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Abstract
The Continuous Skolem Problem asks whether a real-valued function satisfying a linear differen-
tial equation has a zero in a given interval of real numbers. This is a fundamental reachability
problem for continuous linear dynamical systems, such as linear hybrid automata and continuous-
time Markov chains. Decidability of the problem is currently open – indeed decidability is open
even for the sub-problem in which a zero is sought in a bounded interval. In this paper we show
decidability of the bounded problem subject to Schanuel’s Conjecture, a unifying conjecture in
transcendental number theory. We furthermore analyse the unbounded problem in terms of the
frequencies of the differential equation, that is, the imaginary parts of the characteristic roots.
We show that the unbounded problem can be reduced to the bounded problem if there is at most
one rationally linearly independent frequency, or if there are two rationally linearly independent
frequencies and all characteristic roots are simple. We complete the picture by showing that de-
cidability of the unbounded problem in the case of two (or more) rationally linearly independent
frequencies would entail a major new effectiveness result in Diophantine approximation, namely
computability of the Diophantine-approximation types of all real algebraic numbers.
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1 Introduction

The Continuous Skolem Problem is a fundamental decision problem concerning reachability in
continuous-time linear dynamical systems. The problem asks whether a real-valued function
satisfying an ordinary linear differential equation has a zero in a given interval of real numbers.
More precisely, an instance of the problem comprises an interval I ⊆ R≥0 with rational
endpoints, an ordinary differential equation

f (n) + an−1f
(n−1) + . . .+ a0f = 0 (1)

whose coefficients are real algebraic, together with initial conditions f(0), . . . , f (n−1)(0)
that are also real algebraic numbers. Writing f : R≥0 → R for the unique solution of the
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differential equation subject to the initial conditions, the question is whether there exists
t ∈ I such that f(t) = 0. Decidability of this problem is currently open. Decidability of
the sub-problem in which the interval I is bounded, called the Bounded Continuous Skolem
Problem, is also open [4, Open Problem 17].

The nomenclature Continuous Skolem Problem is based on an analogy with the Skolem
Problem for linear recurrence sequences, which asks whether a given linear recurrence
sequence has a zero term [12]. Whether the latter problem is decidable is an outstanding
question in number theory and theoretical computer science; see, e.g., the exposition of
Tao [20, Section 3.9].

The continuous dynamics of linear hybrid automata and the evolution of continuous-
time Markov chains, amongst many other examples, are determined by linear differential
equations of the form x′(t) = Ax(t), where x(t) ∈ Rn and A is an n × n matrix of real
numbers [1]. A basic reachability question in this context is whether, starting from an initial
state x(0), the system reaches a given hyperplane {y ∈ Rn : uTy = 0} with normal vector
u ∈ Rn. For example, one can ask whether the continuous flow of a hybrid automaton
leads to a particular transition guard being satisfied or an invariant being violated. Now
the function f(t) = uTx(t) satisfies a linear differential equation of the form (1), and it
turns out that the hyperplane reachability problem is inter-reducible with the Continuous
Skolem Problem (see [4, Theorem 6] for further details). Moreover, under this reduction
the Bounded Continuous Skolem Problem corresponds to a time-bounded version of the
hyperplane reachability problem.

The characteristic polynomial of the differential equation (1) is

χ(x) := xn + an−1x
n−1 + . . .+ a0 .

Let λ1, . . . , λm be the distinct roots of χ. Any solution of (1) has the form f(t) =∑m
j=1 Pj(t)eλjt, where the Pj are polynomials with algebraic coefficients that are determined

by the initial conditions of the differential equation. We call a function f in this form an
exponential polynomial. If the roots of χ are all simple then f can be written as an exponential
polynomial in which the polynomials Pj are all constant.

The Continuous Skolem Problem can equivalently be formulated in terms of whether an
exponential polynomial has a zero in a given interval of reals. If the characteristic roots
have the form λj = rj + iωj , where rj , ωj ∈ R, then we can also write f(t) in the form
f(t) =

∑m
j=1 e

rjt(Q1,j(t) sin(ωjt) +Q2,j(t) cos(ωjt)), where the polynomials Q1,j , Q2,j have
real algebraic coefficients. We call ω1, . . . , ωm the frequencies of f .

Our first result is to show decidability of the Bounded Continuous Skolem Problem
subject to Schanuel’s Conjecture, a unifying conjecture in transcendental number theory that
plays a key role in the study of the exponential function over both the real and complex
numbers [21, 22]. Intuitively, decidability of the Bounded Continuous Skolem Problem
is non-trivial because an exponential polynomial can approach 0 tangentially. Assuming
Schanuel’s Conjecture, we show that any exponential polynomial admits a factorisation such
that the zeros of each factor can be detected using finite-precision numerical computations.
Our method, however, does not bound the precision required to find zeros, so we do not
obtain a complexity bound for the procedure.

