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Abstract
Herman’s self-stabilization algorithm, introduced 25 years ago, is a well-studied synchronous
randomized protocol for enabling a ring of N processes collectively holding any odd number
of tokens to reach a stable state in which a single token remains. Determining the worst-case
expected time to stabilization is the central outstanding open problem about this protocol. It is
known that there is a constant h such that any initial configuration has expected stabilization
time at most hN2. Ten years ago, McIver and Morgan established a lower bound of 4/27 ≈ 0.148
for h, achieved with three equally-spaced tokens, and conjectured this to be the optimal value
of h. A series of papers over the last decade gradually reduced the upper bound on h, with
the present record (achieved in 2014) standing at approximately 0.156. In this paper, we prove
McIver and Morgan’s conjecture and establish that h = 4/27 is indeed optimal.
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1 Introduction

The notion of self-stabilization was introduced in a seminal paper of Dijkstra [11], and rose to
prominence a decade later, following (among others) an invited talk of Lamport during which
he pointed out that “self-stabilization [is] a very important concept in fault tolerance” [22].
Both self-stabilization and fault tolerance have since become central themes in distributed
computing (see, e.g., [12]), as recently witnessed by the award of the 2015 Edsger W. Dijkstra
Prize in Distributed Computing to Michael Ben-Or and Michael Rabin for “starting the field
of fault-tolerant randomized distributed algorithms” in the early 1980s.

In this paper, we examine an early self-stabilization algorithm known as Herman’s
Protocol [19], whose exact mathematical analysis has proven remarkably challenging over the
two-and-a-half decades since its inception. This algorithm considers a ring of N processes
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104:2 Proving the Herman-Protocol Conjecture

(or nodes), where each process either holds or doesn’t hold a token. Starting from any initial
configuration of K tokens, where K is required to be odd, Herman’s algorithm proceeds
as follows: at each time step, every process that holds a token either keeps it or passes it
to its clockwise neighbor with probability 1/2. All updates happen synchronously, and if a
process finds itself with two tokens (having simultaneously kept one and received one from
its counterclockwise neighbor) then both tokens are annihilated. It is straightforward to see
that, starting from an odd number of tokens and following this procedure, almost surely only
one token eventually remains, at which point the ring is said to have stabilized.

Herman’s original paper [19] presents the algorithm in a form amenable to implementation.
Each process possesses a bit, which the process can read and write. Each process can also
read the bit of its counterclockwise neighbor. In this representation, having the same bit
as one’s counterclockwise neighbor is interpreted as having a token. At each time step,
each process compares its bit with the bit of its counterclockwise neighbor; if the bits differ,
the process keeps its bit, whereas if the bits are the same, the process flips its bit with
probability 1/2 and keeps it with probability 1/2. It is straightforward to verify that the
bit-flipping version is an implementation of the token-passing version: in particular, a process
flipping its bit corresponds to passing its token to its clockwise neighbor. If the number of
processes is odd, by construction this bit representation forces the number of tokens to be
odd as well, which justifies the assumption that K, the number of tokens, is always odd.
In this paper we make no assumption about the parity of the number of processes, as we
abstract from the bit implementation, and simply assume that the number of tokens is odd
throughout.

Herman’s original paper [19] showed that the expected time (number of synchronous steps)
to stabilization is O(N2 logN). The same paper also mentions an improved upper bound
of O(N2) due to Dolev, Israeli, and Moran, without giving a proof or a further reference.
In 2004, Fribourg et al. [16] established an upper bound of 2N2, and the following year
Nakata [24] gave a tighter upper bound of 0.936N2 and exhibited an initial configuration
with expected stablization time Ω(N2). At the same time and independently, McIver and
Morgan showed in [23] that the initial configuration consisting of three equally-spaced tokens
has an expected stabilization time of exactly 4

27N
2, and conjectured that this value is an

upper bound on the expected time to stabilization starting from any initial configuration
with any (odd) number of tokens. The conjecture is intriguing since increasing the initial
number of tokens might be thought to lengthen the expected time to stabilization, due to
the larger number of collisions required to achieve stabilization.

