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—— Abstract

In the online dictionary matching problem the goal is to preprocess a set of patterns D =
{Pi,..., Ps} over alphabet X, so that given an online text (one character at a time) we report all
of the occurrences of patterns that are a suffix of the current text before the following character
arrives. We introduce a succinct Aho-Corasick like data structure for the online dictionary
matching problem. Our solution uses a new succinct representation for multi-labeled trees, in
which each node has a set of labels from a universe of size A\. We consider lowest labeled ancestor
(LLA) queries on multi-labeled trees, where given a node and a label we return the lowest proper
ancestor of the node that has the queried label.

In this paper we introduce a succinct representation of multi-labeled trees for A = w(1) that
support LLA queries in O(loglog A) time. Using this representation of multi-labeled trees, we
introduce a succinct data structure for the online dictionary matching problem when o = w(1).
In this solution the worst case cost per character is O(loglog o 4 occ) time, where occ is the size
of the current output. Moreover, the amortized cost per character is O(1 + occ) time.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems
Keywords and phrases Succinct indexing, dictionary matching, Aho-Corasick, labeled trees

Digital Object Identifier 10.4230/LIPIcs.CPM.2016.6

1 Introduction

One of the crucial components of Network Intrusion Detection Systems (NIDS) is the ability
to detect the presence of viruses and malware in streaming data. This task is typically
executed by searching for occurrences of special digital signatures which indicate the presence
of harmful intent. While searching for one such signature is often a fairly simple task, NIDS
has to deal with the task of searching for many signatures in parallel. In such settings it
is required that both the time spent on each packet of data and the total space usage are
extremely small. Currently, the task of finding these signatures dominates the performance
of such security tools [32], and several practical approaches have been suggested [9, 10]. The
theoretical model for this problem is known as the (online) dictionary matching problem,
which is a well studied problem [1, 2, 3, 4, 11, 13, 14] and is defined next.
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Dictionary matching. 1In the dictionary matching problem the input is a dictionary D =
{Py, Py, ..., P;} of patterns and a text T' = t1t5...ty, all over alphabet X, where o = |X|.
The goal is to list all pairs (4,7) such that t;_|p,|11..t; = P;. Let n = Zle |P;|, and let
Nmaz = Maxpep{|P|}. For a dictionary D the prefiz set of D, denoted by P(D), is the set
of all prefixes of patterns in D. Let m = |P(D)| and notice that m < n + 1. We assume
Y is an integer alphabet ¥ = {1,2,...,0}, and that 0 < m. The Aho-Corasick (AC) data
structure [1] solves the dictionary matching problem using O(mlogm) bits of space and in
O(|T'| + occ) time, where occ is the size of the output.

Online dictionary matching. In the online dictionary matching problem the input is the
same as in the dictionary matching problem, but here the text T arrives online (character
by character) and the goal is to report all of the occurrences of patterns from D as soon as
they appear (before the next character arrives). For a dictionary D and text T let S; be
the longest suffix of ¢1¢2...¢; such that S; € P(D). The AC data structure works in the
online model by repeatedly finding S;11 from S; and ¢;11 (and then also reporting all of the
patterns from D that are suffixes of S;11). The amortized cost for this process, ignoring
the work for reporting the output, is constant. However, the worst-case time per character
in the AC data structure can be as large at ©(n,,4,). This may be too large for real-time
applications, such as those that occur in NIDS.

One naive way of tackling this problem is by using an automata with a state for each prefix
in P(D), where each state has o outgoing transitions. However, this approach introduces a
blow up in space, which in practice means that the entire data structure cannot fit in fast
memory. Moreover, even the O(mlogm) bit implementation of the AC data structure may
be too large. Thus, a large body of recent work has focused on succinct representations of
the AC data structure.

Succinct data structures. Given a combinatorial object a representation of the object is
succinct if it uses z + o(z) bits of space where z is the information theoretic lower bound
for the number of bits representing the object. The main challenge when using a succinct
representation is supporting the algorithmic operations with costs that are as efficient as in
the non-succinct representation.