A celebrated paper of Macintyre and Wilkie [18] obtains decidability of the first-order the-
ory of Rexp = (R, 0, 1, <, · ,+, exp) assuming Schanuel’s Conjecture over R. The proof of [17,
Theorem 3.1] mentions an unpublished result of Macintyre and Wilkie that generalises [18]
to obtain decidability when Rexp is augmented with the restricted functions sin�[0,2π] and
cos�[0,2π], this time assuming Schanuel’s Conjecture over C. This result immediately implies
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(conditional) decidability of the Bounded Continuous Skolem Problem. However, decidability
of the latter problem is simpler and, as we show below, can be established more directly.

In the unbounded case, we analyse exponential polynomials in terms of the number of
rationally linearly independent frequencies. We show that the unbounded problem can be
reduced to the bounded problem if there is at most one rationally linearly independent
frequency, or if there are two rationally linearly independent frequencies and all characteristic
roots are simple. These two reductions are unconditional and rely on the cell decomposition
theorem for semi-algebraic sets [3] and Baker’s Theorem on linear forms in logarithms of
algebraic numbers [2].

In the full version on this paper [7] we complete the picture by showing that decidability
of the unbounded problem in the case of two (or more) rationally linearly independent
frequencies would entail a major new effectiveness result in Diophantine approximation –
namely computability of the Diophantine-approximation types of all real algebraic numbers.
As we discuss in [7], currently essentially nothing is known about Diophantine-approximation
types of algebraic numbers of degree three or higher, and they are the subject of several
longstanding open problems.

The question of deciding whether an exponential polynomial f has infinitely many zeros
is investigated in [8]. There the problem is shown to be decidable if f satisfies a differential
equation of order at most 7. This result does not rely on Schanuel’s Conjecture. It is also
shown in [8] that, as with the Continuous Skolem Problem, decidability of the Infinite Zeros
Problem in the general case would entail significant new effectiveness results in Diophantine
approximation.

2 Mathematical Background

2.1 Zero Finding

Let f : [a, b]→ R be a function defined on a closed interval of reals with endpoints a, b ∈ Q.
Suppose the following two conditions hold: (i) there exists M > 0 such that f is M -Lipschitz,
i.e., |f(s) − f(t)| ≤ M |s − t| for all s, t ∈ [a, b]; (ii) given t ∈ [a, b] ∩ Q and positive error
bound ε ∈ Q, we can compute q ∈ Q such that |f(t) − q| < ε. Then given a positive
rational number δ we can compute piecewise linear functions f+

δ , f
−
δ : [a, b]→ R such that

f−δ (t) ≤ f(t) ≤ f+
δ (t) and f+

δ (t)− f−δ (t) ≤ δ for all t ∈ [a, b]. We do this as follows:

1. Pick N ∈ N such that 1
N < δ

4(b−a)M and consider sample points sj := a + (b−a)j
N ,

j = 0, . . . , N , dividing the interval [a, b] into N sub-intervals, each of length at most δ
4M .

2. For each sample point sj compute qj ∈ Q such that |qj−f(sj)| < δ
4 , define f

−
δ (sj) = qj− δ

2 ,
f+
δ (sj) = qj + δ

2 , and extend f−δ and f+
δ linearly between sample points.

Note that the Lipschitz condition on f ensures that f−δ ≤ f ≤ f
+
δ .

Now suppose that f satisfies the following additional conditions: (iii) f(a) 6= 0, f(b) 6= 0;
(iv) for any t ∈ (a, b) such that f(t) = 0, f ′(t) exists and is non-zero, i.e., f has no tangential
zeros. Then we can decide the existence of a zero of f by computing upper and lower
approximations f+

δ and f−δ for successively smaller values of δ. If f+
δ (t) < 0 for all t or

f−δ (t) > 0 for all t then we conclude that f has no zero on [a, b]; if f+
δ (s) < 0 and f−δ (t) > 0

for some s, t then we conclude that f has a zero; otherwise we proceed to a smaller value
of δ. This procedure terminates since by (iii) and (iv) either f has a zero in [a, b] or it is
bounded away from zero.
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2.2 Number-Theoretic Algorithms
For the purposes of establishing decidability, we can assume that an instance of the Continuous
Skolem Problem is a real-valued exponential polynomial f(t) =

∑m
j=1 Pj(t)eλjt, where

λ1, . . . , λm and the coefficients of the polynomials P1, . . . , Pm are algebraic, see [4, Theorem
6].

For computational purposes we represent an algebraic number α by a polynomial P with
rational coefficients such that P (α) = 0, together with a numerical approximation p + qi,
where p, q ∈ Q, of sufficient accuracy to distinguish α from the other roots of P [9, Section
4.2.1]. Given this representation we can obtain numerical approximations of α with arbitrary
precision [19]

Let K be the extension field of Q generated by λ1, . . . , λm and the coefficients of the
polynomials P1, . . . , Pm. Note that K is closed under complex conjugation. We can compute
a primitive element of K, that is, an algebraic number θ such that K = Q(θ), together with
a representation of each characteristic root λj as a polynomial in θ with rational coefficients
(see [9, Section 4.5]). From the representation of λ1, . . . , λm as elements of Q(θ), it is
straightforward to determine maximalQ-linearly independent subsets of {Re(λj) : 1 ≤ j ≤ m}
and {Im(λj) : 1 ≤ j ≤ m} (see [14, Section 1]).

