
Encoding Two-Dimensional Range Top-k Queries
Seungbum Jo1, Rahul Lingala2, and Srinivasa Rao Satti3

1 Seoul National University, Korea
sbcho@tcs.snu.ac.kr

2 IIT Bombay, India
lingalarahul7@gmail.com

3 Seoul National University, Korea
ssrao@cse.snu.ac.kr

Abstract
We consider various encodings that support range Top-k queries on a two-dimensional array
containing elements from a total order. For an m × n array, with m ≤ n, we first propose an
almost optimal encoding for answering one-sided Top-k queries, whose query range is restricted to
[1 . . .m][1 . . . a], for 1 ≤ a ≤ n. Next, we propose an encoding for the general Top-k queries that
takes m2 lg

((k+1)n
n

)
+ m lgm + o(n) bits. This generalizes the one-dimensional Top-k encoding

of Gawrychowski and Nicholson [ICALP, 2015]. Finally, for a 2× n array, we obtain a 2 lg
(3n

n

)
+

3n+ o(n)-bit encoding for answering Top-2 queries.

1998 ACM Subject Classification E.1 Data Structures

Keywords and phrases Encoding model, top-k query, range minimum query

Digital Object Identifier 10.4230/LIPIcs.CPM.2016.3

1 Introduction

Given a one-dimensional (1D) array A[1 . . . n] from a total order and 1 ≤ k ≤ n, the Range
Top-k query on A (Top-k(i, j, A), 1 ≤ i, j ≤ n) returns the positions of k largest values
in A[i . . . j]. We can extend this query to the two-dimensional (2D) array case. Given a
2D array A[1 . . .m][1 . . . n], from a total order and 1 ≤ k ≤ mn, the Top-k query on A
(Top-k(i, j, a, b, A), 1 ≤ i, j ≤ m, 1 ≤ a, b ≤ n) returns the positions of k largest values in
A[i . . . j][a . . . b]. Without loss of generality, we assume that all elements in A are distinct by
ordering equal elements in the lexicographic order of their positions, and also assume that
m ≤ n. If the k positions of a Top-k query are reported in sorted order of the corresponding
values, we refer to the query as sorted Top-k query; and refer to it as unsorted Top-k query,
otherwise. For 1 ≤ i, j ≤ m and 1 ≤ a, b ≤ n, we can also classify Top-k queries on 2D array
by its range as follows.
1-sided query: The query range is [1 . . .m][1 . . . b].
4-sided query: The query range is [i . . . j][a . . . b].

We can also consider 2-sided and 3-sided queries which correspond to the ranges
[1 . . . j][1 . . . a] and [1 . . . j][a . . . b] respectively. We consider how to support the Top-k queries
in the encoding model in which we do not have access to the original input array A at query
time. The minimum size of an encoding is also referred to as the effective entropy of the
input data (with respect to the queries) [7].

In the rest of the paper, we assume that for Top-k encodings, k is at most the size of the
array (either 1D or 2D). Also, unless otherwise mentioned, we assume that all Top-k queries
are sorted Top-k queries.

© Seungbum Jo, Rahul Lingala, and Srinivasa R. Satti;
licensed under Creative Commons License CC-BY

27th Annual Symposium on Combinatorial Pattern Matching (CPM 2016).
Editors: Roberto Grossi and Moshe Lewenstein; Article No. 3; pp. 3:1–3:11

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CPM.2016.3
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

3:2 Encoding Two-Dimensional Range Top-k Queries

Table 1 The summary of our results for Top-k queries on m× n 2D array. The value T is given
by the formula T =

∑min (m,k)
i=0 i!

(
m
i

)(
k
i

)
.

Array size Query range Space Query time
m× n one-sided ndlg T e bits -
2× n four-sided, k ≤ 2 2 lg

(3n
n

)
+ 3n + o(n) bits -

m× n four-sided O(mn lg n) bits O(k)
m× n four-sided m2 lg

((k+1)n
n

)
+ m lg m + o(n) bits -

1.1 Previous Work
Encoding Top-k queries on 1D array has been widely studied in the recent years. For a 1D
array A[1 . . . n], Chan and Wilkinson [4] proposed a data structure that uses Θ(n) words
and answers selection queries (i.e., selecting the k-th largest element) in O(lg k/ lg lgn)
time1. Grossi et al. [8] considered the Top-k encoding problem, and obtained an O(n lg κ)-bit
encoding which can answer the Top-k queries for any k ≤ κ in O(κ) time or alternately, using
O(n lg2 κ) bits with O(k) query time. (They also considered one-sided Top-k query, they
proposed n lg k+O(n)-bit encoding with O(k) query time.) The space usage of this encoding
was improved to O(n lg κ) bits, maintaining the O(k) query time, by Navarro et al. [10].
Recently, Gawrychowski and Nicholson [6] proposed an (k + 1)nH(1/(k + 1)) + o(n)-bit2
encoding for Top-k queries and showed that at least (k + 1)nH(1/(k + 1))(1− o(1)) bits are
required to encode Top-k queries.