Nevertheless, McIver and Morgan’s Herman-Protocol Conjecture is supported by consid-
erable amount of experimental evidence [5], and in the intervening years a series of papers
have gradually reduced the upper bound on the constant h such that stabilization from any
initial configuration takes expected time at most hN2: upper bounds of approximately 0.64,
0.521, 0.167, and 0.156 are given respectively in [21, 13, 14, 18], the last one provided last
year by Haslegrave, and coming relatively close to McIver and Morgan’s lower bound of
4/27 ≈ 0.148.

In this paper, we prove McIver and Morgan’s conjecture and establish that h = 4/27 is
indeed optimal. Writing Tz for the stabilization time starting from an initial configuration z,
we seek to prove that ETz ≤ 4

27N
2. To this end, one of the key ideas is to work with

a Lyapunov function V (z) in lieu of the (more complicated) function ETz. The domain
of the function V is continuous: a domain element describes a configuration in terms of
the distances between adjacent tokens. Combinatorial arguments exploiting the highly
symmetrical structure of V (z) enable us to establish that, for an arbitrary configuration z,



M. Bruna, R. Grigore, S. Kiefer, J. Ouaknine, and J. Worrell 104:3

we have ETz ≤ V (z), with equality holding for all three-token configurations. Finally, in
what constitutes the most technically challenging part of this paper, we combine induction
on the number of tokens with analytical techniques to show that V is bounded by 4

27N
2.

Taken together, we obtain ETz ≤ 4
27N

2, entailing the Herman-Protocol Conjecture.
The case of there being an even numberK of tokens is equally natural from a mathematical

point of view, although it does not correspond to a concrete bit-flipping protocol. It was
established in [14] that the worst-case configuration in this variant is the equidistant two-token
configuration, with an expected stabilization time of 1

2N
2; the analysis underlying that result

is considerably simpler than what is required in case the number of tokens is odd, as in the
present paper.

Herman’s protocol is also related to the notion of coalescing random walks [2, 8, 1]. There,
one considers multiple independent random walks on Zd (or on the vertices of a connected
graph). When two walks meet, they coalesce into a new random walk. A protocol for
self-stabilizing mutual exclusion based on such random walks was proposed in [20]. The
expected coalescence time was studied in [7, 25, 6].

It is interesting to note that Herman’s ring is closely related to widely-studied models
of random walks and Brownian motion in statistical physics. Observe that by a simple
modification of the formalism, one may equivalently view Herman’s model as a ring in which
tokens randomly move in discrete step in any direction, with pairwise collisions leading to
annihilation; this precisely corresponds to Fisher’s vicious drunks model [15] (with periodic
boundary conditions). Similar models have been studied in chemical physics [10, 3, 28] and
statistical mechanics [17, 26, 27], among others.

The rest of the paper is organized as follows. In Section 2 we review previous results in
the literature that are relevant to our proof. In Section 3 we outline the structure of our
proof, identifying two key lemmas, Lemma 8 and Lemma 9. Those are proved in [4] and
Section 4, respectively.

Another solution of the conjecture, using different techniques, is independently shown
in [9].

2 Relevant Previous Results

For the rest of the paper we fix the number N of processes. We assume that the number K
of tokens is odd, and both N and K are at least 3.

Processes are numbered from 1 to N , clockwise, according to their position in the ring.
A configuration with K tokens is formalized as a function z : {1, . . . ,K} → {1, . . . , N} with
z(1) < · · · < z(K), where the ith token (i ∈ {1, . . . ,K}) is held by the processor with the
number z(i). We write ZK for the set of configurations with K tokens, and Z for the set of
all possible configurations, that is, Z = Z1 ∪ Z3 ∪ Z5 ∪ . . .

For a fixed initial configuration z = z0 we write (zt)t≥0 for the stochastic process of
configurations emanating from z. The stabilization time Tz is the smallest t ≥ 0 such
that zt ∈ Z1, i.e., the time until only one token is left. In this paper we focus on the
expectation ETz. It is shown in [23] that if N is odd and a multiple of 3, then there is a
configuration z ∈ Z3 (with the 3 tokens maximally separated in an equilateral triangle) such
that ETz = 4

27N
2.

In this paper we show:

I Theorem 1. We have ETz ≤ 4
27N

2 for all z ∈ Z.

Equivalently, the Herman conjecture states that for all odd K ≥ 3 and all z ∈ ZK we have
ETz ≤ 4

27N
2. Only the case K = 3 was previously known [23].