Let log denote the branch of the complex logarithm defined by log(reiθ) = log(r) + iθ

for a positive real number r and 0 ≤ θ < 2π. Recall that one can compute log z and ez to
within arbitrarily small additive error given a sufficiently precise approximation of z [6].

2.3 Laurent Polynomials
Let K be a sub-field of C that has finite dimension over Q and is closed under complex
conjugation. Fix non-negative integers r and s, and consider a single variable x and tuples
of variables y = 〈y1, . . . , yr〉 and z = 〈z1, . . . , zs〉. Consider the ring of Laurent polynomials

R := K[x, y1, y
−1
1 , . . . , yr, y

−1
r , z1, z

−1
1 , . . . , zs, z

−1
s ] ,

which can be seen as a localisation1 of the polynomial ring A := K[x, y1, . . . , yr, z1, . . . , zs]
in the multiplicative set generated by the set of variables {y1, . . . , yr} ∪ {z1, . . . , zs}. The
multiplicative units of R are the non-zero monomials in variables y1, . . . , yr and z1, . . . , zs. As
the localisation of a unique factorisation domain, R is itself a unique factorisation domain [10,
Theorem 10.3.7]. From the proof of this fact it moreover easily follows that R inherits from
A computability of factorisation into irreducibles (e.g., using the algorithm of [16]).

We extend the operation of complex conjugation to a ring automorphism of R as follows.
Given a polynomial

P =
n∑
j=1

ajx
ujy1

vj1 . . . yr
vjrz1

wj1 . . . zs
wjs ,

where a1, . . . , an ∈ K, define its conjugate to be

P :=
n∑
j=1

ajx
ujy1

vj1 . . . yr
vjrz1

−wj1 . . . zs
−wjs .

1 Recall that the localisation of a commutative ring U in a multiplicatively closed subset S such that
0U 6∈ S is the ring of formal fractions US = {a/s : a ∈ U , s ∈ S}, with addition and multiplication
defined as usual.
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This definition is motivated by thinking of the variables x and y1, . . . , yr as real-valued and
the variables z1, . . . , zs as taking values in the unit circle in the complex plane.

We will need the following proposition characterising those polynomials in P ∈ R such
that P and P are associates, i.e., such that P is equal to the product of P by a monomial.
Here we use pointwise notation for exponentiation: given a tuple of integers u = 〈u1, . . . , us〉,
we write zu for the monomial zu1

1 . . . zus
s . The proof of the proposition can be found in the

full version [7].

I Proposition 1. Let P ∈ R be such that P = zuP for u ∈ Zs. Then either (i) P has
the form P = zuQ for some Q ∈ R with Q = Q, or (ii) there exists Q ∈ R such that
P = Q+ zuQ and P does not divide Q in R.

2.4 Transcendence Theory
We will use transcendence theory in our analysis of both the bounded and unbounded variants
of the Continuous Skolem Problem. In the unbounded case we will use the following classical
result.

I Theorem 2 (Gelfond-Schneider). Let a, b be algebraic numbers not equal to 0 or 1. Then
for any branch of the logarithm function, log(b)

log(a) is either rational or transcendental.

In fact we will make use of the following corollary, which is obtained by applying Theorem 2
to the algebraic numbers a = ei(α2−α1) and b = ei(β2−β1).

I Corollary 3. Let α1 6= β1, α2 6= β2 all lie in [0, π] and suppose that cos(α1), cos(α2), cos(β1)
and cos(β2) are algebraic. Then β2−α2

β1−α1
is either rational or transcendental.

Our results in the bounded case depend on Schanuel’s conjecture, a unifying conjecture
in transcendental number theory [15], which, if true, greatly generalises many of the cent-
ral results in the field (including the Gelfond-Schneider Theorem, above). Recall that a
transcendence basis of a field extension L/K is a subset S ⊆ L such that S is algebraically
independent over K and L is algebraic over K(S). All transcendence bases of L/K have the
same cardinality, which is called the transcendence degree of the extension.

I Conjecture 4 (Schanuel’s Conjecture [15]). Let a1, . . . , an be complex numbers that are
linearly independent over Q. Then the field Q(a1, . . . , an, e

a1 , . . . , ean) has transcendence
degree at least n over Q.

A special case of Schanuel’s conjecture, that is known to hold unconditionally, is the
Lindemann-Weierstrass Theorem [15]: if a1, . . . , an are algebraic numbers that are linearly
independent over Q, then ea1 , . . . , ean are algebraically independent.

We apply Schanuel’s conjecture via the following proposition.

I Proposition 5. Given non-negative integers r and s, let {a1, . . . , ar} and {b1, . . . , bs} be
Q-linearly independent sets of real algebraic numbers. Furthermore, let P,Q ∈ R be two
polynomials that have algebraic coefficients and are coprime in R. Then the equations

P (t, ea1t, . . . , eart, eib1t, . . . , eibst) = 0 (2)
Q(t, ea1t, . . . , eart, eib1t, . . . , eibst) = 0 (3)

have no non-zero common solution t ∈ R.