A growing trend in recent years has focused on developing succinct representations for
the dictionary matching problem; see Table 1. The information theoretic lower bound for
a dictionary of size n over alphabet ¢ is nlogo bits which is significantly less than the
O(mlogm) bits used by the AC data structure, when o << n. However, much like in the
AC data structure, current succinct representations also pay ©(n,qz) time per character in
the worst-case. We emphasize that Hon et al. [21] presented a solution using O(mlog o) bits
(which is not succinct) and the worst-case cost per character is O(loglogm) time.

1.1 Our Results

In this paper we introduce a new succinct representation of the AC data structure with an
implementation that supports low time cost per character in the worst-case. Such a solution
addresses the type of constraints that show up in practical settings, such as in NIDS, where
the space usage is limited and the worst-case time per character needs to remain low. Our
succinct representation is summarized as follows.

» Theorem 1. For o = w(1) there exists a succinct data structure for the online dictionary
matching problem using m(Hy (D) +540(1)) +20 4 O(dlog 5) bits of space where the worst-
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Table 1 Comparison of the results.

Algorithm Space Worst-case Time | Total Time
per Character

AC (NFA) [1] O(mlogm) O(Nmax) O(|T| + occ)

AC (DFA) [1] O(molog (mo)) o(1) O(|T| + occ)

Chan et al. [12] | O(mo) O(log? m) O((|T| + occ) log? m)
Hon et al. [21] O(mlogo) O(loglogm) O(|T'|log log m + occ)
Belazzougui [7] | m(Ho(D) + 3.443 4 o(1)) + O(dlog %) O(Nmax) O(|T| + occ)

Hon et al. [22] m(Hy(D) + 54 0(1)) + O(dlog 5) O(Nmaz) O(|T'| + occ)

New (0 = w(1)) | m(Hg(D)+5+0(1)) +20 4+ O(dlog %) | O(loglogo) O(|T| + occ)

case time per character is O(loglogo), and the total time for a text query T is O(|T| + occ)
where occ is the size of the output.

Our main technique is a succinct representation of multi-labeled trees of size n, where
each node in the tree has a set of labels drawn from a set £ where A = |£|. The operations
of interest on multi-labeled trees are label dependent. In particular we will be interested in
lowest labeled ancestor (LLA) queries where given a node u and a label £ we need to report
the lowest proper ancestor of u that has label /. We show in Sections 4 and 5 how to support
such operations for general trees. Strikingly, the type of trees in our implementation of the
AC data structure exhibit some special combinatorial properties. Their properties allow an
even more succinct representation for these trees which efficiently support LLA queries and
other label dependent operations.

In this paper we propose a representation of multi-labeled trees that is succinct when
A =w(1). Although we mainly consider the LLA operation, our representation supports many
other operations as well and is succinct for more cases. Moreover, we find our implementation
of the LLA operation to be simpler than previous approaches (see below).

1.2 Related Work

The notion of succinct data structures was introduced by Jacobson [24] with succinct data
structures for bit-arrays, trees and graphs. Many succinct representations for combinatorial
objects have since been developed, including succinct representations of sets [24, 26, 30],
strings [28, 8], and trees [27, 17].

The first solution for the dictionary matching problem using less than O(mlogm) bits
was introduced by Chan et al. in [12]. Their solution also solves the dynamic variant of the
problem. Other solutions are based on using suffix trees [23, 21] and are slower than the AC
algorithm.

The first representation for the dictionary matching problem in succinct space without a

query slowdown was introduced by Belazzougui [7] which was slightly improved by Hon et al.

[22]. Succinct representations have also been developed for some variations of the dictionary
matching problem, such as dynamic dictionary matching [21, 15], 2D dictionary matching
[29], and approximate dictionary matching [21].

Labeled and multi-labeled trees.

considered by Geary, Raman and Raman [17]. However, their solution is succinct only for

_ loglogn
A= O( logloglogn

the XML Burrows—Wheeler transform. However, their representation does not support LLA
queries. Barbay et al. [5, 6] introduced a representation for labeled trees and multi-labeled

The problem of representing labeled trees was first

). Ferragina et al. [16] proposed a representation of labeled trees based on
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trees supporting a restricted set of operations which does not include LLA queries. Moreover,
their representation is succinct only when % = XD,

The only known representation of labeled trees which supports LLA queries using succinct
space are the solutions of He et al. [20] and Tsur [31]. Although these solutions are for
the labeled case, they can be extended for multi-labeled trees using the same techniques of
Barbay et al. [5], but then they would only be succinct when % = Mo,

2 Preliminaries

2.1 The Aho-Corasick data structure

The Aho-Corasick (AC) data structure [1] is a multi-pattern extension of the KMP data
structure [25]. Since the AC data structure is in the core of this paper, we present its internals
in some more detail.