To the best of our knowledge, there are no results on range Top-k queries for 2D array
with general k. For k = 1, the Top-k query is same as the Range Maximum Query (RMQ),
which has been well-studied for 1D as well as for 2D arrays. For a 2D m× n array, Brodal
et al. [1] proposed an O(nmmin (m, lgn))-bit encoding which answers RMQ queries in O(1)
time. Brodal et al. [2] improved the space bound to the optimal O(nm lgm) bits, although
this encoding does not support the queries efficiently.

1.2 Our Results
For an m× n 2D array A, we first obtain an ndlg T e-bit encoding for answering one-sided
Top-k queries, where T =

∑min (m,k)
i=0 i!

(
m
i

)(
k
i

)
. We then show that any encoding that supports

Top-k queries on A must use at least n lg T bits.
Next, we observe that one can obtain an O(mn lgn)-bit data structure which answers

4-sided Top-k queries on A in O(k) time, by combining the results of [3] and [1]. We then
propose an m2 lg

((k+1)n
n

)
+m lgm+ o(n)-bit encoding for 4-sided Top-k queries on A, by

extending the Top-k encoding of Gawrychowski and Nicholson for 1D arrays [6].
When k = 2 and m = 2, the above encoding takes 4 lg

(3n
n

)
+ o(n) ≈ 11.02n bits. For this

case, we propose an alternative encoding which uses 2 lg
(3n

n

)
+ 3n+ o(n) ≈ 8.51n bits (and

can answer the 4-sided Top-2 queries on A). All these results are summarized in Table 1.
We assume the standard word-RAM model [9] with word size Θ(lgn).

2 Encoding one-sided range Top-k queries on two dimensional array

In this section, we consider the encoding of one-sided Top-k queries on a 2D array A[1 . . .m]
[1 . . . n]. We first introduce the encoding by simply extending the encoding of one-sided Top-k

1 We use lg n to denote log2 n
2 H(x) = x lg (1/x) + (1− x) lg (1/(1− x))

S. Jo, R. Lingala, and S. R. Satti 3:3

queries for 1D array proposed by Grossi et al. [8]. Next we propose an optimal encoding for
one-sided Top-k queries on A.

For a 1D array A′[1 . . . n], one can define another 1D array X[1 . . . n] such that X[i] = i

for 1 ≤ i ≤ k and for k < i ≤ n, X[i] = X[i′] if there exist a position i′ < i such that A′[i] is
larger than A′[i′] which is the k-th largest value in A′[1 . . . i− 1], and X[i] = k + 1 otherwise.
One can answer the Top-k(1, i, A′) by finding the rightmost occurrence of every element
1 . . . k in X[1 . . . i]. By representing X (along with some additional auxiliary structures)
using n lg k +O(n) bits, Grossi et al. [8] obtained an encoding which supports 1-sided Top-k
queries on A′ in O(k) time.

For a 2D array A, one can encode A to support one-sided Top-k queries by writing down
the values of A in column-major order into a 1D array, and using the encoding described
above – resulting in the following encoding.

I Proposition 1. A 2D array A[1 . . .m][1 . . . n] can be encoded using mn lg k +O(n) bits to
support one-sided Top-k queries in O(k) time.

Now we describe an optimal encoding of A which supports one-sided Top-k queries. For
1D array A′[1 . . . n], we can define another 1D array B′[1 . . . n] such that for 1 ≤ i ≤ n,
B′[i] = l if A′[i] is the l-th largest element in A′[1 . . . i] with l ≤ k, and B′[i] = k+1 otherwise.
Then we answer the Top-k(1, i, A′) query as follows. We first find the rightmost position
p1 ≤ i such that B′[p1] ≤ k. Then we find the positions p2 > p3 · · · > pk such that for
2 ≤ j ≤ k, pj is the rightmost position in A′[1 . . . pj−1 − 1] with B′[pj] ≤ k − j + 1. Finally,
we return the positions p1, p2, . . . , pk. Therefore by storing B′ using ndlg (k + 1)e bits, we
can answer the one-sided Top-k queries on A′. Also we can sort A′[p1], . . . , A′[pk] using the
property that for 1 ≤ b < a ≤ k, A′[pa] < A′[pb] if and only if one of the following two
conditions hold: (i) B′[pa] ≥ B′[pb], or (ii) B′[pa] < B′[pb] and there exist q = B′[pb]−B′[pa]
positions j1, j2, . . . , jq such that pa < j1 < · · · < jq < pb and B′[jr] ≤ B′[pa] for 1 ≤ r ≤ q.