ICALP 2016
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Proof. Consider a solution t 6= 0 of Equations (2) and (3). By passing to suitable associates,
we may assume without loss of generality that P and Q lie in A, i.e., that all variables in P
and Q appear with non-negative exponent. Moreover, since P and Q are coprime in R, their
greatest common divisor R in A is a monomial. In particular,

R(t, ea1t, . . . , eart, eib1t, . . . , eibst) 6= 0 .

Thus, dividing P and Q by R, we may assume that P and Q are coprime in A and that
Equations (2) and (3) still hold.

Since coprime univariate polynomials cannot have a common root, we may assume without
loss of generality that r + s ≥ 1. By Schanuel’s conjecture, the extension

Q(a1t, . . . , art, ib1t, . . . , ibst, e
a1t, . . . , eart, eib1t, . . . , eibst)/Q

has transcendence degree at least r + s. Since a1, . . . , ar and b1, . . . , bs are algebraic over Q,
writing

S := 〈t, ea1t, . . . , eart, eib1t, . . . , eibst〉 ,

it follows that the extension Q(S)/Q also has transcendence degree at least r + s.
From Equations (2) and (3) we can regard S as specifying a common root of P and Q.

Pick some variable σ ∈ {x, yj , zj : 1 ≤ i ≤ r, 1 ≤ j ≤ s} that has positive degree in P . Then
the component of S corresponding to σ is algebraic over the remaining components of S. We
claim that the remaining components of S are algebraically dependent and thus S comprises
at most r + s− 1 algebraically independent elements, contradicting Schanuel’s conjecture.
The claim clearly holds if σ does not appear in Q. On the other hand, if σ has positive
degree in Q then, since P and Q are coprime in A, the multivariate resultant Resσ(P,Q) is
a non-zero polynomial in the set of variables {x, yj , zj : 1 ≤ i ≤ r, 1 ≤ j ≤ s} \ {σ} which
has a root at S (see, e.g., [11, Page 163]). Thus the claim also holds in this case. In either
case we obtain a contradiction to Schanuel’s conjecture and we conclude that Equations (2)
and (3) have no non-zero solution t ∈ R. J

3 Decidability of the Bounded Continuous Skolem Problem

Given non-negative integers r and s, suppose that {a1, . . . , ar} and {ib1, . . . , ibs} are Q-
linearly independent sets of real and imaginary numbers respectively. Let the ring of Laurent
polynomials R be as in Section 2.3 and consider the exponential polynomial

f(t) = P (t, ea1t, . . . , eart, eib1t, . . . , eibst) , (4)

where P ∈ R is irreducible. We say that f is a type-1 exponential polynomial if P and P
are not associates in R, we say that f is type-2 if P = αP for some α ∈ K, and we say that
f is type-3 if P = UP for some non-constant unit U ∈ R.

I Example 6. The simplest example of a type-3 exponential polynomial is g(t) = 1 + eit.
Here g(t) = P (eit), where P (z) = 1 + z is an irreducible polynomial that is associated with
its conjugate P (z) = 1 + z−1. Note that the exponential polynomial f(t) = 2 + 2 cos(t),
which has infinitely many tangential zeros, factors as the product of two type-3 exponential
polynomials f(t) = g(t)g(t).

In the case of a type-2 exponential polynomial P = αP it is clear that we must have
|α| = 1. Moreover, by replacing P by βP , where β2 = α, we may assume without loss of
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generality that P = P . Similarly, in the case of a type-3 exponential polynomial, we can
assume without loss of generality that P = zuP for some non-zero vector u ∈ Zs.

Now consider an arbitrary exponential polynomial f(t) :=
∑m
j=1 Pj(t)eλjt. Assume that

the coefficient field K of R contains the coefficients of P1, . . . , Pm. Let {a1, . . . , ar} be a
basis of the Q-vector space spanned by {Re(λj) : 1 ≤ j ≤ m} and let {b1, . . . , bs} be a basis
of the the Q-vector space spanned by {Im(λj) : 1 ≤ j ≤ m}. Without loss of generality we
may assume that each characteristic root λ is an integer linear combination of a1, . . . , ar
and ib1, . . . , ibs. Then eλt is a product of positive and negative powers of ea1t, . . . , eart and
eib1t, . . . , eibst, and hence there is a Laurent polynomial P ∈ R such that

f(t) = P (t, ea1t, . . . , eart, eib1t, . . . , eibst) . (5)

Since P can be written as a product of irreducible factors in R, it follows that f can be
written as product of type-1, type-2, and type-3 exponential polynomials, and moreover this
factorisation can be computed from f . Thus it suffices to show how to decide the existence
of zeros of these three special forms of exponential polynomial. We will handle all three cases
using Schanuel’s conjecture.

Writing the exponential polynomial f(t) in (5) in the form f(t) =
∑m
j=1 Qj(t)eλjt, it

follows from the irreducibility of P that the polynomials Q1, . . . , Qm have no common root.
But then by the Lindemann-Weierstrass Theorem any zero of f must be transcendental
(see [4, Theorem 8]).

I Theorem 7. The Bounded Continuous Skolem Problem is decidable subject to Schanuel’s
conjecture.