The AC data structure is built upon a trie storing the patterns in D. The trie edges have
the properties that each edge is labeled by a character o € ¥, and any two edges leaving the
same node have different labels. Thus, there is a bijection between nodes in the trie and
prefixes in P(D). For a prefix u € P(D) let state(u) be the node in the trie corresponding
to u. Then u is the concatenation of the edge labels on the path from the root of the trie to
state(u). When it is clear from context, we sometimes abuse notation and refer to state(u)
as u itself.

The edges of the trie are termed as forward links. In addition to the forward links, there
are also failure links and report links. For u,v € P(D) there is a failure link from node u to
node v if and only if v is the longest string in P(D) that is a proper suffix of u. Similarly,
for uw € P(D) and v € D there is a report link from node u to node v if and only if v is the
longest string in D that is a proper suffix of w.

In order to solve the online prefix matching problem, we will move from a node u in the
AC structure that corresponds to S; to the node v that corresponds to S;11. To do this,
the AC algorithm first tries to use a forward link from u with the character ¢;4;. If no such
forward link exists, then the algorithm recursively follows failure links until either no failure
links are found (in which case v is the root of the trie) or until we reach a node that has
a forward link with the character ¢;41. One can show that the cost per character of this
process is O(1) amortized time. Once v is found we use report links to report the current
occurrences.

2.2 Succinct Representation of Trees

Representing ordinal trees. An ordinal tree 7 with n nodes is a rooted tree where the
children of each node are ordered. Each node is given a unique id from 1,...,n. We use
succinct representations of ordinal trees, where each node is given a unique id (the actual
tree is not stored). The id is the rank of the node in the pre-order traversal of 7.

We use the Balanced Parentheses (BP) representation introduced by Jacobson [24]. In
this representation we use parentheses to represent a pre-order traversal of the tree where
the first time we visit a node is represented with an open parentheses and the last time we
visit a node is represented with a close parentheses. This creates an array of 2n bits. For a
node u let open(u) and close(u) denote the open and close parentheses of w.

Base set of operations. Munro and Raman [27] showed how to support the following
operations in constant time using another o(n) bits on top of the BP representation, for a
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total of 2n + o(n) bits. By supporting this base set of operations on the BP representation
one can also support many other common operations in constant time.
findclose(l) — Given an index I = open(u) for some node u, return close(u).
findopen(r) — Given an index r = close(u) for some node u, return open(u).
enclose(i) — Return the pair of indices (I, 7) such that: (1) ! and r correspond to the same
node, (2) [ <i <r, and (3) r — is minimized.
pre__rank(i)/post__rank(i) — Return the number of open/close parentheses in the the first
1 parentheses.
pre__select(i)/post__select(i) — Return the index of the i’th open/close parenthesis.
It is important to notice that given an interval [I, r] that corresponds to a node v, the id of v

is pre_rank(l). Similarly, given the id ¢ of v we have [ = pre__select(i) and r = findclose(l).

To simplify these operations we use the notion v = node([l, r]) and [l,r] = interval(v). Our
algorithms will also make use of the following two properties of the BP representation.

» Property 2.1. Let 7 be an ordinal tree. Let u be a node in 7 whose rank in the pre-order
(post-order) on T is ¢ (). Then the open (close) parenthesis in the BP representation of 7
is i (j).

» Property 2.2. Let 7 be an ordinal tree and let [a,b] and [e, d] be two subintervals in the
BP representation of 7 that correspond to two different nodes. Then either one subinterval
is completely contained in the other or both subintervals are disjoint.

We emphasize that the 2n + o(n) bit representation of Geary, Raman and Raman [17]
subsumes the representation of Munro and Raman [27], and in particular supports the base
set of operations on the BP representation in constant time.