We can extend this encoding for the one-sided Top-k queries on a 2D array A. For
1 ≤ j ≤ n, we first define the elements of j-th column in A as a1j . . . amj . Then we
define the sequence Sj = s1j . . . smj such that for 1 ≤ i ≤ m, sij = l if aij is the l-th
largest element in A[1 . . .m][1 . . . j] with l ≤ k and sij = k + 1 otherwise. Since there exist
T =

∑min (m,k)
i=0

(
m
i

)(
k
i

)
i! possible Si sequences (T is the total number of ways in which we

can choose i out of the m rows for new entries into the Top-k positions, summed over all
possible values of i), we can store SA = S1 . . . Sn using ndlg T e bits and we can answer the
one-sided Top-k(1,m, 1, j) queries on A by the following procedure.
1. Find the rightmost column q, for some q ≤ j, such that Sq has ` > 0 elements sp1q, . . . , sp`q

where sp1q < · · · < sp`q < k + 1. If ` = k, we return the positions of A[p1][q] . . . A[pk][q]
as the answers of the query, and stop. Otherwise (if ` < k), we return the positions of
A[p1][q] . . . A[p`][q], and

2. Repeat Step 1 by setting k to k − `, and j to q − 1.
We can return the positions in the sorted order of their corresponding values similar to
the 1D array case as described above. This encoding takes less space than the encoding
in the Proposition 1 since mn lg k = n lg(1 + (k − 1))m = n lg

∑m
i=0
(

m
i

)
(k − 1)i ≥ n lg T .

The following theorem shows that the space usage of this encoding is essentially optimal for
answering one-sided Top-k queries on A.

I Theorem 2. Any encoding of a 2D array A[1 . . .m][1 . . . n] that supports one-sided Top-k
queries requires n lg T bits, where T =

∑min (m,k)
i=0 i!

(
m
i

)(
k
i

)
.

Proof. Suppose there are two distinct sequences SA = S1 . . . Si and SA′ = S′1 . . . S
′
i which

give one-sided Top-k encodings of 2D arrays A and A′, respectively. For 1 ≤ b ≤ n, if Sb 6= S′b

CPM 2016

3:4 Encoding Two-Dimensional Range Top-k Queries

then Top-k(1,m, 1, b, A) 6= Top-k(1,m, 1, b, A′) by the definition of SA and SA′ . Since for an
m × n array, there are Tn distinct sequences SA1 . . . SAT n , it is enough to prove that for
1 ≤ q ≤ Tn, each SAq = Sq

1 . . . S
q
n has an array A such that SA = SAq .

Without loss of generality, suppose that all elements in A come from the set L =
{1, . . . ,mn}. Then we can reconstruct A from the rightmost column using SAq as follows.
If sq

jn ≤ k, for 1 ≤ j ≤ m, we assign the sq
jn-th largest element in L to A[j][n]. After we

assign all values in the rightmost column with sq
jn ≤ k, we discard all assigned values from

L, move to (n − 1)-th column and repeat the procedure. After we assign all values in A

whose corresponding values in SAq are smaller than k + 1, we assign the remaining values in
L to remaining positions in Aq which are not assigned yet. Thus for any 1 ≤ b ≤ n, if Sq

b

has ` > 0 elements sp1b, . . . , sp`b where sp1b < · · · < sp`b < k + 1, then the b-th column in
A contains `-largest elements in A[1 . . .m][1 . . . b] by the above procedure. This shows that
SA = SAq . J

3 Encoding range Top-k queries on two dimensional array

In this section, we give an encoding which supports general Top-k queries on 2D array. For
an m × n 2D array, we first introduce an O(mn lgn)-bit encoding which supports Top-k
query in O(k) time by using the RMQ encoding of Brodal et al. [2].

I Proposition 3. A 2D array A[1 . . .m][1 . . . n] can be encoded using O(mn lgn) bits to
support unsorted Top-k(i, j, a, b, A) in O(k) time for 1 ≤ a, b ≤ m and 1 ≤ i, j ≤ n.

Proof. We use a data structure similar to the one outlined in [3] (based on Frederikson’s
heap selection algorithm [5]) for answering unsorted Top-k queries in 1D array3. First encode
A using O(mn lgn) bits to support RMQ (range maximum) queries in constant time for any
rectangular range in A. This encoding also supports finding the rank (i.e., the position in
sorted order) of any element in A in O(1) time [1]. Next, let x = A[x1][x2] be the maximum
value in A[i . . . j][a . . . b], which can be found using an RMQ query on A. Then consider the 4-
ary heap obtained by the following procedure. The root of the heap is x, and its four subtrees
are formed by recursively constructing the 4-ary heap on the sub-arrays A[i . . . x1− 1][a . . . b],
A[x1 + 1 . . . j][a . . . b], A[x1][a . . . x2−1] and A[x1][x2 + 1 . . . b], respectively. Now, we can find
the k largest elements in the above 4-ary heap in O(k) time using the algorithm proposed
by Frederickson [5] (note that this algorithm only builds a heap with O(k) nodes which is a
connected subgraph of the above 4-ary heap). J

We now introduce another encoding to support Top-k queries on an m × n 2D array
A. This encoding extends the optimal Top-k encoding of Gawrychowski and Nicholson [6]
for a 1D array. This encoding does not support the queries efficiently. Compared to the
encoding of Proposition 3, this encoding uses less space when n = Ω(km). We first review
the Gawrychowski and Nicholson [6]’s optimal Top-k encoding for 1D array, and show how
to extend this encoding to the 2D array case.

For a given 1D array A′[1 . . . n], we define the sequence of arrays SA′ = SA′

1 . . . SA′

n , where
for 1 ≤ j ≤ n and 1 ≤ i ≤ j, SA′

j is an array of size j defined as follows.