Proof. Consider an exponential polynomial

f(t) = P (t, ea1t, . . . , eart, eib1t, . . . , eibst) , (6)

where P ∈ R is irreducible. Suppose that {a1, . . . , ar} and {ib1, . . . , ibs} are Q-linearly
independent sets of, respectively, real and imaginary numbers lying in the coefficient field
K of R. We show how to decide whether f has a zero in a bounded interval I ⊆ R≥0,
considering separately the case of type-1, type-2, and type-3 exponential polynomials.

Case (i): f is a type-1 exponential polynomial

Note that P and P are coprime in R since, by assumption, they are both irreducible and
are not associates. We claim that in this case the equation f(t) = 0 has no solution t ∈ R.
Indeed f(t) = 0 implies

P (t, ea1t, . . . , eart, eib1t, . . . , eibst) = 0
P (t, ea1t, . . . , eart, eib1t, . . . , eibst) = 0 ,

and the non-existence of a zero of f follows immediately from Proposition 5.

Case (ii): f is a type-2 exponential polynomial

In this case we have P = P and so f is real-valued. Our aim is to use the procedure of
Section 2.1 to determine whether or not f has a zero in [c, d], where c, d ∈ Q. To this
end, notice first that f(c), f(d) 6= 0 since any root of f must be transcendental. Moreover,
since f ′ is bounded on [c, d], f is Lipschitz on [c, d]. It remains to verify that the equations
f(t) = 0, f ′(t) = 0 have no common solution t ∈ [c, d].

ICALP 2016
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We can write f ′(t) in the form

f ′(t) = Q(t, ea1t, . . . , eart, eib1t, . . . , eibst) ,

where Q is the polynomial

Q = ∂P

∂x
+

r∑
j=1

ajyj
∂P

∂yj
+

s∑
j=1

ibjzj
∂P

∂zj
.

We claim that P and Q are coprime in R. Indeed, since P is irreducible, P and Q can only
fail to be coprime if P divides Q.

If P has strictly positive degree k in x then Q has degree k − 1 in x and thus P cannot
divide Q. (Recall that all polynomials in R have non-negative degree in the variable x.)
On the other hand, if P has degree 0 in x then Q is obtained from P by multiplying each
monomial yuzv appearing in P by the complex-number constant

∑r
j=1 ajuj + i

∑s
j=1 bjvj .

Moreover, by the assumption of linear independence of {a1, . . . , ar} and {b1, . . . , bs}, each
monomial in P is multiplied by a different constant. Since P is not a unit, it has at least two
different monomials and so P is not a constant multiple of Q. Furthermore, for each variable
σ ∈ {yj , y−1

j : 1 ≤ j ≤ r} ∪ {zj , z−1
j : 1 ≤ j ≤ s}, its degree in P is equal to its degree in Q.

Thus P cannot be a multiple of Q by a non-constant polynomial either.
We conclude that P does not divide Q and hence P and Q are coprime. It now follows

from Proposition 5 that the equations f(t) = f ′(t) = 0 have no solution t ∈ R.

Case (iii): f is a type-3 exponential polynomial

Suppose that f is a type-3 exponential polynomial. Then in (6) we have that P = zuP

for some non-zero vector u ∈ Zs. By Proposition 1 we can write P = Q + zuQ for some
polynomial Q ∈ R that is coprime with P .

Now define

g1(t) := Q(t, ea1t, . . . , eart, eib1t, . . . , eibst)

and g2(t) := eib1u1 · · · eibsusg1(t), so that f(t) = g1(t) + g2(t) for all t.
We show that g2(t) 6= 0 for all t ∈ R. Indeed if g2(t) = 0 for some t then we also have

g1(t) = 0 and hence f(t) = 0. For such a t it follows that

P (t, ea1t, . . . , eart, eib1t, . . . , eibst) = 0
Q(t, ea1t, . . . , eart, eib1t, . . . , eibst) = 0 .

But P and Q are coprime and so these two equations cannot both hold by Proposition 5. Not
only do we have g2(t) 6= 0 for all t ∈ R, but, applying the sampling procedure in Section 2.1
we can compute a strictly positive lower bound on |g2(t)| over the interval [c, d].

Since g2(t) 6= 0 for all t ∈ R we may define the function h : [c, d]→ R by

h(t) := π + i log
(
g1(t)
g2(t)

)
.

Notice that h(t) = 0 if and only if f(t) = 0. Our aim is to use the procedure of Section 2.1
to decide the existence of a zero of h in the interval [c, d], and thus decide whether f has a
zero in [c, d].
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Let t ∈ (c, d) be such that h(t) = 0. Then g1(t) = −g2(t) and so g1(t)
g2(t) = −1 does not lie

on the branch cut of the logarithm function. It follows that h is differentiable at t and

h′(t) = 0 iff g2(t)
g1(t)

g′1(t)g2(t)− g′2(t)g1(t)
g2(t)2 = 0

iff g′1(t)g2(t)− g′2(t)g1(t) = 0 (since |g1(t)| = |g2(t)| 6= 0)

iff g′1(t)g2(t) + g′2(t)g2(t) = 0 (since g1(t) = −g2(t))

iff g′1(t) + g′2(t) = 0

iff f ′(t) = 0 .