ICALP 2016



104:4 Proving the Herman-Protocol Conjecture

The following proposition has been used in a similar form in various papers on Herman’s
protocol, for instance in [23, Lemma 5]. It bounds the stabilization time by a Lyapunov
function V .

I Proposition 2 (Bound by a Lyapunov function). Given z ∈ Z, denote by z′ ∈ Z the random
successor configuration of z. Let V : Z → R be a function with

E(V (z′) | z) ≤ V (z)− 1 for all z ∈ Z \ Z1, and (1)
0 ≤ V (z) for all z ∈ Z1. (2)

Then ETz ≤ V (z) for all z ∈ Z. In particular, V (z) ≥ 0 for all z ∈ Z.

Although this result is not new, we give a short proof based on a martingale argument. The
proof is inspired by [18], and may provide some intuition.

Proof. Let z ∈ Z. Consider the stochastic process (zt)t≥0 of configurations emanating
from z = z0. Define Wt := V (zt) + t. By (1) the process (Wt)t≥0 is a supermartingale. The
stabilization time Tz = Tz0 is a stopping time with finite expectation, and the differences
|Wt+1 −Wt| are bounded as the Markov chain reachable from z has finitely many states.
Hence, the optional stopping theorem applies, yielding EWTz ≤ EW0 = V (z). By definition
of Wt we have EWTz

= EV (zTz
) + ETz. Since zTz

∈ Z1, we have ETz ≤ EWTz
by (2). By

combining the previous two inequalities, we obtain ETz ≤ V (z). J

Following [14, 18] we associate with a configuration z ∈ ZK the gap vector g(z) =
(g0, . . . , gK−1) ∈ NK by setting g0 := N + z(1) − z(K), and gi := z(i + 1) − z(i) for
i ∈ {1, . . . ,K − 1}. Then g(z)/N lives in the so-called standard (K − 1)-simplex D(K),
defined by

D(K) :=
{

x = (x0, . . . , xK−1) ∈ [0, 1]K | x0 + · · ·+ xK−1 = 1
}
.

Towards a suitable Lyapunov function V we define the cubic polynomial f (K)
3 : D(K) → [0,∞)

by

f
(K)
3 (x) :=

∑
0≤i0<i1<i2<K

i2 − i1, i1 − i0 odd

xi0xi1xi2 .

For instance, we have f (5)
3 (x) = x0x1x2 + x0x1x4 + x0x3x4 + x1x2x3 + x2x3x4.

The following lemma was implicitly proved in previous works:

I Lemma 3 (Lyapunov function V3 [14, Page 240, Proof of Theorem 1] and [18, Theorem 4]).
Let V3 : Z → [0,∞) be defined by V3(z) := 4N2f

(K)
3 (g(z)/N) for z ∈ ZK . Denote by

z′ ∈ Z1 ∪ Z3 ∪ . . . ∪ ZK the random successor configuration of z ∈ ZK . Then E(V3(z′) | z) =
V3(z)− K−1

2 for all z ∈ ZK . Hence, by Proposition 2, ETz ≤ 4N2f
(K)
3 (g(z)/N).

For K = 3 Lemma 3 gives ETz ≤ 4N2f
(K)
3 (g(z)/N) = 4

N g0g1g2. In fact, for K = 3 it was
shown before in [23] that ETz is identically equal to 4

N g0g1g2, providing an exact formula
for the expected stabilization time of configurations with three tokens. Lemma 3 suggests
analyzing f3:

I Lemma 4 (Maximum of f3 [14, Proof of Theorem 2], [18, Theorem 3]). For all K ≥ 3 odd
we have

max
x∈D

f
(K)
3 (x) = f

(K)
3

(
1
K
, . . . ,

1
K

)
= 1

24

(
1− 1

K2

)
.