SA′

j [i] =
{
p if there are p (< k) elements larger than A′[i] in A′[i+ 1 . . . j]
k otherwise

3 Brodal et al. [3] also give another structure to answer sorted Top-k queries, with the same time and
space bounds.

S. Jo, R. Lingala, and S. R. Satti 3:5

A1 3 7 8 2 6 4
A2 6 4 10 3 5 2

SA1
1 0

SA1
2 1 0

SA1
3 2 1 0

SA1
4 2 1 0 0

SA1
5 2 2 0 1 0

SA1
6 2 2 0 2 0 0

SA2
1 0

SA2
2 0 0

SA2
3 1 1 0

SA2
4 1 1 0 0

SA2
5 1 2 0 1 0

SA2
6 1 2 0 1 0 0

I
(1,2)
1 1

I
(1,2)
2 2 0

I
(1,2)
3 2 1 1

I
(1,2)
4 2 1 1 1

I
(1,2)
5 2 1 1 2 0

I
(1,2)
6 2 1 1 2 0 0

I
(2,1)
1 0

I
(2,1)
2 1 0

I
(2,1)
3 2 1 0

I
(2,1)
4 2 1 0 0

I
(2,1)
5 2 2 0 1 0

I
(2,1)
6 2 2 0 2 0 0

Figure 1 Top-k encoding of the 2D array A when k = 2.

See Figure 1 for an example.
If SA′

j [i] < k, we call A[i] in A[1 . . . j] as active, otherwise A[i] is inactive in A[1 . . . j].
Gawrychowski and Nicholson [6] show that for 1 ≤ i, j ≤ n, Top-k(i, j, A′) can be answered

using SA′

j [i . . . j]. They obtained a lg
((k+1)n

n

)
+ o(n)-bit encoding of SA′ by representing

δA′

1 . . . δA′

n−1 (where δA′

i =
∑i+1

l=1 S
A′

i+1[l]−
∑i

l=1 S
A′

i [l]) in unary, and compressing the sequence
using the following lemma.

I Lemma 4 ([11]). Let S be a string of length n over the alphabet Σ = {1, 0} containing m
1s. One can encode S using lg

(
n
m

)
+ o(n) bits to access any position in S in constant time.

Since
∑n−1

i−1 δ
A′

i ≤ kn, the unary sequence has kn zeros and n ones. The following lemma
states their result for 1D arrays.

I Lemma 5 ([6]). Given a 1D array A[1 . . . n], there is an encoding of A using lg
((k+1)n

n

)
+

o(n) bits which supports Top-k queries.

We now describe how to extend this encoding to a 2D m× n array A. For 1 ≤ i ≤ m,
let Ai[1 . . . n] be the array of the i-th row in A. We construct Top-k encodings for the rows
A1 . . . Am using Lemma 5, and this takes m lg

((k+1)n
n

)
+ o(n) bits. In addition, for every

1 ≤ i 6= j ≤ m, we define the sequence of arrays, I(i,j) = I
(i,j)
1 . . . I

(i,j)
n to represent Si with

respect to the elements in Aj . For 1 ≤ r ≤ n, I(i,j)
r is an array of size r defined as follows.

I(i,j)
r [s] =

p if i > j and there are p (< k) elements which are

larger than Ai[s] in Aj [s+ 1 . . . r]
q if i < j and there are q (< k) elements which are

larger than Ai[s] in Aj [s . . . r]
k otherwise (if there are ≥ k elements, in the above two cases)

See Figure 1 for an example.
We can answer the Top-k(i, j, a, b, A) queries as follows. We first define the 1D array

B[1 . . . b(j−i+1)] by writing down the values of A[i . . . j][1 . . . b] in column-major order. Then
we observe that Top-k(i, j, a, b, A) can be answered using SB

b(j−i+1)[a(j−i+1)+1 . . . b(j−i+1)].

CPM 2016

3:6 Encoding Two-Dimensional Range Top-k Queries

The following lemma shows that we can compute the values in SB
b(j−i+1) using SA1 . . . SAm

and all the arrays I(c,d)
b , for 1 ≤ c 6= d ≤ m.

I Lemma 6. Given a 2D array A[1 . . .m][1 . . . n], for 1 ≤ i ≤ j ≤ m and 1 ≤ b ≤ n,
let B[1 . . . q] be the 1D array of size q = (j − i + 1)b obtained by writing the elements of
A[i . . . j][1 . . . b] in column-major order. Also, for any 1 ≤ s ≤ q, let (srow, scol) be the
position corresponding B[s] in A (which can be computed using scol = ds/(j − i+ 1)e and
srow = s− (scol − 1) · (j − i+ 1) + (i− 1)). Then

SB
q [s] = min (k, (SAsrow

b [scol] +
∑

i≤`≤j,` 6=srow

I
(srow,`)
b [scol])).

