
node (compute it through partialSum on its range if it is a pure node, otherwise it is
already computed) with the first unpaired weight: if smaller, pair another batch, and if
larger, the phase is finished.
Mixing: Rank the smallest unpaired weight among the weights of the available internal
nodes by a doubling search starting from the beginning of the list of internal nodes. For
each comparison, if the internal node’s weight is not already known, compute it through
a partialSum operation on the corresponding range (if it is a mixed node, it is already
known). If the number r of internal nodes of weight smaller than the unpaired weight is
odd, pair all but one, compute the weight of the last one and pair it with the unpaired
weight. If r is even, pair all of the r internal nodes of weight smaller than the unpaired
weight, compare the weight of the next unpaired internal node with the weight of the

J. Barbay 29:7

next unpaired external node, and pair the minimum of the two with the first unpaired
weight. If there are some unpaired weights left, go back to the Grouping phase, otherwise
continue to the Conclusion phase.
Conclusion: There are only internal nodes left, and their weights are all within a factor
of two from each other. Pair the nodes two by two in batches as in the Docking phase,
computing the weight of an internal node only when the number of internal nodes of a
batch is odd.

The combination of those phases forms the GDM algorithm, which computes an optimal
prefix free code given an unsorted sets of positive integers. In the next section, we analyze
the number q of rank, select and partialSum queries performed by the GDM algorithm,
and deduce from it the complexity of the algorithm in terms of algebraic operations.

3 Analysis

The GDM algorithm runs in time within O(n lgn) in the worst case over instances of size n
(which is optimal (if not a new result) in the algebraic decision tree computational model),
but much faster on instances with few blocks of consecutive Es in the EI signature of
the instance. We formalize this concept by defining the alternation α of the instance in
Section 3.1. We then proceed in Section 3.2 to show upper bounds on the number of queries
and operations performed by the GDM algorithm in the worst case over instances of fixed size
n and alternation α. We finish in Section 3.3 with a matching lower bound for the number
of operations performed.

3.1 Alternation α(W)
We suggested in Section 2.1 that the number |S|EI of blocks of consecutive Es in the EI
signature of an instance can be used to measure its difficulty. Indeed, some “easy” instances
have few such blocks, and the instance used to prove the Ω(n lgn) lower bound on the
computational complexity of optimal prefix free codes in the algebraic decision tree compu-
tational model in the worst case over instances of size n has n−1 such blocks (the maximum
possible in an instance of size n). We formally define this measure as the “alternation” of
the instance (it measures how many times the van Leeuwen algorithm “alternates” from an
external node to an internal node) and denote it by the parameter α:

I Definition 7. Given an instance of the optimal prefix free code problem formed by n

positive weights W [1..n], its alternation α(W) ∈ [1..n − 1] is the number of occurrences of
the substring “EI” in its EI signature S(W).

This number is of particular interest as it measures the number of iteration of the main
loop in the GDM algorithm:

I Lemma 8. Given an instance of the optimal prefix free code problem of alternation α, the
GDM algorithm performs α iterations of its main loop.

In the next section, we refine this result to the number of data structure operations and
algebraic operations performed by the GDM algorithm.

3.2 Upper Bound
In order to measure the number of queries performed by the GDM algorithm, we detail how
many queries are performed in each phase of the algorithm.

CPM 2016

29:8 Optimal Prefix Free Codes with Partial Sorting

The Initialization corresponds to a constant number of data structure operations: a
select operation to find the third smallest weight, and a simple partialSum operation
to sum the two smallest weights of the input.
Each Grouping phase corresponds to a constant number of data structure operations:
a partialSum operation to compute the weight of the smallest internal node if needed,
and a rank operation to identify the unpaired weights which are smaller or equal to this
node.
The number of operations performed by each Docking and Mixing phase is better ana-
lyzed together: if there are i symbols in the I-block corresponding to this phase in the EI
signature, and if the internal nodes are grouped on h levels before generating an internal
node larger than the smallest unpaired weights, the Docking phase corresponds to at most
h partialSum operations, whereas the Mixing phase corresponds to at most log2(i/2h)
partialSum operations, which develops to log2(i)−h, for a total of h+log2(i)−h = log2 i

data structure operations.
The Conclusion phase corresponds to a number of data structure operations logarithmic
in the size of the last block of Is in the EI signature of the instance: in the worst case,
the weight of one pure internal node is computed for each batch, through one single
partialSum operation each time.