2.3 Labeled Trees and Multi-Labeled Trees

A labeled tree is an ordinal tree where each node has a label drawn from a set £ of size A = |L].

A multi-labeled tree is an ordinal tree where each node is associated with a (possibly empty)

subset of £. For multi-labeled trees we denote the sum of the sizes of the label subsets by .

We assume without loss of generality that A < ¢. Notice that the information-theoretic lower
bound for representing a multi-labeled tree is log (”t)‘) + log (27:‘) + o(n).

Our algorithms will make use of lowest labeled ancestor (LLA) queries on multi-labeled
trees, where given a node id u and a label ¢ we can quickly return a node id v that is the
lowest proper ancestor of u which has the label ¢, or report that no such node exists. This
operation is denoted by v = LLA(¢,u). For succinctness sake, from now on we refer to a
node id as the node itself.

Representations supporting same label operations. In order to support fast LLA queries
in succinct space we will make use of succinct representations of trees that allow us to
compute in constant time some specific operations. These operations are on a label £
and a node u where v is also labeled by ¢. The same label operations that we require
are LLA, pre_ranky and post_ranks queries. We will also want to support pre_ selectr
and post__select7 queries in constant time. For sake of simplicity we refer to all of these
operations as same label operations (although the select operations do not have any node as
input). See Table 2 for the list of these operations.
In Section 4 we prove the following theorem.

» Theorem 2. Assume there is a representation for a multi-labeled tree T using f(T) bits
that supports the same-label operations and the base set operations on the BP representation

6:5
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Table 2 Same label operations for multi-labeled trees.

Operation Description

LLA(¢,u) The closest proper ancestor of u labeled by ¢

pre__rank,(¢,u) The rank of u (by the preorder of T) in the set of nodes labeled by ¢
post__ranky(¢,u) | The rank of u (by the postorder of 7) in the set of nodes labeled by £
pre_select(¢,7) | The i’th node with label £ in the preorder of T°

post__select(¢,4) | The i’th node with label £ in the postorder of T

in O(1) time each. Then there exists a representation of T that for any A = w(1) uses
f(T) 4+ o(n+t) bits and answers any LLA query in O(loglog \) time.

We are also able to represent any tree so it can support same-label LLA queries, as long
as the label universe is an integer universe £ = {1,2,..., A}. This is discussed in Section 5,
where combined with Theorem 2 we prove the following theorem.

» Theorem 3. For any multi-labeled tree T with a label set £ ={1,2,..., A} with A = w(1),
there exists a representation of T that uses [log ("?)l +2(n+t+ A +o(n+t+ ) bits and
supports LLA queries in O(loglog \) time.

3 Dictionary Matching and Same Label Operations

The c-extended prefiz subset of D, denoted by P.(D), is the subset of P(D) which contains
all uw € P(D) such that uc € P(D) (the concatenation of u and c).

For each u € P(D) let u’® be the the string u in reverse order, and let P(D)% be the set of
all reversed prefixes of D. The suffiz-lexicographic order of P(D) is an ordering of the elements
in P(D) where the order is determined by the lexicographic order of the corresponding
elements in P(D)®. Thus, for u € P(D), the rank of u in the suffix-lexicographic order of
P(D), denoted by rank(u), is the lexicographic rank of uf* in P(D)f. Since each prefix
in w € P(D) has a unique node state(u) in the AC data structure, let rank(u) be the
unique id of state(u). Unless specified otherwise we will abuse notation and assume that
state(u) = rank(u).

Belazzougui's data structure. Belazzougui in [7] showed how one can leverage the suffix-
lexicographic order of P(D) in order to implement the AC data structure with n(Hy(D) +
3.443 4+ o(1)) + O(dlog %) bits. Our solution replaces only one particular component of
Belazzougui’s data structure which is called the failure tree, denoted by Tf.y. This tree
is defined by the failure links in the AC data structure, so that for two nodes state(u)
and state(v) we have fail(state(u)) = state(v) if and only if parentr,  (state(u)) = state(v).
An important property of T is that the pre-order traversal of Trq is exactly the suffix-
lexicographic order of P(D). Thus, Belazzougui’s data structure uses succinct representations
of ordinal trees for representing 7, that support parent operations in constant time, thereby
simulating the failure links.