Proof. It is enough to count the number of elements in B (i.e., in A[i . . . j][a . . . b]) which are
larger than B[s] (i.e., A[srow][scol]) in B[s+ 1 . . . q] (i.e., the corresponding elements in A).
Let L be the set of these elements. If |L| ≥ k, then SB

q [s] = k. In the following, we describe
how to compute SB

q [s] when |L| < k.
From the definition of SAsrow

b , it follows that the number of elements in L which are in
row srow is SAsrow

b [scol].. Also, for any row ` 6= srow, I(srow,`)
b [scol] is the number of elements

in L that belong to row `. From all these values, we can compute |L|. J

By Lemma 6, we can answer the Top-k queries on A using the Top-k encodings of all the rows
A1, . . . , Am, together with all the arrays I(i,j), for all 1 ≤ i 6= j ≤ m. Since we can recover
the order of all active elements in the prefix of i-th row using SAi [6], we can decode I(i,j)

p

using I(i,j)
p−1 and γij

p =
∑p

l=1 I
(i,j)
p [l]−

∑p−1
l=1 I

(i,j)
p−1 [l] by the following procedure, for p > 1.

1. Append 0 to I(i,j)
p−1 . Let this array be J (i,j)

p−1 .
2. Find the positions of γ(i,j)

p−1 smallest active values in Ai[1 . . . p] using SAi , and increase
the values of J (i,j)

p−1 in these positions by 1.
Therefore, using I(i,j)

1 , and γ(i,j)
2 , . . . , γ

(i,j)
n , we can encode I(i,j). Since the sum

∑`=n
`=2 γ

(i,j)
`

is at most kn, we can encode all the arrays I(i,j) (for all possible i 6= j) using m(m −
1) lg

((k+1)n
n

)
+ o(n) bits (by converting γ(i,j)

` ’s into unary, as in the encoding of Lemma 5).
Also, to encode I(i,j)

1 for i < j (note that if i > j, I(i,j)
1 is always 0), we need to store the

ordering of all elements in the first column, which takes m lgm bits. This gives a proof of
the following theorem.

I Theorem 7. Given a 2D array A[1 . . .m][1 . . . n], there is an encoding of A using
m2 lg

((k+1)n
n

)
+m lgm+ o(n) bits which can answer the Top-k queries.

4 Encoding range Top-2 queries on 2 × n array

In this section, we consider a special case of Top-k encodings for 2D arrays when the array
has only two rows, and k = 2. Note that for these parameter values, Theorem 7 gives an
encoding of size 4 lg

(3n
n

)
+ o(n) ≈ 11.02n bits. We describe an alternative approach which

results in an encoding of size 2 lg
(3n

n

)
+ 3n+ o(n) ≈ 8.51n bits.

For i ∈ {1, 2}, let Ai be the array [ai1, . . . , ain] of size n constituting the i-th row of A.
We maintain Top-k encodings for A1 and A2, which enable us to support the Top-k queries
on the individual rows. To support queries that span both the rows, we store an auxiliary
structure of size at most 3n bits.

We construct a weighted DAG, DA, such that each node in DA is labeled with a range
[a, b], where 1 ≤ a ≤ b ≤ n, and has a weight w([a, b]) ∈ {1, 2}. In the rest of this section, we

S. Jo, R. Lingala, and S. R. Satti 3:7

A1 1 21 17 12 20 3 15 11 10
A2 6 5 16 14 19 2 18 4 7

Figure 2 2× n array A and the DAG DA. Nodes with weight 2 are colored red, while those with
weight 1 are not colored.

use the notation Top-2([a, b]) to refer to the query Top-2(1, 2, a, b, A). We also use (i, a) to
denote the position in the i-th row and a-th column in A. Now we define DA as follows.
1. The root of DA is labeled with the range [1, n], and w([1, n]) = 2.
2. If a = b, then [a, b] is a leaf node in DA, with weight w([a, b]) = 1.
3. Suppose there exists a non-leaf node [a, b] in DA, such that the answers to the query

Top-2([a, b]) are (i, a′) and (j, b′), for some 1 ≤ i, j ≤ 2 and a ≤ a′ ≤ b′ ≤ b. Then the at
most two children of the node [a, b] are [a, b′ − 1]and [a′ + 1, b].
Case 1. If a′ = b′ and a < b′ − 1, w([a, b′ − 1]) = 2.
Case 2. If a′ = b′ and a′ + 1 < b, w([a′ + 1, b]) = 2.
Case 3. In all other cases, w([a, b′ − 1]) = w([a′ + 1, b]) = 1.

See Figure 2 for an example. Note that a node can have at most two parents since each end
point of the interval corresponding to a node can be shared by exactly one of its children. If
the two parents of a node belong to two different cases, then the weight of the child node is
set to be the smaller of the weights set in the two cases. For example, in Figure 2, the node
[3, 4] belongs to Case 3 through the parent node [1, 4], and belongs to Case 1 through the
parent [3, 9]. Hence, its weight is set to 1. Also, not all intervals of the form [a, a] need to
appear as leaves in DA (eg., [3, 3] in Figure 2).