Lemma 8 and the concavity of the log yields the total number of data structure operations
performed by the GDM algorithm:

I Lemma 9. Given an instance of the optimal prefix free code problem of alternation α, the
GDM algorithm performs within O(α(1 + lg n−1

α)) data structure operations on the deferred
data structure given as input.

Proof. For i ∈ [1..α], let ni be the number of internal nodes at the beginning of the i-th
Docking phase. According to Lemma 8 and the analysis of the number of data structure
operations performed in each phase, the GDM algorithm performs in total within O(α +∑α
i=1 lgni) data structure operations. Since there are at most n − 1 internal nodes, by

concavity of the logarithm this is within O(α+ α lg n−1
α) = O(α(1 + lg n−1

α)). J

Combining this result with the complexity of the Partial Sum deferred data structure
from Lemma 5 directly yields the complexity of the GDM algorithm in algebraic operation
(and running time):

I Lemma 10. Given an instance of the optimal prefix free code problem of alternation α,
the GDM algorithm runs in time within O(n(1+ logα) + α(lgn)(1 + lg n−1

α)), all within the
algebraic decision tree computational model.

Proof. Let q be the number of queries performed by the GDM algorithm. Lemma 9 implies
that q ∈ O(α(1 + lg n−1

α)). Plunging this into the complexity of O(q lgn + n lg q) from
Lemma 5 yields the complexity O(n(1+ logα) + α(lgn)(1 + lg n−1

α)). J

Some simple functional analysis further simplifies the expression to our final upper bound:

I Lemma 11. Given two positive integers n > 0 and α ∈ [1..n− 1],

O(α(lgn)(lg n
α

)) ⊆ O(n(1 + lgα))

Proof. Given two positive integers n > 0 and α ∈ [1..n−1], α < n
lgn and α

lgα < n. A simple
rewriting yields α

lgα <
n

lg2 n
and α lg2 n > n lgα . Then, n/α < n implies α × lgn × lg n

α <

n lgα, which yields the result. J

J. Barbay 29:9

In the next section, we show that this complexity is indeed optimal in the algebraic
decision tree computational model, in the worst case over instances of fixed size n and
alternation α.

3.3 Lower Bound
A complexity within O(n(1 + lgα)) is exactly what one could expect, by analogy with the
sorting of Multisets: there are α groups of weights, so that the order within each group
does not matter much, but the order between weights from different groups matter a lot.
We prove a lower bound within Ω(n lgα) by reduction to Multiset sorting:

I Lemma 12. Given the integers n ≤ 2 and α ∈ [1..n−1], for any algorithm A in the
algebraic decision tree computational model, there is a set W [1..n] of n positive weights of
alternation α such that A performs within Ω(n lgα) algebraic operations.

Proof. For any Multiset A[1..n] = {x1, . . . , xn} of n values from an alphabet of α distinct
values, define the instance WA = {2x1 , . . . , 2xn} of size n, so that computing an optimal
prefix free code for W , sorted by codelength, provides an ordering for A. W has alternation
α: for any two distinct values x and y from A, the van Leeuwen algorithm pairs all the
weights of value 2x before pairing any weight of value 2y, so that the EI signature ofWA has
α blocks of consecutive Es. The lower bound then results from the classical lower bound
on sorting Multisets in the comparison model in the worst case over Multisets of size n
with α distinct symbols, itself based on the number αn of such multisets. J

We compare our results to previous ones in the next section.

4 Discussion

We described an algorithm computing an optimal prefix free code for n unsorted positive
weights in time within O(n(1+ lgα)) ⊆ O(n lgn), where the alternation α ∈ [1..n−1] roughly
measures the amount of sorting required by the computation by combining van Leeuwen’s
results about optimal prefix free codes [14], known since 1976, with Karp et al.’s results
about Deferred Data Structures [13], known since 1988. The results described above yield
many new questions, of which we discuss only a few in the following sections: how do
those results relate to previous results on optimal prefix free codes (Section 4.1), or to other
results on Deferred Data Structures obtained since 1988 (Section 4.2 and 4.3). We discuss
the potential lack of practical applications of our results on optimal prefix free codes in
Section 4.4, and the perspectives of research on this topic in Section 4.5.