3.1 Final-Failure Links

As discussed above, given some S; € P(D) and ¢ € ¥ such that S;c ¢ P(D) the time for
finding S;4+1 in the AC algorithm is © (7,4, ). This expensive runtime occurs since the AC
algorithm may traverse many failure links. However, the traversal stops when the algorithm
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reaches a node for which there exists a forward link labeled by c. If such a node exists then
this node is the final node in the traversal. We call this node the final-failure node for S;
and ¢, denoted by ff(c,S;). Notice that ff(c,u) = state(v) where v is the longest suffix of
u for which v € P.(D). If no such node exists then we say that ff(c,u) =L. The key idea
for improving the time cost per character of the AC algorithm is to find the final-failure
node directly instead of traversing all of the failure links. We emphasize that the rest of
Belazzougui’s data structure remains the same. The only thing we change is the component
for finding the final-failure.

In order to support locating the final-failure node we extend the definition of the failure
tree. Instead of representing T as an unlabeled ordinal tree, we represent 7y, as a
multi-labeled tree. For each node state(u) € Ty we say that state(u) is labeled by ¢ if and
only if u € P.(D). Notice that a node may have many labels, or no labels at all (which is why
we use a multi-labeled tree). Now the process of finding the final-failure node for state(u)
and character c reduces to finding LLA(c, state(u)) in the multi-labeled version of Tq.

Same label operations on Tf,;. We will now show how the properties of the AC structure
and the implementations we consider allow us to support the same label operations in Table 2
on Tp,y in constant time. This will allow us to use Theorem 2.

» Lemma 4. There exists an implementation of T that supports the parent operation,
same-label operations and the base set operations on the BP representation in O(1) time
using m(Hy(D) + 5+ o(1)) + 20 + O(dlog %) bits.

Proof. Our implementation of Tz, contains two components. The first component is an
implementation of the forward links of the AC data structure which is another part of
the data structure of Belazzougui [7]. For u € P.(D), the forward link from state(u) with
character ¢ € ¥ is implicitly represented by the ordered pair (¢, state(u)). Using Belazzougui’s
implementation we can move from (c, state(u)) to state(uc) or backwards in constant time.

The second component is a representation of a slightly modified version of Trq:. A key
observation with regard to the structure of T,y is that for any child of the root of Tia, all
of the nodes in the subtree of this child correspond to prefixes of the form uc for some ¢ € 3
and u € P.(D). However, it is possible that suffixes of the form uc are partitioned among
several subtrees of children of the root. For purposes that will be clear later, it is helpful to
have all of the nodes corresponding to prefixes ending with character ¢ in one unique subtree
of a child of the root. To support this, we add o new dummy nodes, one for each character in
3. These nodes will be the only children of the root. The i’th dummy has in its subtree all of
the nodes of the form vi for each P;(D) (recall that ¥ = {1,2,...,0}). This is guaranteed by
having each old child of the root become a child of the appropriate new dummy node. Notice
that the pre-order and post-order of the nodes in 7y, excluding the dummy nodes, do not
change with this modification. Rather, the i’th dummy node is inserted between the nodes
corresponding to prefixes ending with ¢ — 1 and the nodes corresponding to prefixes ending

with i in the pre-order. Thus, for ui we have pre_ranks,,(ui) = pre_ranksy,,(ui) — .

Similarly, the i’th dummy node is inserted between the nodes corresponding to prefixes

ending with 7 and the nodes corresponding to prefixes ending with 7 + 1 in the post-order.

For the rest of this proof we refer to this slightly modified tree as 7 jq;. Notice that T ju
has m + o nodes.