From the construction of DA, one can observe that if there is a node [a, b] in DA, with
1 < a ≤ b < n, then the columns a − 1 and b + 1 both contain at least one element that
is larger than the second largest elements in the sub-array A[1 . . . 2][a . . . b]. From this
observation, it follows that given any two distinct nodes x and y in DA, the answers to the
queries Top-2(x) and Top-2(y) are distinct (if there are two distinct nodes [a, b] and [a′, b′]
with b < b′ such that Top-2([a, b]) = Top-2([a′, b′]), then Top-2([a, b + 1]) = Top-2([a′, b′]),
contradicting the fact that Top-2([a, b]) 6= Top-2([a, b+ 1]). The case when b > b′, a > a′ or
a < a′ is analogous). In addition, we use the following property of DA in proving lemmas in
this section.

CPM 2016

3:8 Encoding Two-Dimensional Range Top-k Queries

I Proposition 8. Let A be a 2× n array and DA be its corresponding weighted DAG. For
any distinct two nodes p and q in DA, p ⊂ q if and only if p is descendant of q.

Proof. From the construction of DA, it is the case that if p is a descendant of q, then
p ⊂ q. Now, suppose p ⊂ q and p = [ap, bp] is not descendant of q. Then there exists a
node q′ which is a descendant of q such that p ⊂ q′, but no child of q′ contains p. Since
neither of the children of q′ contain p, both column positions of Top-2(q′) must belong to p
(otherwise, at least one of the children of q′ would contain p). But this would imply that
Top-2(q′) = Top-2(p), which leads to a contradiction since every node in DA has distinct
Top-2 answers. J

Furthermore, the following lemma shows that DA contains all distinct answers for
Top-2([a, b]), for 1 ≤ a ≤ b ≤ n (in other words, the answers to any Top-2([a, b]) query on A
are same as the answers to the Top-2 query on some node in the DAG).

I Lemma 9. Let A be a 2× n array. For 1 ≤ a ≤ b ≤ n, for any interval [a, b], there exist
a node p in DA such that Top-2([a, b]) = Top-2(p).

Proof. We first show that there exists a unique p such that p contains the interval [a, b] and
none of the children of p (fully) contain [a, b]. We then show that the Top-2([a, b]) = Top-2(p).

Since the root in DA contains all columns in A, it is easy to see that there exists at least
one node p = [ap, bp] in DA such that [a, b] ⊂ p but no child of p contains [a, b]. Suppose
that there exists another node p′ = [a′p, b′p] such that [a, b] ⊂ p′ but no child of p′ contains
[a, b]. From Proposition 8, it follows that p 6⊂ p′ and p′ 6⊂ p (otherwise, one of them would
be a descendant of the other, contradicting the conditions on p and p′). Now, suppose that
ap < a′p < bp < b′p (the case when a′p < ap < b′p < bp is analogous). Then there exists a
column c < a′p such that p has a child node [c, bp] which contains [a, b] by the property of
DA (note that a′p ≤ a ≤ b ≤ bp), contradicting the fact that p does not have such a child.
This shows that there is a unique such p in DA.

Now we claim that Top-2([a, b]) = Top-2(p). Suppose that there exist a c /∈ [a, b] in p

such that column c contains at least one of the answers to Top-2(p). Also without loss of
generality, we assume that c < a (the case when c > b can be handled in a similar way).
Then by the property of DA, p has a child [c+ 1, bp] which still contains [a, b], contradicting
the fact that p does not have such a child. J

The following lemma shows that for any node p = [a, b] in DA, we can answer the query
Top-2(p) using w(p) additional bits if we know the answers to the Top-2 query on the parent
node of p, and also the answers to the queries Top-2(a, b, A1) and Top-2(a, b, A2).

I Lemma 10. Let A be a 2 × n array. Given a non-root node p = [ap, bp] in DA, and its
parent node q = [aq, bq], if we know the answers to the query Top-2(q), then using the Top-2
encodings of A1 and A2 along with w(p) additional bits, we can answer the query Top-2(p).

Proof. If p is a leaf node (i.e., if ap = bp), we need w(p) = 1 extra bit to compare A1[ap] and
A2[ap]. If not, let (i1, j1) and (i2, j2), with j1 ≤ j2, be the answers to the query Top-2(q).
Also, for i ∈ {1, 2}, let fi and si be the positions of the first and the second maxima,
respectively, in the i-th row, Ai[ap . . . bp]. Then we can answer the query Top-2(p) as follows.
Without loss of generality, assume that aq < ap.
Case 1. j1 < j2: In this case, the interval p contains fi2 = j2, and this is the position of

the maximum value in p. If i2 = 1 (i2 = 2), we can find the second maximum in p by
comparing the values A1[s1] and A2[f2] (A2[s2] and A1[f1]); the result of this comparison
can be stored with w(p) = 1 extra bit.

S. Jo, R. Lingala, and S. R. Satti 3:9

Case 2. j1 = j2: In this case, the interval p does not contain j1 (= j2). Therefore, to find
the maximum element in p, we store the comparison between the values A1[f1] and A2[f2]
using 1 bit. To find the second maximum element, if A1[f1] > A2[f2] (A1[f1] < A2[f2]),
then we store the comparison the values A2[f2] and A1[s1] (A1[f1] and A2[s2]) using 1
extra bit. Thus the number of required extra bits is w(p) = 2. J

The following lemma bounds the total weight of all the nodes in DA, which in turn bounds
the extra space used by the Top-2 encoding of A in addition to the Top-2 encodings of the
individual rows.