By combining Lemmas 3 and 4 one obtains ETz ≤ N2

6 (1− 1
K2 ), which is the bound obtained

in [14]. A slightly better bound is given in [18].
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3 Proof of the Herman Conjecture

The function V3 from Lemma 3 leaves room for improvement since E(V3(z′) | z) = V3(z)−K−1
2 ,

which is strictly less than V3(z) − 1 for K > 3. The idea for obtaining an optimal bound
is to decrease the gap between K−1

2 and 1, by decreasing the Lyapunov function V . One
could think that the scaled function 2

K−1V3 is also a Lyapunov function satisfying (1), but
this is not true; in particular, note that the number of tokens K might be different for a
configuration z and its successor z′. Since scaling does not work, we decrease the Lyapunov
function by subtracting a quintic polynomial, as follows. Define a quintic polynomial
f

(K)
5 : D(K) → [0,∞), similar to f (K)

3 :

f
(K)
5 (x) =

∑
0≤i0<i1<···<i4<K

i4 − i3, . . . , i1 − i0 odd

xi0xi1xi2xi3xi4

For instance, f (3)
5 (x) = 0, f (5)

5 (x) = x0x1x2x3x4, and f (7)
5 (x) = x0x1x2x3x4 + x0x1x2x3x6 +

x0x1x2x5x6 + x0x1x4x5x6 + x0x3x4x5x6 + x1x2x3x4x5 + x2x3x4x5x6. We also define a
polynomial f (K) : D(K) → [0,∞):

f (K)(x) := f
(K)
3 (x)− αf (K)

5 (x) with α := 24 (3)

For example, f (5)(x) = x0x1x2 + x0x1x4 + x0x3x4 + x1x2x3 + x2x3x4 − αx0x1x2x3x4.
Throughout the paper we use α in the expression of f (K) for notational convenience. From
now onwards we may drop the superscript K from the domain D(K) of the functions f (K)

3 ,
f

(K)
5 and f (K) to avoid notational clutter when K is understood.

The following properties of f are fundamental:

I Lemma 5 (Symmetry and continuity properties). The function f has the following proper-
ties.
(a) It is symmetric with respect to rotation:

f(x0, . . . , xK−1) = f(x1, . . . , xK−1, x0)

(b) It is continuous: For K ≥ 5 we have

f (K)(x0, 0, x2, x3, . . . , xK−1) = f (K−2)(x0 + x2, x3, . . . , xK−1).

Analogous properties were shown for f3 in [14]. Their proof carries over to f5 and hence to f .
The following lemma uses f to define a tighter Lyapunov function.

I Lemma 6 (Lyapunov function V ). Define V : Z → [0,∞) by V (z) := 4N2f(g(z)/N). Let
z ∈ Z and denote by z′ the random successor configuration of z. Then E(V (z′) | z) ≤ V (z)−1.
Hence, by Proposition 2, ETz ≤ 4N2f(g(z)/N).

We remark that a similar Lyapunov function has been investigated in [14, Equation (15)],
but did not lead to a proof of the Herman conjecture. It seems that V (z) needs to be chosen
with great care, since even slight variations do not work.

Lemma 6 suggests analyzing f :

I Lemma 7 (Maximum of f). For all K ≥ 3 odd we have

max
x∈D

f (K)(x) = 1
27 .

With this in hand our main result follows:

Proof of Theorem 1. Immediate by combining Lemmas 6 and 7. J

It remains to prove Lemmas 6 and 7.

ICALP 2016



104:6 Proving the Herman-Protocol Conjecture

3.1 Proof of Lemma 6
Towards Lemma 6 we show:

I Lemma 8 (Lyapunov function V5). Define V5 : Z → [0,∞) by V5(z) := 4N2f5(g(z)/N).
Let K ≥ 5 and z ∈ Z and denote by z′ the random successor configuration of z. Then

E(V5(z′) | z) = V5(z) + 1
32

(K − 1)(K − 3)
N2 − 1

2(K − 3)f3

(
g(z)
N

)
.

The proof in [4] requires an analysis of correlations among the changes in gaps between
tokens in each step of the protocol. Using Lemma 8 one can readily prove Lemma 6:

Proof of Lemma 6. For K = 3 the statement follows from Lemma 3. For K ≥ 5 we have:

E(V (z′) | z) = E((V3(z′)− 24V5(z′)) | z) by the definitions
= E(V3(z′) | z)− 24E(V5(z′) | z) linearity of expectation

= V3(z)− K − 1
2 − 24V5(z)− 3

4
(K − 1)(K − 3)

N2

+ 12(K − 3)f3

(
g(z)
N

)
Lemmas 3 and 8

≤ V (z)− K − 1
2 + 12(K − 3)f3

(
g(z)
N

)
since K ≥ 3

≤ V (z)− K − 1
2 + K − 3

2 Lemma 4

= V (z)− 1

J

3.2 Proof of Lemma 7
Towards Lemma 7 we show:

I Lemma 9 (Local maxima of f). Let K ≥ 5 and odd. There is no v ∈ D(K) in the interior
of D(K) such that v is a local maximum and f (K)(v) > 1

27 .