We represent 77, with the data structure of Geary, Raman and Raman [17] using
2m + 20 + o(m) bits. Recall that this implementation supports the base set operations on
the BP representation in constant time. The particular constant time operations we use with
this representation on 7" fq; are:
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parenty, . (u) = parent(u): Given the id of a node u € 7" fou return the id of the parent
of win T 4.

childr,,, (u,i) = child(u,i): Given the id of a node u € T,y and a positive integer i,
return the id of the ¢’th child of w in T fq4.

pre_ranks, (u) = pre_rank(u): Given the id of a node u € T, return its location in

fail
the pre-order traversal of T jq.

post_ranky. . (u) = post_rank(u): Given the id of a node u € T fz5 return its location
in the post-order traversal of 7’ fail-

pre_selecty, (i) = pre_select(i): Given an integer 1 < < m + o return the id of the
i’th node in the pre-order traversal of T~ fq;.

post_selecty (i) = post_select(i): Given an integer 1 <i < m + o return the id of the
i’th node in the post-order traversal of T” 4.
We use the parent operations on 7,4 to simulate parent operations on 7y, as follows. Due
to the dummy nodes, when invoking the parent operation on uw we check if the parent of u is
a child of the root (by invoking another call to the parent operation), and if so we treat the
root as the parent of u. Otherwise, the parent of w in 77y, is also the parent of w in Tp,.

Same label LLA. For u,v € P.(D) we have that LLA(c, state(u)) = state(v) if and only if
parentr,, (state(uc)) = state(vc). This gives lead to supporting same label LLA queries in
constant time. To do this, we first move from state(u) to state(uc) in constant time with the
forward links structure, then we move from state(uc) to parentr,, (state(uc)) = state(vc) in
constant time using parent operations on 7”1, and then we move from state(vc) to state(v)
using the forward links structure (going backwards) in constant time. The transition from
state(ve) to state(v) is executed by first finding the pair ¢, state(v) via a select operation
on state(v,c). This pair is represented using logm + log o bits. Extracting the logm bits
representing state(v) completes the transition.

Pre-order and post-order rank/select queries. We focus on the details for implementing
pre_rankr,,(c,u) for some u € P.(D) as the rest of the operations are implemented using
similar ideas (and the implementations are mostly technical). Recall that by definition,
for u € P.(D), pre_rankr,,(c,u) is exactly the rank of uc in the pre-order T4y, minus
> er<e |Per(D)]. Recall that pre_ranks,,, (uc) = pre_ranky,,,(uc)—c, so the rank of v in the
pre-order of Tz, among the nodes labeled by ¢ can be computed in constant time by invoking
pre_ranky,,,(uc). Next, let b = pre_rank(child(r,c)) where r is the root of 7" s,5. Since the
c’th child of r is the dummy corresponding to ¢, then its rank in the pre-order of 77 4,5 is exactly
> erce|Per(D)] + (¢ —1). So we can compute pre_ranky,,(c,u) = pre_ranky,,(uc) — b in
constant time.

Space usage. Our data structure uses the same space as Belazzougui’s data structure, with
the exception that instead of using 2m + o(m) bits for representing the failure tree, we use
2m + 20 + o(m) bits via the representation of Geary, Raman and Raman [17] (which also
supports base set of operations on the BP representation). Thus the total space used is
m(logo + 22 + 3.443 + o(1)) 4+ O(dlog %) bits. We further reduce the space usage using the
technique of Hon et al. [22] to compress the forward links component into its k’th order
entropy, thereby achieving a representation that uses m(Hy(D) + 5+ o(1)) + 20 4 O(dlog %)
bits. <
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3.2 Proof of Theorem 1

By combining Lemma 4 and Theorem 2 we obtain a succinct representation of 7T,y which
supports finding failure links in worst-case constant time and finding a final-failure in
worst-case O(loglog o) time, while using m(Hy(D) 45+ o(1)) 4 20 + O(dlog %) bits.

For the text processing, each time a new character arrives we traverse at most loglog o
failure links. By Lemma 4, each such traversal takes constant time via a parent operation on
Ttast- 1f one of these links leads to the final failure, then we are done. Otherwise, we invoke
the final failure procedure, which costs another O(loglog o) time. Thus, the runtime is never
worse than the runtime of the AC algorithm, and so the worst-case cost per character is
O(loglog o) (ignoring the cost of reporting the output) and the total cost for the entire text
is O(|T| + occ).

4 Solving General LLA With Same Label Operations

In this section we prove Theorem 2.

Successor Search. Recall that by the assumption of Theorem 2, the base set of operations
on the BP representation of 7 are supported in constant time. For each label £ let Iy open
and Iy ¢j0se be the set of indices in the BP representation of the open and close parentheses,
respectively, that correspond to nodes with label /.