Thus h(t) = h′(t) = 0 implies f(t) = f ′(t) = 0. But the proof in Case (ii) shows that
f(t) = f ′(t) = 0 is impossible. (Nothing in that argument hinges on f being real-valued.)
Thus h has no tangential zeros in (c, d).

We cannot directly use the procedure in Section 2.1 to decide whether h has a zero in
[c, d] since h is not necessarily continuous: its value can jump from −π to π (or vice versa)
due to the branch cut of the logarithm along the positive real axis. However, due to the
strictly positive lower bound on |g2(t)|, the function |h| is Lipschitz on [c, d]. Thus, applying
the sampling procedure in Section 2.1 for computing lower and upper bounds of Lipschitz
functions we can compute a set E ⊆ [c, d] such that E is a finite union of intervals with
rational endpoints, |f(t)| ≤ 2π

3 for t ∈ E, and |f(t)| ≥ π
3 for t 6∈ E. In particular, E contains

all zeros of f in [c, d] and f is Lipschitz on E. Thus we can apply the zero-finding procedure
from Section 2.1 to the restriction h� E and thereby decide whether h has a zero on [c, d]. J

4 The Unbounded Case

In this section we consider the unbounded case of the Continuous Skolem Problem. For our
analysis it is convenient to present exponential polynomials in the form

f(t) =
n∑
j=1

erjt (P1,j(t) cos(ωjt) + P2,j(t) sin(ωjt)) , (7)

where rj , ωj are real algebraic numbers and P1,j , P2,j are polynomials with real algebraic
coefficients for j = 1, . . . , n. Our aim is to classify the difficulty of the problem in terms of
the number of rationally linear independent frequencies ω1, . . . , ωn.

Recall that in Section 3 we have shown the bounded problem to be decidable subject
to Schanuel’s Conjecture. In the full version of this paper [7] we give a reduction of the
unbounded problem to the bounded problem in case the set of frequencies spans a one-
dimensional vector space over Q. In the present section we give a reduction of the unbounded
problem to the bounded problem in case the set of frequencies spans a two-dimensional
vector space over Q and the polynomials P1,j and P2,j are all constant. (This last condition
is equivalent to the assumption that f(t) is simple.) The argument in the two-dimensional
case is a more sophisticated version of that in the one-dimensional case, although the result
is not more general due the assumption of simplicity.

In the full version [7] we present a family of instances showing that obtaining decidability
of the unbounded problem in the two-dimensional case without the assumption of simplicity
would require much finer Diophantine-approximation bounds than are currently known.
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4.1 Background on Semi-Algebraic Sets
A subset of Rn is semi-algebraic if it is defined by a Boolean combination of constraints
of the form P (x1, . . . , xn) > 0, where P is a polynomial with real algebraic coefficients. A
partial function f : Rn → R is semi-algebraic if its graph is a semi-algebraic subset of Rn+1.
The Tarski-Seidenberg Theorem [5, Section 1] states that the semi-algebraic sets are closed
under projection and are therefore precisely the first-order definable sets over the structure
(R, <,+, ·, 0, 1).

Let (i1, . . . , in) be a sequence of zeros and ones of length n ≥ 1. An (i1, . . . , in)-cell is a
subset of Rn, defined by induction on n as follows:
(i) A (0)-cell is a singleton subset of R and a (1)-cell is an open interval (a, b) ⊆ R.
(ii) Let X ⊆ Rn be a (i1, . . . , in)-cell and f : X → R a continuous semi-algebraic function.

Then {(x, f(x)) ∈ Rn+1 : x ∈ X} is a (i1, . . . , in, 0)-cell, while {(x, y) ∈ Rn+1 : x ∈
X ∧ y < f(x)} and {(x, y) ∈ Rn+1 : x ∈ X ∧ y > f(x)} are both (i1, . . . , in, 1)-cells.

(iii) Let X ⊆ Rn be a (i1, . . . , in)-cell and f, g : X → R continuous semi-algebraic functions
such that f(x) < g(x) for all x ∈ X. Then {(x, y) ∈ Rn+1 : f(x) < y < g(x)} is a
(i1, . . . , in, 1)-cell.

A cell in Rn is a (i1, . . . , in)-cell for some (necessarily unique) sequence (i1, . . . , in).
A fundamental result about semi-algebraic sets, that we will use below, is the Cell-

Decomposition Theorem [3]: given a semi-algebraic set E ⊆ Rn one can compute a partition
of E as a disjoint union of cells E = C1 ∪ . . . ∪ Cm.

We will also need the following result, proved in [7].

I Lemma 8. Let D ⊆ Rn be a semi-algebraic set, g : D → R a bounded semi-algebraic
function, and r1, . . . , rn real algebraic numbers. Define S = {t ∈ R≥0 : (er1t, . . . , ernt) ∈ D}.
Then
1. It is decidable whether or not S is bounded. If S is bounded then we can compute T0 ∈ N

such that S ⊆ [0, T0] and if S is unbounded then we can compute T0 ∈ N such that
(T0,∞) ⊆ S.