The proof in Section 4 involves a combinatorial analysis of inequalities arising from conditions
on the derivatives of f (K). Using Lemma 9 one can readily prove Lemma 7:

Proof of Lemma 7. We proceed by induction on K. For the induction base we have K =
3. It is straightforward to check that the maximum of f (3)(x) = f

(3)
3 (x) = x0x1x2 is

f (3)( 1
3 ,

1
3 ,

1
3 ) = 1

27 .
For the induction step we have K ≥ 5. Let v ∈ D(K) with f (K)(v) = maxx∈D(K) f (K)(x).

If v is in the interior of D(K), then by Lemma 9 we have f (K)(v) ≤ 1
27 . If v is at the

boundary of D(K), then vi = 0 for some i. By Lemma 5(a) we can assume that v1 = 0.
Using Lemma 5(b) the statement follows from the induction hypothesis. J

4 Proof of Lemma 9

In this section we prove Lemma 9. In Section 4.1 we state several properties that an interior
local maximum of f (K) would have to satisfy. In Section 4.2 we prove Lemma 9 for K = 5
for a first taste of the general argument. In Section 4.3 we prove Lemma 9 for K = 7 to
illustrate some fine points that occur only for larger values of K. In Section 4.4 we state some
combinatorial facts needed for the general case. Finally, in Section 4.5 we prove Lemma 9.



M. Bruna, R. Grigore, S. Kiefer, J. Ouaknine, and J. Worrell 104:7

4.1 Properties of an Interior Local Maximum

The following lemma is obtained by considering first and second derivatives of f evaluated
at an interior local maximum.

I Lemma 10. Let v be a local maximum of f (K) in the interior of D(K) and define c ∈ R by

c =
∑

1<i2<K
i2 even

vi2 − α
∑

1<i2<i3<i4<K
i2, i4 even

i3 odd

vi2vi3vi4 . (4)

This expression holds for the same value of c if the indices are rotated by an arbitrary k: for
all j the index ij becomes (ij + k) mod K. Further, we have

∑
3≤i3<i4<K

i3 odd
i4 even

vi3vi4 ≤
1
α
. (5)

Again, this inequality also holds when indices are rotated.

For example, for K = 7 we have c = v2 + v4 + v6 − α(v2v3v4 + v2v3v6 + v2v5v6 + v4v5v6) =
v1 + v3 + v5 − α(v1v2v3 + v1v2v5 + v1v4v5 + v3v4v5).

Proof of Lemma 10. The idea of the proof is as follows. We pick a particular direction in
D(K), namely d = (−1, 0, 1, 0, 0, . . . , 0), and consider the function f(v + εd) as a univariate
function of ε. Since v is a local maximum, the first derivative must be zero and the second
derivative must be nonpositive. Exploiting the fact that vi > 0 for all i holds in the interior,
we obtain (4) and (5), respectively. See [4] for the detailed proof. J

Let S(K)
j (x) denote the scalar product of x with a copy of itself rotated j times:

S
(K)
j (x) :=

K−1∑
i=0

xixi+j

In all formulas it will be the case that the subscript of S is odd. Also, the superscript will be
omitted when unimportant or understood from context.

I Corollary 11. Let v be a local maximum of f (K) in the interior of D(K). Then the following
inequality holds:∑

1≤i<K−2
i odd

K − i− 2
2 Si(v) ≤ K

α
.

For example, for K = 11 we have 4S1(v) + 3S3(v) + 2S5(v) + S7(v) ≤ 11/α.

I Lemma 12 (Bound for f5). Suppose that v ∈ D(K) satisfies f (K)(v) > 1
27 . Then αf5(v) <

1
216 .