Let M be a subset of an ordered universe U. For an element z € U the successor of x in M
is succy(z) = argmin, ¢\ {y > x}. For sake of completeness we say that if x > max,er{y}
then suceps(z) = 0o. In the following we show how successor operations on the sets Iy open
and Iy ciose are used for answering LLA queries.

» Lemma 5. Let T be a multi-labeled tree over label set L. For a node uw € T and
a label £ € L let | = succy,,,, (close(u)) and r = succy, . (close(w)). If r < I then
LLA(¢,u) = v where v = node([findopen(r),r]). If r > 1 then LLA({,u) = LLA(¢,w) where
w = node([l, findclose(l)]). If r =1 then there is no node LLA(¢, ).

Proof. Our proof has three cases. In the first case r < [, and so by Property 2.2 it
must be that open(u) > findopen(r). Therefore, the interval [findopen(r),r] contains the
interval [open(u), close(u)] implying that v is an ancestor of u. Since v is labeled with ¢ and
r = close(v) = succy, ., (close(u)) there is no node on the internal path from v to u in T
that is labeled with £. Thus, v = LLA(¢, u).

In the second case | < r. We first show that LLA(¢,u) is necessarily an ancestor of
LLA(¢, ][I, findclose(l)]) and then show that LLA(Y, [I, findclose(l)]) is necessarily an ancestor
of LLA(¢,u). Thus, the two must be the same.

Recall that the interval defined by enclose(LLA(¢,u)) contains the interval [open(u),
close(u)]. Moreover, since I < r there is no closing parentheses of a node with label ¢
at the indices strictly between close(u) and I. Therefore, the interval corresponding to
LLA(¢,u) must contain the index I. Combining this with Property 2.2 it must be that
the interval corresponding to LLA(¢,u) contains the interval [open(u), findclose(l)] and so
LLA(¢,u) is necessarily an ancestor of LLA(Y, [, findclose(l)]). For the other direction, by
Property 2.2 the interval corresponding to LLA(, [I, findclose(l)]) must contain the interval
[l, findclose(l)]. Since there is no index in Iy oper, between close(u) and [, the interval
corresponding to LLA(, [l, findclose(l)]) must contain the index close(u). Combining with
Property 2.2 the interval corresponding to LLA(Y, [I, findclose(l)]) must contain the interval
[open(u), findclose(l)], and so LLA(Y, ]I, findclose(l)]) must be an ancestor of LLA(¢, u).
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In the third case » = [. Then it must be that » = [ = oo since otherwise we have a single
index for both an open and close parentheses. Thus, there is no index of close parentheses
in the range [close(u) + 1,2n] that corresponds to a node labeled with ¢. If « has a proper
ancestor v that is labeled with ¢, then by Property 2.2 close(v) > close(u). Therefore, there
is no such ancestor, and LLA(¢,u) does not exist. <

By Lemma 5, once we perform two successor operations and a constant number of base
set operations, we either find a node v = LLA(¢,u) or we find a node w that is labeled with
¢ such that LLA(¢,u) = LLA(¢,w). Computing LLA(¢,w) in the second case takes O(1)
time since w is labeled with ¢ (and so this is a same label LLA query). What remains to be
shown is how to execute the two successor queries on the sets of indices.

Successor queries on subsets of indices. Let R be a binary matrix of size [a] x [b]. For
integers 1 <z < aand 1 <y <blet rank.q(y,z) be the number of 1s in the first x entries
of the y’th column of R. For integers 1 < j < a and 1 <y < blet select.oi(y, ) be the index
of the j’th 1 in the y’th column of R.

We focus on Iy open as the treatment of Iy cjosc is the same. Consider the binary matrix
Ropen of size [n] x [A], where Ropen[i][f] = 1 if and only if i € Iy ppen. Given a node u in T
we can find the row that corresponds to u in Rpep in constant time by executing a single
pre_rank(u) operation (which is a base set operation). Using the encoding of Barbay et
al. [b] on Rypen, we can answer rankc, and selectq, queries in O(loglog A) and O(1) time
respectively. However, this encoding makes use of O(tlog ) bits (since there are ¢ non zero
values in the matrix). We reduce this space usage using indirection as follows.