4.1 Relation to previous work on optimal prefix free codes
In 2006, Belal et al. [5], described a variant of Milidiú et al.’s algorithm [16, 15] to compute
optimal prefix free codes, announcing that it performs O(kn) algebraic operations when the
weights are not sorted, where k is the number of distinct code lengths in some optimal prefix
free code. They describe an algorithm claimed to run in time O(16kn) when the weights are
unsorted, and propose to improve the complexity to O(kn) by partitioning the weights into
smaller groups, each corresponding to disjoint intervals of weights3. The claimed complexity

3 Those results were downgraded in the December 2010 update of their initial 2005 publication through
Arxiv [4].

CPM 2016

29:10 Optimal Prefix Free Codes with Partial Sorting

is asymptotically better than the one suggested by Huffman when k ∈ o(logn), and they
raise the question of whether there exists an algorithm running in time O(n log k).

Like the GDM algorithm, the algorithm described by Belal et al. [5] for the unsorted case
is based on several computations of the median of the weights within a given interval, in
particular, in order to select the weights smaller than some well chosen value. The essential
difference between both works is the use of a deferred data structure, which simplifies both
the algorithm and the analysis of its complexity.

While an algorithm running in time within O(n lg k) would improve over the running
time within O(n(1 + lgα)) of our proposed solution, such an algorithm has not been defined
yet, and for α < 2k our solution is superior to the complexity within O(nk) claimed by Belal
and Elmasry [5] (and even more so over the complexity of O(16kn)).

4.2 Applicability of dynamic results on Deferred Data Structures
Karp et al. [13] defined the first Deferred Data Structures, supporting rank and select on
Multisets and other queries on Convex Hull. They left as an open problem the support
of dynamic operators such as insert and delete. Ching et al. [7] quickly demonstrated
how to add such support in good amortized time.

The dynamic addition and deletion of elements in a deferred data structure (added by
Ching et al. [7] to Karp et al. [13]’s results) does not seem to have any application to the
computation of optimal prefix free codes: even if the list of weights was dynamic, further
work is required to build a deferred data structure supporting prefix free code queries.

4.3 Applicability of refined results on Deferred Data Structures
Karp et al.’s analysis [13] of the complexity of the deferred data structure is in function of
the total number q of queries and operators, while Kaligosi et al. [12] analyzed the com-
plexity of an offline version in function of the size of the gaps between the positions of the
queries. Barbay et al.[2] combined the three results into a single deferred data structure for
Multisets which supports the operators rank and select in amortized time proportional
to the entropy of the distribution of the sizes of the gaps between the positions of the queries.

At first view, one could hope to generalize the refined entropy analysis (introduced by
Kaligosi et al. [12] and applied by Barbay et al.[2] to the online version) of Multisets
deferred data structures supporting rank and select to the computational complexity of
optimal prefix free codes: a complexity proportional to the entropy of the distribution of
codelengths in the output would nicely match the lower bound of Ω(k(1 +H(n1, . . . , nh)))
suggested by information theory, where the output contains ni codes of length li, for some
integer vector (l1, . . . , lh) of distinct codelengths and some integer h measuring the number
of distinct codelengths. Our current analysis does not yield such a result: the gap lengths
between queries in the list of weights are not as regular as (l1, . . . , lh).

4.4 Potential (lack of) Practical Impact of our Results
We expect the impact of our faster algorithm on the execution time of optimal prefix free
code based techniques to be of little importance in most cases: compressing a sequence S of
|S| messages from an input alphabet of size n requires not only computing the code (in time
O(n(1 + lgα)) using our solution), but also computing the weights of the messages (in time
|S|), and encoding the sequence S itself using the computed code (in time O(|S|)), which
usually dominates the total cost. Improving the code computation time will improve on the

J. Barbay 29:11

compression time only in cases where the size n of the input alphabet is very large compared
to the length |S| of the compressed sequence. One such application is the compression of
texts in natural language, where the input alphabet is composed of all the natural words [18].
Another potential application is the boosting technique from Ferragina et al. [9], which
divides the input sequence into very short subsequence and computes a prefix free code for
each subsequences on the input alphabet of the whole sequence.