Proof. By Lemma 4 we have f3(v) ≤ 1
24 and hence αf5(v) = f3(v) − f(v) < 1

24 −
1

27 =
1

216 . J

ICALP 2016
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4.2 Proof of Lemma 9 for K = 5
Let K = 5. Then

f(x) = f3(x)− αf5(x)
= x0x1x2 + x0x1x4 + x0x3x4 + x1x2x3 + x2x3x4 − αx0x1x2x3x4

Towards a contradiction, suppose that there is a local maximum v with f(v) > 1
27 in the

interior of D. By (4), the value

c = v2 + v4 − αv2v3v4 (6)

is invariant under rotations. Indeed, v2+k + v4+k − αv2+kv3+kv4+k ≡ c for all k, but we
shall avoid explicitly mentioning rotations, for notational simplicity. Summing (6) over all
K rotations we obtain:

5c = 2− αf3(v) (7)

By (6) we have v0v1c = v0v1v2 + v0v1v4 − αf5(v) and, summing over all K rotations,

cS1(v) = 2f(v)− 3αf5(v) (8)

Moreover,

cS1(v)
Cor. 11
≤ 5c

α

(7)= 2
α
− f3(v) = 2

α
− f(v)− αf5(v).

Combining this with (8) gives:

2
α

≥ 3f(v)− 2αf5(v)
Lemma 12
≥ 3

27 − 2 · 1
216

This implies α ≤ 216/11 ≈ 19.6, which is a contradiction as required (since α = 24). J

4.3 Proof of Lemma 9 for K = 7
Let K = 7. Towards a contradiction, we suppose again that there is a local maximum v
with f(v) > 1

27 in the interior of D. By (4), all K rotations of the following hold with the
same c ∈ R:

c = v2 + v4 + v6 − α(v2v3v4 + v2v3v6 + v2v5v6 + v4v5v6) (9)

Summing (9) over K rotations we obtain:

7c = 3− 2αf3(v) (10)

By (9) we have

v0v1c = v0v1v2+v0v1v4+v0v1v6−α(v0v1v2v3v4+v0v1v2v3v6+v0v1v2v5v6+v0v1v4v5v6) (11)

and

v0v3c = v0v3v4 + v0v3v6 − αv0v3v4v5v6 + v0v2v3(1− α(v3v4 + v3v6 + v5v6))
≥ v0v3v4 + v0v3v6 − αv0v3v4v5v6

(12)
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where the last inequality is by (5). Summing (11) and (12) over K rotations we obtain:

c
(
2S1(v) + S3(v)

)
≥ 4f3(v)− 9αf5(v) = 4f(v)− 5αf5(v) (13)

Further we have:

c
(
2S1(v) + S3(v)

) Cor. 11
≤ 7c

α

(10)= 3
α
− 2f3(v) = 3

α
− 2f(v)− 2αf5(v)

Combining this with (13) gives:

3
α

≥ 6f(v)− 3αf5(v)
Lemma 12
≥ 6

27 − 3 · 1
216

This leads to α ≤ 14.4, which is a contradiction as desired. J

4.4 Combinatorial Lemmas
In order to generalize the proofs from Sections 4.2 and 4.3 to any odd K, we state some
combinatorial lemmas in this subsection. They are proved in [4].

In order to generalize (7) and (10) we show the following lemma:

I Lemma 13. We have:
K−1∑
k=0

∑
1<i′0<i′1<i′2<K

i′0, i′2 even
i′1 odd

xi′0+kxi′1+kxi′2+k = K − 3
2

∑
0≤i0<i1<i2<K

i2 − i1, i1 − i0 odd

xi0xi1xi2 = K − 3
2 f

(K)
3 (x) .

For example, if K = 5, then we obtain that summing the 5 rotations of x2x3x4 gives
f

(5)
3 (x). As another example, if K = 7, then we obtain that summing the 7 rotations of
x2x3x4 + x2x3x6 + x2x5x6 + x4x5x6 gives 2f (7)

3 (x). These two instances of Lemma 13 help
establish (7) and (10).

In order to generalize the inequality in (12) we need the following lemma:

I Lemma 14. Let v be a local maximum of f (K) in the interior of D(K). If i1 is odd and
0 < i1 < K, then the following inequality holds:

v0vi1

( ∑
1<i2<K
i2 even

vi2 −
∑

1<i2<i3<i4<K
i2, i4 even

i3 odd

αvi2vi3vi4

)
≥ v0vi1

( ∑
i1<i2<K
i2 even

vi2 −
∑

i1<i2<i3<i4<K
i2, i4 even

i3 odd

αvi2vi3vi4

)
.