2. If S is unbounded then the limit g∗ = limt→∞ g(er1t, . . . , ernt) exists, is an algebraic
number, and there are effective constants T1, ε > 0 such that |g(er1t, . . . , ernt)−g∗| < e−εt

for all t > T1.

4.2 Two Linearly Independent Frequencies
The following lemma, which is a reformulation of [4, Lemma 13], plays an instrumental role
in this section. The lemma itself relies on a powerful quantitative result in transcendence
theory – Baker’s Theorem on linear forms in logarithms of algebraic numbers [2].

I Lemma 9. Let b1, b2 be real algebraic numbers, linearly independent over Q. Furthermore,
let ϕ1, ϕ2 be real numbers such that eiϕ1 and eiϕ2 are algebraic. Then there exist effectively
computable constants N,T > 0 such that for all t ≥ T and all k1, k2 ∈ Z, at least one of
|b1t− ϕ1 − 2k1π| > 1/tN and |b2t− ϕ2 − 2k2π| > 1/tN holds.

The main result of the section is the following.

I Theorem 10. Let f(t) =
∑n
j=1 e

rjt (a1,j cos(ωjt) + a2,j sin(ωjt)) be an exponential poly-
nomial where rj , a1,j , a2,j , ωj are real algebraic numbers and the Q-span of {ω1, . . . , ωn} has
dimension two as a Q-vector space. Then we can decide whether or not {t ∈ R≥0 : f(t) = 0} is
bounded and, if bounded, we can compute an integer T such that {t ∈ R≥0 : f(t) = 0} ⊆ [0, T ].
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Proof. Let b1, b2 be real algebraic numbers, linearly independent over Q, such that ωj is
an integer linear combination of b1 and b2 for j = 1, . . . , n. For each n ∈ Z, sin(nb1t) and
cos(nb1t) can be written as polynomials in sin(b1t) and cos(b1t) with integer coefficients, and
similarly for b2. It follows that we can write f in the form

f(t) = Q(er1t, . . . , ernt, cos(b1t), sin(b1t), cos(b2t), sin(b2t))

for some polynomial Q with real algebraic coefficients that is computable from f .
Write R++ = {t ≥ 0 : sin(b1t) ≥ 0∧sin(b2t) ≥ 0}, R+− = {t ≥ 0 : sin(b1t) ≥ 0∧sin(b2t) ≤

0}, and likewise define R−+, R−− for the two remaining sign conditions on sin(b1t) and
sin(b2t). We show how to decide boundedness of {t ∈ R++ : f(t) = 0}. (The cases for
R+−, R−+, and R−− follow mutatis mutandis.) The idea is to compute a partition of
{t ∈ R++ : f(t) = 0} into components Z1, . . . , Zm and to separately decide boundedness of
each component Zj .

Define a semi-algebraic set

E =
{

(u, x1, x2) ∈ Rn+2 : ∃y1, y2 ≥ 0
(
x2

1 + y2
1 = x2

2 + y2
2 = 1 ∧Q(u, x1, y1, x2, y2) = 0

) }
.

Then for t ∈ R++ we have f(t) = 0 if and only if (ert, cos(b1t), cos(b2t)) ∈ E, where r =
(r1, . . . , rn). Now consider a cell decomposition E = C1∪. . .∪Cm for cells C1, . . . , Cm ⊆ Rn+2,
and define

Zj = {t ∈ R++ : (ert, cos(b1t), cos(b2t)) ∈ Cj} , j = 1, . . . ,m, (8)

Then {t ∈ R++ : f(t) = 0} = Z1 ∪ . . . ∪ Zm.
Now fix j ∈ {1, . . . ,m}. We show how to decide boundedness of Zj . To this end, write

Dj ⊆ Rn for the projection of the corresponding cell Cj ⊆ Rn+2 on the first n coordinates.
First suppose that {t ∈ R : ert ∈ Dj} is bounded. Then by Lemma 8 we can compute an

upper bound T of this set. But Zj ⊆ {t ∈ R≥0 : ert ∈ Dj} and so Zj ⊆ [0, T ].
On the other hand, suppose that {t ∈ R : ert ∈ Dj} is unbounded. Then, by Lemma 8,

this set contains an unbounded interval (T,∞) for some T ∈ N. Write I = [−1, 1] and define
functions g1, g2, h1, h2 : Dj → R by

g1(u) = inf{x ∈ I : ∃y (u, x, y) ∈ Cj} g2(u) = inf{y ∈ I : ∃x (u, x, y) ∈ Cj} (9)
h1(u) = sup{x ∈ I : ∃y (u, x, y) ∈ Cj} h2(u) = sup{y ∈ I : ∃x (u, x, y) ∈ Cj} (10)

These functions are all semi-algebraic by quantifier elimination. Hence by Lemma 8 the
limits g∗i = limt→∞ gi(ert) and h∗i = limt→∞ hi(ert) exist for i = 1, 2 and are algebraic
numbers. Clearly we have g∗1 ≤ h∗1 and g∗2 ≤ h∗2. We now consider three cases according to
the strictness of these inequalities.