I Lemma 11. For a 2× n array A, the sum of the weights of all nodes in DA is at most 3n.

Proof. Let f(p) = (rf
p , c

f
p) and s(p) = (rs

p, c
s
p) be the positions of the first and the second

largest elements in Top-2(p), respectively. Also, for each column 1 ≤ j ≤ n, let fj and sj

be the positions of the first and the second maxima in A, respectively, in the j-th column.
We traverse DA in level order. Whenever we visit a node p = [a, b] in DA, if w(p) = 2, then
we pick the two positions f(p) and s(p), and otherwise (if w(p) = 1), we pick the position
s(p). We now claim that for all 1 ≤ j ≤ n, fj is picked at most twice, and sj is picked at
most once, during the level-order traversal of all the nodes in DA. It is easy to show that
statement of the lemma follows from this claim.
Case 1. Visiting a node p with w(p) = 1: We first show that any sj is picked at most

once. For 1 ≤ j ≤ n, suppose that node p is the first node (in level order) which picks sj .
Since the only case in which this happens is when Top-2(p) = {fj , sj}, it follows that p is
the unique node in DA that picks sj (as mentioned earlier, distinct nodes have distinct
Top-2 answers, and sj cannot be a position in the answers for a Top-2 query unless fj is
also an answer to the same query).
We now show that any fj is picked at most twice. Suppose we pick fj when we visit a
node p = [a1, b1]. We need to prove that there can be at most one other node that can
pick fj . Assume, on the contrary, that there are two more distinct nodes p2 = [a2, b2],
p3 = [a3, b3] such that we pick fj when we visit these nodes. Since w(p2) = w(p3) = 1
(note that if the weight of a node is 2, then fj can be picked at most once – see Case 2 in
this proof), only fj is picked as the second largest element when we visit p2 and p3. Also,
by the construction of DA, fj is not picked if we pick fj in any ancestor or descendant of
p. Therefore, p2 and p3 are neither ancestor nor descendant of p, and by Proposition 8,
for any two distinct q, r ∈ {p, p2, p3}, q 6⊂ r and q ∩ r 6= ∅.
Now without loss of generality, suppose that 1 ≤ a1 < a2 < a3 < j < b1 < b2 < b3 ≤ n.
Note that if f(p) exists between a3-th and b1-th column, Top-2(p) = Top-2(p2) =
Top-2(p3) = {f(p), fj} since s(p) = s(p2) = s(p3) = fj . This leads to a contradiction
since distinct nodes should have distinct Top-2 answers (for the same reason, f(p2),
and f(p3) cannot exist between a3-th and b1-th column). Therefore, a1 ≤ cf

p < a3
and b1 < cf

p3
≤ b3. Now suppose that b1 < cf

p2
≤ b2 (the case when a2 ≤ cf

p2
< a3 is

analogous). Then fj cannot be picked when we visit the node p3 since the value in fj is
smaller than the values in both f(p2) and f(p3). This leads to a contradiction, proving
that there can be at most two nodes whose weight is 1 which pick fj during the traversal.

Case 2. Visiting a node p with w(p) = 2: In this case, we prove that neither f(p) nor
s(p) are picked by any node other than p. (Thus, in this case, both f(p) and s(p) are
picked only once.) By the construction of DA, neither f(p) nor s(p) can be picked in any
ancestor of p. Also, since neither f(p) nor s(p) can be the second largest elements in any
of the descendants of p, we can’t pick either of them after visiting the node p. We now
claim that there is no node q such that p ∩ q 6= ∅, p 6⊂ q and q 6⊂ p. By Proposition 8, if

CPM 2016

3:10 Encoding Two-Dimensional Range Top-k Queries

the claim is true, p has an intersection only with its ancestors or descendants, which do
not pick both f(p) and s(p) during the traversal.
We assume, contrary to the above claim, that for the node p = [a, b], there exists a node
q = [aq, bq] such that p ∩ q 6= ∅, p 6⊂ q and q 6⊂ p. Also without loss of generality, suppose
that 1 ≤ aq < a < bq < b ≤ n. Now consider the node r, which is an element in the
lowest common ancestor (LCA)4 of the nodes p and q. If any answer of the Top-2(r)
query does not exist in [aq, b], one of r’s child is a common ancestor of the nodes p and q,
contradicting the fact that r is the LCA of p and q. Therefore, both answers of Top-2(r)
exist in c-th and d-th column where aq ≤ c ≤ d ≤ b. Also, both nodes p and q can exist
only if aq ≤ c < a and bq < d ≤ b, in which case, f([c + 1, b]) exists in d-th column.
Furthermore, by the construction of DA, cf

s = d for any node s in the path from node
[c+ 1, b] to node p. Therefore for any parent node of p, both answers of Top-2 exist in
the d-th column since w(p) = 2, contradicting the fact that bq < d ≤ b. This leads to a
contradiction that such q exists. J

I Theorem 12. A 2× n array A can be encoded using 2 lg
(3n

n

)
+ 3n+ o(n) bits, to answer

Top-2 queries.