Another argument for the potential lack of practical impact of our result is that there
exist algorithms computing optimal prefix free codes in time within O(n lg lgn) within the
RAM model4: a time complexity within O(n(1 + lgα)) is an improvement only for values of
α ∈ o(lgn).

4.5 Perspectives

One could hope for an algorithm with a complexity that matches the lower bound of Ω(k(1+
H(n1, . . . , nh))) suggested by information theory, where the output contains ni codes of
length li, for some integer vector (l1, . . . , lh) of distinct codelengths and some integer h
measuring the number of distinct codelengths. Our current analysis does not yield such a
result: the gap lengths between queries in the list of weights are not as regular as (l1, . . . , lh),
but a refined analysis might. Minor improvements of our results could be obtained by
studying the problem in external memory, where deferred data structures have also been
developed [19, 3], or when the alphabet size is larger than two, as in the original article from
Huffman [11].

Another promising line of research is given by variants of the original problem, such as
Optimal Bounded Length Prefix Free Codes, where the maximal length of each word
of the prefix free code must be less than or equal to a parameter l, while still minimizing the
entropy of the code; or such as the Order Constrained Prefix Free Codes, where the
order of the words of the codes is constrained to be the same as the order of the weights.
Both problems have complexity O(n logn) in the worst case over instances of fixed input
size n, while having linear complexity when all the weights are within a factor of two of each
other, exactly as in the original problem.

Many communication solutions use an optimal prefix free code computed offline. A
logical step would be to study if any can now afford to compute a new optimal prefix free
code more frequently, and see their compression performance improved by a faster prefix
free code algorithm.

Acknowledgements: The author is funded by the Millennium Nucleus RC130003 “Inform-
ation and Coordination in Networks”. He would like to thank Peyman Afshani and Seth
Pettie for interesting discussions during the author’s visit to the center MADALGO in
January 2014; Jouni Siren for detecting a central error in a previous version of this work;
Gonzalo Navarro for suggesting the application to the boosting technique from Ferragina et
al. [9]; Charlie Clarke, Gordon Cormack, and J. Ian Munro for helping clarify the history of
van Leeuwen’s algorithm [14]; Renato Cerro for various English corrections; various people
who have reviewed and commented on various preliminary drafts and presentations of re-

4 The algorithm proposed by van Leeuwen [14] reduces in time linear in the number of symbols of the
alphabet the computation of an optimal prefix free code to their sorting, and Han [10] described how
to sort a set of n integers (which input symbol frequencies are) in time within O(n lg lg n) in the RAM
model.

CPM 2016

29:12 Optimal Prefix Free Codes with Partial Sorting

lated work: Carlos Ochoa, Francisco Claude-Faust, Javiel Rojas, Peyman Afshani, Roberto
Konow, Seth Pettie, Timothy Chan, and Travis Gagie.

References

1 Jérémy Barbay. Optimal prefix free codes with partial sorting. arXiv preprint
arXiv:1602.00023, 2016. URL: http://arxiv.org/1602.00023.

2 Jérémy Barbay, Ankur Gupta, Seungbum Jo, Srinivasa Rao Satti, and Jonathan Sorenson.
Theory and implementation of online multiselection algorithms. In Proceedings of the
Annual European Symposium on Algorithms (ESA), 2013.

3 Jérémy Barbay, Ankur Gupta, S. Srinivasa Rao, and Jonathan Sorenson. Dynamic on-
line multiselection in internal and external memory. In Proceedings of the International
Workshop on Algorithms and Computation (WALCOM), 2014.

4 Ahmed A. Belal and Amr Elmasry. Distribution-sensitive construction of minimum-
redundancy prefix codes. CoRR, abs/cs/0509015, 2005. Version of Tue, 21 Dec 2010
14:22:41 GMT, with downgraded results from the ones in the conference version [5].

5 Ahmed A. Belal and Amr Elmasry. Distribution-sensitive construction of minimum-
redundancy prefix codes. In Bruno Durand and Wolfgang Thomas, editors, Proceedings
of the International Symposium on Theoretical Aspects of Computer Science (STACS),
volume 3884 of Lecture Notes in Computer Science, pages 92–103. Springer, 2006. doi:
10.1007/11672142_6.