Case I: g∗
1 = h∗

1 and g∗
2 = h∗

2

We show that Zj is bounded and that we can compute T2 such that Zj ⊆ [0, T2].
By Lemma 8 there exist T1, ε > 0 such that for all t > T1 and i = 1, 2,

|gi(ert)− g∗i | < e−εt and |hi(ert)− h∗i | < e−εt . (11)

Then for t ∈ R++ such that t > T1 we have

t ∈ Zj ⇐⇒
(
ert, cos(b1t), cos(b2t)

)
∈ Cj (by (8))

=⇒ g1(ert) ≤ cos(b1t) ≤ h1(ert) and g2(ert) ≤ cos(b2t) ≤ h2(ert) (by (9)(10))
=⇒ |cos(b1t)− g∗1 | < e−εt and |cos(b2t)− g∗2 | < e−εt (by (11)) (12)
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Write g∗1 = cos(ϕ1) and g∗2 = cos(ϕ2) for some ϕ1, ϕ2 ∈ [0, π]. Since | cos(ϕ1 + x) −
cos(ϕ1)| ≥ x3/3 for all x sufficiently small (by a Taylor expansion), the inequality (12) implies
that for some k1, k2 ∈ Z,

|b1t− ϕ1 − 2k1π| < 3e−εt/3 and |b2t− ϕ2 − 2k2π| < 3e−εt/3 . (13)

Combining the upper bounds in (13) with the polynomial lower bounds |b1t− ϕ1 − 2k1π| >
1/tN and |b2t−ϕ2 − 2k2π| > 1/tN from Lemma 9 we obtain an effective bound T2 for which
t ∈ Zj implies t < T2.

Case II: g∗
1 < h∗

1

In this case we show that Zj is unbounded. The geometric intuition is as follows. We imagine
a particle in the plane whose position at time t is (cos(b1t), cos(b2t)), together with a “moving
target” whose extent at time t is Γt = {(x, y) : (ert, x, y) ∈ Cj}. Below we essentially argue
that such a particle is bound to hit Γt at some time t since its orbit is dense in [−1,+1]2
and Γt has positive dimension in the limit.

Proceeding formally, first notice that Cj cannot be a (. . . , 0, 1)-cell or a (. . . , 0, 0)-cell,
for then we would have g1(u) = h1(u) for all u ∈ Dj and hence g∗1 = h∗1. Thus Cj must
either be a (. . . , 1, 0)-cell or a (. . . , 1, 1)-cell. In either case, Cj includes a cell of the form
{(u, x, ξ(u, x)) : u ∈ D, g1(u) < x < h1(u)} for some semi-algebraic function ξ.

Let c, d be real algebraic numbers such that g∗1 < c < d < h∗1. Write c = cos(ψ′) and
d = cos(ψ) for 0 ≤ ψ < ψ′ ≤ π. By Lemma 8 the limits limt→∞ ξ(ert, c) and limt→∞ ξ(ert, d)
exist and are algebraic numbers in the interval [−1, 1]. Let θ, θ′ ∈ [0, π] be such that
cos(θ) = limt→∞ ξ(ert, d) and cos(θ′) = limt→∞ ξ(ert, c).

By Corollary 3 we know that θ′−θ
ψ′−ψ is either rational or transcendental. In particular

we know that it is not equal to b2
b1
, which is algebraic and irrational. Let us suppose that

θ′−θ
ψ′−ψ > b2

b1
(the converse case is almost identical). Then there exists θ′′ with θ < θ′′ < θ′,

such that

θ < θ′′ + b2

b1
(ψ′ − ψ) < θ′ . (14)

Since 2π, b1, b2 are linearly independent over Q it follows from Kronecker’s approximation
theorem that {(b1t, b2t) mod 2π : t ∈ R≥0} is dense in [0, 2π)2 (see [13, Chapter 23]). Thus
there is an increasing sequence t1 < t2 < . . ., with b1tn ≡ ψ mod 2π for all n, such that
b2tn mod 2π converges to θ′′. Then, defining s1 < s2 < . . . by sn = tn + ψ′−ψ

b1
, we have

b1sn ≡ ψ′ mod 2π for all n and, by (14),

lim
n→∞

b2sn = lim
n→∞

b2tn + b2

b1
(ψ′ − ψ) = θ′′ + b2

b1
(ψ′ − ψ) < θ′ (mod 2π) .

Let η(t) = ξ(ert, cos(b1t)) − cos(b2t). Then for t ∈ R++ such that g(ert) < cos(b1t) <
h(ert),

η(t) = 0 =⇒ cos(b2t) = ξ(ert, cos(b1t))
=⇒ (ert, cos(b1t), cos(b2t)) ∈ Cj
=⇒ t ∈ Zj (by (8)) .

Now limn→∞ η(tn) = cos(θ) − cos(θ′′) > 0 and limn→∞ η(sn) < cos(θ′) − cos(θ′) = 0.
Moreover for n sufficiently large we have [tn, sn] ⊆ R++. It follows that η(t) has a zero in
every interval [tn, sn] for n large enough. We conclude that Zj is unbounded.
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Case III: g∗
2 < h∗

2

This case is symmetric to Case II and we omit details. J
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