Proof. We first encode the first and the second rows in A using 2 lg
(3n

n

)
+ o(n) bits, to

answer Top-2 queries on each row, using the encoding in Lemma 5. For each node p in
DA in level order, we write down a w(p)-length bit-string which contains the additional
bits needed to answer the query Top-2(p) (as mentioned in Lemma 10). The resulting
bit-string, dDA

, has length at most 3n, by Lemma 11. A Top-2(1, 2, a, b, A) query can be
answered as follows. We find the last node q = [aq, bq] in level order such that aq ≤ a and
b ≤ bq using the Top-2 encodings for each row and the bit string dDA

. Since Top-2(q) is
same as the Top-2(1, 2, a, b, A) by the Lemma 9, we can answer Top-2(1, 2, a, b, A) by finding
Top-2(aq, bq, A1) and Top-2(aq, bq, A2), and reading the appropriate w(q) bits in dDA

to pick
the first and the second largest elements among these four candidates. J

5 Conclusion

In this paper, we obtained space-efficient encodings which answer Top-k queries on 2D arrays.
In particular, for an m× n 2D array, we proposed an optimal encoding when the query is
one-sided. We also proposed two different encodings that answer the general (four-sided)
queries. Also when k = 2 and m = 2, we obtain an encoding which uses less space than the
general encoding. We end with following open problems:

Can we support the queries efficiently on our proposed encodings of Theorem 2, Theorem 7,
and Theorem 12?

For 2 and 3-sided queries, can we obtain encodings which use less space than the encoding
for the 4-sided Top-k queries on 2D array?

Is the effective entropy of unsorted Top-k queries smaller than the effective entropy of
sorted Top-k queries on 2D arrays?

4 For nodes p and q in DAG D, we define a LCA of p and q as the set of nodes whose out-degree is zero
in the subgraph of D induced by the common ancestors of p and q.

S. Jo, R. Lingala, and S. R. Satti 3:11

References
1 Gerth S. Brodal, Pooya Davoodi, and S. Srinivasa Rao. On space efficient two di-

mensional range minimum data structures. Algorithmica, 63(4):815–830, 2012. doi:
10.1007/s00453-011-9499-0.

2 Gerth Stølting Brodal, Andrej Brodnik, and Pooya Davoodi. The encoding complexity of
two dimensional range minimum data structures. In ESA 2013, 2013. Proceedings, pages
229–240, 2013.

3 Gerth Stølting Brodal, Rolf Fagerberg, Mark Greve, and Alejandro López-Ortiz. Online
sorted range reporting. In ISAAC 2009, Proceedings, pages 173–182, 2009. doi:10.1007/
978-3-642-10631-6_19.

4 Timothy M. Chan and Bryan T. Wilkinson. Adaptive and approximate orthogonal range
counting. In Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2013,2013, pages 241–251, 2013.

5 Greg N. Frederickson. An optimal algorithm for selection in a min-heap. Inf. Comput.,
104(2):197–214, 1993.

6 Pawel Gawrychowski and Patrick K. Nicholson. Optimal encodings for range top- k k ,
selection, and min-max. In ICALP 2015, Proceedings, Part I, pages 593–604, 2015. doi:
10.1007/978-3-662-47672-7_48.

7 Mordecai J. Golin, John Iacono, Danny Krizanc, Rajeev Raman, and S. Srinivasa Rao.
Encoding 2d range maximum queries. In ISAAC, pages 180–189, 2011. doi:10.1007/
978-3-642-25591-5_20.

8 Roberto Grossi, John Iacono, Gonzalo Navarro, Rajeev Raman, and Srinivasa Rao Satti.
Encodings for range selection and top-k queries. In ESA 2013, pages 553–564, 2013.

9 P. B. Miltersen. Cell probe complexity – a survey. FSTTCS, 1999.
10 Gonzalo Navarro, Rajeev Raman, and Srinivasa Rao Satti. Asymptotically optimal en-

codings for range selection. In 34th International Conference on Foundation of Software
Technology and Theoretical Computer Science, FSTTCS 2014,2014, pages 291–301, 2014.

11 Rajeev Raman, Venkatesh Raman, and Srinivasa Rao Satti. Succinct indexable dictionaries
with applications to encoding k-ary trees, prefix sums and multisets. ACM Transactions
on Algorithms, 3(4):Article 43, 2007.

CPM 2016

http://dx.doi.org/10.1007/s00453-011-9499-0
http://dx.doi.org/10.1007/s00453-011-9499-0
http://dx.doi.org/10.1007/978-3-642-10631-6_19
http://dx.doi.org/10.1007/978-3-642-10631-6_19
http://dx.doi.org/10.1007/978-3-662-47672-7_48
http://dx.doi.org/10.1007/978-3-662-47672-7_48
http://dx.doi.org/10.1007/978-3-642-25591-5_20
http://dx.doi.org/10.1007/978-3-642-25591-5_20

	Introduction
	Previous Work
	Our Results

	Encoding one-sided range Top-k queries on two dimensional array
	Encoding range Top-k queries on two dimensional array
	Encoding range Top-2 queries on 2*n array
	Conclusion