The inequality says that if we drop those terms that do not occur in f (K)
3 or f (K)

5 , then we
obtain a lower bound. The proof groups those terms that are not in either of f (K)

3 or f (K)
5 ,

and then invokes (5) to show that their sum is nonnegative.
In order to generalize (8) and (13) we need Corollary 16 below, which is a consequence of

the following lemma:

I Lemma 15. Let l be an odd, positive integer. Then:

K−1∑
k=0

∑
1≤i′1<K−2

i′1 odd

K − i′1 − 2
2

∑
i′1<i′2<···<i′l−1<K

∀j, i′j≡j (mod 2)

xkxi′1+k

∏
1<j<l

xi′
j
+k =

=
( l − 1

2 K − l
) ∑

0≤i0<···<il−1<K
ij − ij−1 odd for 0 < j < l

l−1∏
j=0

xij
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For example, if K = 5 and l = 3, then we have that summing 5 rotations of x0x1x2 + x0x1x4
gives 2f (5)

3 (x). As another example, if K = 9 and l = 3, then summing 9 rotations of
3x0x1(x2 + x4 + x6 + x8) + 2x0x3(x4 + x6 + x8) + x0x5(x6 + x8) gives 6f (9)

3 (x).

I Corollary 16. We have:

K−1∑
k=0

∑
1≤i1<K−2

i1 odd

K − i1 − 2
2

∑
i1<i2<K
i2 even

x0+kxi1+kxi2+k = (K − 3)f (K)
3 (x)

and also
K−1∑
k=0

∑
1≤i1<K−2

i1 odd

K − i1 − 2
2

∑
i1<i2<i3<i4<K

i2, i4 even
i3 odd

x0+kxi1+kxi2+kxi3+kxi4+k = (2K − 5)f (K)
5 (x) .

Proof. Instantiate Lemma 15 with l = 3 and, respectively, l = 5. J

4.5 Proof of Lemma 9
Towards a contradiction, suppose that there is a local maximum v with f(v) > 1

27 in the
interior of D, i.e., vi > 0 for all i ∈ {0, . . . ,K − 1}. Summing up the K rotations of (4) and
using Lemma 13, we obtain:

Kc = K − 1
2 − K − 3

2 αf3(v) (14)

Multiplying (4) on both sides by
∑

1≤i1<K−2
i1 odd

K−i1−2
2 v0vi1 we obtain:

c
∑

1≤i1<K−2
i1 odd

K − i1 − 2
2 v0vi1 =

∑
1≤i1<K−2

i1 odd

K − i1 − 2
2 v0vi1

( ∑
1<i2<K
i2 even

vi2 −
∑

1<i2<i3<i4<K
i2, i4 even

i3 odd

αvi2vi3vi4

)

≥
∑

1≤i1<K−2
i1 odd

K − i1 − 2
2 v0vi1

( ∑
i1<i2<K

i2 even

vi2 −
∑

i1<i2<i3<i4<K
i2, i4 even

i3 odd

αvi2vi3vi4

)

using Lemma 14. Summing K rotations of this inequality yields:

c
∑

1≤i1<K−2
i1 odd

K − i1 − 2
2 Si1(v) ≥ (K − 3)f3(v)− (2K − 5)αf5(v)

= (K − 3)f(v)− (K − 2)αf5(v) (15)

using Corollary 16. Further we have:

c
∑

1≤i1<K−2
i1 odd

K − i1 − 2
2 Si1(v)

Cor. 11
≤ Kc

α

(14)= K − 1
2α − K − 3

2 f3(v) .

Combining this with (15) gives:

K − 1
2α ≥ 3K − 9

2 f(v)− K − 1
2 αf5(v)

Lemma 12
≥ K − 3

2 · 1
9 −

K − 1
2 · 1

216 .
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This implies

α ≤ 216(K − 1)
23K − 71 < 19.7 .

Since α = 24, this leads to a contradiction as desired. J

5 Conclusions

In this paper we have proved the Herman-Protocol Conjecture formulated by McIver and
Morgan in [23] a decade ago, which says that the worst-case initial configuration consists of
three maximally-separated tokens, for N multiple of 3. This follows from our result that the
worst-case self-stabilization time is at most 4

27N
2, for any number of processes N and any

odd number of tokens K.
The proof uses a Lyapunov function approach. To do so, we first find a suitable Lyapunov

function and then show that its maximum is 4
27N

2. Then we show that this function gives
an upper bound for the self-stabilization time for each possible configuration in Herman’s
algorithm.
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