Let 7 = log2 A. For each set of indices Iy open let feyopen C Iy open be the indices whose
rank in Iy open is a multiple of 7. Notice that if Iy open| < 7 then fg,open = (). The treatment
of such cases is discussed after explaining the more challenging case. Consider the binary
matrix ]%Open of size [n] x [A], where Ropen [i][¢] =1 if and only if ¢ € I ¢,0pen- Notice that the
number of non-zero entries in }A%Open ist = O(ﬁ) We further reduce the matrix }?open by
removing all of the rows that have only zeros, and use another rank and select data structure
to move between the row indices of these matrices. This uses another ¢’ log 7 + O(t') + o(n)
bits [30], which is o(n + t) bits!.

Thus, we answer rank and select queries on the rows of I?Open using the encoding of
Barbay et al. [5] with O(¢' log A\) = o(t) bits. Given an index ¢ for which we wish to compute
s = succy, ,,,, (i) we first find § = succj, = (i) using the data structure on Ropen after

finding the appropriate row in the matrix ﬁopen with a single rank.,; operation in O(loglog \)
time. If we have successfully found 3 it must be that |ranky, ., (s) —ranky, .. (3)] < 7.
Thus, with O(log 7) executions of pre__select(¢,1) (each costing O(1) time since it is a same
label operation), we perform a binary search to find s in O(log ) time.

Finally, if we were not successful in finding § (either I, t.0pen. = (0 or © > max I, ¢,0pen) then
there are at most 7 possible elements to consider (the last 7 elements) and a binary or
exponential search with pre_ select(¢,1) operations finds s in O(log 7) time. This completes
the proof of Theorem 2

" If t < n then let t = n/z for some x. Then t'log % = 2 logzT = o(n). If t > n then t'log % =

t t —
Zlog 2T < ZlogT = o(t).
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5 Same Label Operations for General Multi-labeled Trees

In this section we prove Theorem 3. The representation of 7 uses two main components.
The first component is a label-ordered tree, which functions in a way that is similar to the
modified failure tree in the dictionary matching data structure. The second component is
an implementation of a transition operator which functions in a way that is similar to the
forward links in the dictionary matching data structure.

Label-ordered tree. The encoding technique for the label-ordered tree is similar to the
tree extraction technique used in [18, 19, 20]. For each ¢ € L let F; be the induced forest
obtained by inducing 7 on the nodes with label £. By an inducing we mean that for two
nodes u,v € Fy, u is the parent of v if and only if both v and v are labeled with ¢, and
u = LLA(¢,v). Notice that the sum of the sizes of all of the forests is exactly ¢t. For each
such forest we create a dummy node and make it the parent of all of the roots of trees in the
forest. This adds another A\ nodes. Finally, we add a special new root whose children are the
dummy nodes, ordered by their labels, thereby creating the label-ordered tree. We denote
this tree by 7. The size of T is t + A + 1. We use the data structure of Geary, Raman and
Raman [17] to represent 7~ with 2t + 2\ + o(t + \) bits, while supporting the base set of
operations on the BP representation of 7 in constant time.

Transition operator. The transition operator translates in constant time between the rank
of a node u in 7 and a label ¢, and the rank of the copy of u in 7 which is associated
with £. This translation works in both directions. To do so, for each u € T and for each
label ¢ of u, the transition operator creates the ordered pair (¢,pre_ranks(u)). Notice
that rank((¢,pre_ranky(u))) = pre_rank;(uf) — £ — 1, where the rank is taken over all
ordered pairs. Similarly, one can use a select query to translate from pre_rank;(uf) to
pre_ranks(u). We use a data structure that supports rank and select queries in constant
time [30] using [log ("t)‘)] + o(t) + O(loglog (nX)) bits.

Same label LLA. Using the above representations, we support same label LLA queries
exactly like we do in the proof of Lemma 4. Since we used a representation for supporting the
base set of operations on the BP representation of 7 in constant time, again using the ideas
in the proof of Lemma 4 we support same label operations and the base set of operations
on the BP representation of 7 in constant time. Thus, together with Theorem 2 we have
completed the proof of Theorem 3.
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