6 Ahmed A. Belal and Amr Elmasry. Verification of minimum-redundancy prefix codes.
IEEE Transactions on Information Theory (TIT), 52(4):1399–1404, 2006. doi:10.1109/
TIT.2006.871578.

7 Yu-Tai Ching, Kurt Mehlhorn, and Michiel H.M. Smid. Dynamic deferred data structuring.
Information Processing Letters (IPL), 35(1):37–40, June 1990.

8 Shimon Even and Guy Even. Graph Algorithms, Second Edition. Cambridge University
Press, 2012.

9 Paolo Ferragina, Raffaele Giancarlo, Giovanni Manzini, and Marinella Sciortino. Boosting
textual compression in optimal linear time. Journal of the ACM, 52(4):688–713, 2005.
doi:10.1145/1082036.1082043.

10 Yijie Han. Deterministic sorting in o(n log logn) time and linear space. Journal of Al-
gorithms, 50(1):96–105, 2004. doi:10.1016/j.jalgor.2003.09.001.

11 David A. Huffman. A method for the construction of minimum-redundancy codes. Pro-
ceedings of the Institute of Radio Engineers (IRE), 40(9):1098–1101, September 1952.

12 Kanela Kaligosi, Kurt Mehlhorn, J. Ian Munro, and Peter Sanders. Towards optimal
multiple selection. In Proceedings of the International Conference on Automata, Languages,
and Programming (ICALP), pages 103–114, 2005. doi:10.1007/11523468_9.

13 R. Karp, R. Motwani, and P. Raghavan. Deferred data structuring. SIAM Journal of
Computing (SJC), 17(5):883–902, 1988. doi:10.1137/0217055.

14 J. Van Leeuwen. On the construction of Huffman trees. In Proceedings of the Interna-
tional Conference on Automata, Languages, and Programming (ICALP), pages 382–410,
Edinburgh University, 1976.

15 Ruy Luiz Milidiú, Artur Alves Pessoa, and Eduardo Sany Laber. A space-economical al-
gorithm for minimum-redundancy coding. Technical report, Departamento de Informática,
PUC-RJ, Rio de, 1998.

16 Ruy Luiz Milidiú, Artur Alves Pessoa, and Eduardo Sany Laber. Three space-economical
algorithms for calculating minimum-redundancy prefix codes. IEEE Transactions on In-
formation Theory (TIT), 47(6):2185–2198, September 2001. doi:10.1109/18.945242.

http://arxiv.org/1602.00023
http://dx.doi.org/10.1007/11672142_6
http://dx.doi.org/10.1007/11672142_6
http://dx.doi.org/10.1109/TIT.2006.871578
http://dx.doi.org/10.1109/TIT.2006.871578
http://dx.doi.org/10.1145/1082036.1082043
http://dx.doi.org/10.1016/j.jalgor.2003.09.001
http://dx.doi.org/10.1007/11523468_9
http://dx.doi.org/10.1137/0217055
http://dx.doi.org/10.1109/18.945242

J. Barbay 29:13

17 Alistair Moffat and Andrew Turpin. Efficient construction of minimum-redundancy codes
for large alphabets. IEEE Transactions on Information Theory (TIT), pages 1650–1657,
1998.

18 E. Moura, G. Navarro, N. Ziviani, and R. Baeza-Yates. Fast and flexible word searching
on compressed text. ACM Transactions on Information Systems (TOIS), 18(2):113–139,
2000.

19 Jop F. Sibeyn. External selection. Journal of Algorithms (JALG), 58(2):104–117, 2006.
doi:10.1016/j.jalgor.2005.02.002.

CPM 2016

http://dx.doi.org/10.1016/j.jalgor.2005.02.002

	Introduction
	Solution
	General Intuition
	Partial Sum Deferred Data Structure
	Algorithm ``Group-Dock-Mix'' (GDM)

	Analysis
	Alternation (W)
	Upper Bound
	Lower Bound

	Discussion
	Relation to previous work on optimal prefix free codes
	Applicability of dynamic results on Deferred Data Structures
	Applicability of refined results on Deferred Data Structures
	Potential (lack of) Practical Impact of our Results
	Perspectives

