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Abstract
Realization of d-dimensional effective subshifts as projective sub-actions of d + d′-dimensional
sofic subshifts for d′ ≥ 1 is now well known [6, 4, 2]. In this paper we are interested in qualitative
aspects of this realization. We introduce a new topological conjugacy invariant for effective
subshifts, the speed of convergence, in view to exhibit algorithmic properties of these subshifts
in contrast to the usual framework that focuses on undecidable properties.
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Introduction

A d-dimensional subshift is a set of colorings of Zd by a finite set of colors in which a
set of forbidden patterns never appear. The simplest class, called subshifts of finite type,
corresponds at finite sets of forbidden patterns. In dimension 2, they are equivalent to the
usual notion of tilings introduced by Wang [16]. Applying a block map on a subshift of finite
type, one obtains a sofic subshift which can be characterized, in dimension 1, by a set of
forbidden patterns accepted by a finite automaton [17].

For multidimensional subshifts, we can consider their stability according to another
dynamical operation: projective subaction which consists of restricting the configurations
of a subshift to a sublattice of Zd. The smallest class stable under this operation which
contains the class of sofic shifts is the set of effective subshifts defined by a set of forbidden
patterns enumerated by a Turing machine. A consequence of the main result of [6] states
that every d-dimensional effective subshift can be obtained via projective subaction of a
d+ 2-dimensional sofic. This result was improved in [4, 2] to hold for d+ 1-dimensional sofics.

These three classes evoked are stable by conjugacy and underline links between dynamical
characterization and computability property of their set of forbidden patterns. Other classes
are exhibited in [1], using forbidden patterns recursively enumerated by Turing machine with
oracle. In this article, we introduce new conjugacy invariant classes which subdivide the
class of effective subshift based on the speed of convergence of the realization via projective
subaction. In contrast to the usual framework that focuses on undecidable properties and their
position relatively to some hierarchies [7, 15, 9, 10], the approach proposed here emphasizes
the algorithmic properties of subshifts using time and space complexity.

∗ This work was partially supported by the ANR project QuasiCool (ANR-12-JS02-011-01).
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In [14], the authors characterize one-dimensional sofic subshifts obtained by a projective
subaction of subshift of finite type. It appears a difference between certain types of sofic
subshifts, according to whether their realization can be stable or unstable that is to say if
a bounded strip around the central one is necessary to obtain the desired sofic subshift or
whether there is no bounds which guarantee to the central row to be in the subshift. This
approach is inspired by the notion of stable and unstable limit-set for cellular automata [12].

In this article, we would like to go beyond the dichotomy stable vs unstable realization
and try to quantify this notion. We introduce the notion of speed of convergence of the
realization of an effective subshift by projective subaction of a sofic. This is defined as the
function which, for a given integer k, returns the width of the strip necessary to obtain the
language of the effective subshift up to a word of size k in the central rows.

Given an effective subshift, we study the set of speeds of convergence which realizes it as
projective subaction. Modulo an equivalence relation this set is invariant under conjugacy
(Sections 1.3). In Section 2 we compare the general constructions of realization of an effective
subshift given in [6, 2] and we propose a quicker construction if the effective subshift has
a periodic point. Moreover we show that when the dimension of the sofic increase the
convergence is quicker. These results give upper bounds for realization by sofic, but is also
possible to obtain lower bounds (see Section 3). In Section 4 we present some examples of
different classes which exhibit the optimality of the different previous results.

1 Definitions and first properties

1.1 Classes of subshifts
Subshifts. Let A be a finite alphabet, a configuration x is an element of AZd . Let U be a
finite subset of Zd, denote xU the restriction of x to U. A d-dimensional pattern of support
U is an element p ∈ AU. Denote by A∗ the set of d-dimensional patterns and p ∈ AUappears
in a configuration x, denoted by p @ x, if there exists i ∈ Zd such that p = xi+U.

For the product topology, AZd is a compact metric space on which Zd acts by translation
via the shift map σ defined for all i ∈ Zd by σi(x)j = xi+j for all x ∈ AZ

d and j ∈ Zd. The
Z
d-dynamical system (AZd

, σ) is called the fullshift and a subshift is a σ-invariant closed
subset of AZd . Let T ⊂ AZd be a subshift, define L(T) = {p ∈ A∗ : ∃x ∈ T such that p @ x}
the language of T and Ln(T) = {p ∈ A[0,n−1]d : p ∈ L(T)} the square language of size n.

Finite type condition. Let F be a set of patterns, define the subshift of forbidden patterns
F by TF =

¶
x ∈ AZd : ∀p ∈ F, p 6@ x

©
. Every subshift can be defined in this way and this

allows to define classes of subshifts according to the complexity of F . Let T be a subshift,
T is a subshift of finite type if there exists a finite set of patterns F such that T = TF ;
T is an effective subshift if there exists a recursively enumerable set of patterns F (that
is to say enumerated by a Turing machine) such that T = TF .

Factor. A block map is a continuous function π : AZd → BZd such that π ◦ σi = σi ◦ π for
all i ∈ Zd. Equivalently, there exists a local function π : AU −→ B where U ⊂ Zd is a finite
set called neighborhood such that π(x)i = π(xi+U) for all x ∈ AZd and i ∈ Zd.

Let T ⊂ AZd be a subshift and π : AZd → BZd a block map, then π(T) ⊂ BZd is a
subshift called factor subshift of T by π which is called the factor map. A subshift T is called
sofic if there exists a subshift of finite type TF and a factor map π such that T = π(TF ).
The factor map π can be considered letter to letter.
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Two subshifts T and T′ are conjugate if there exists a bijective factor map ψ : T −→ T′.
The different classes of subshifts defined here (finite type, sofic and effective subshifts) are
stable under conjugacy.

Projective subactions. Let T ⊆ AZd be a subshift and d′ < d, the projective subdynamics
of T of dimension d′ is the subshift SAd′ (T) where SAd′ : AZd −→ AZd′ is defined by
SAd′ (x) = x

Zd′×{0} for all x ∈ AZ
d .

I Theorem 1. [6, 2, 4] Let Σ ⊂ AZd be an effective subshift, then the d + 1-dimensional
subshift Σ̃ = {x ∈ AZd+1 : ∃y ∈ Σ such that xZd×{i} = y for all i ∈ Z} is sofic.

In particular there exists a subshift of finite type T ⊂ BZd+1 and a factor map π : BZd+1 →
AZd+1 , which can be considered letter to letter, such that SAd (π(T)) = Σ.

1.2 Speed of convergence
Approximation row. Let F be a finite set of d-dimensional forbidden patterns on B and
d′ < d. Define Bn = {kd′+1ed′+1, . . . , kded : (kd′+1, . . . , kd) ∈ [−n, n]d−d′} where e1, . . . , ed
are the canonical vectors of Zd and denote Proji : BBn −→ B the projection according to
the coordinates i ∈ Bn.

One considers the n-approximation row of TF ⊂ (BBn)Zd′ the d′-dimensional subshift
of finite type defined by the finite condition where no patterns of F appears in the row of
width n. Formally, it is defined by:

Tn,d→d′
F =

ß
x ∈

(
BBn

)Zd′

: ∀p ∈ F, p 6@ (Projj(xi))(i,j)∈Zd′×Bn

™
.

Let π : BZd → AZd be a factor map. One has SAd′ (π(TF )) =
⋂
n∈N SAd′

Ä
π
Ä
Tn,d→d′
F

ää
where for n sufficiently large SAd′

Ä
π
Ä
Tn,d→d′
F

ää
denote the central row of π

Ä
Tn,d→d′
F

ä
.

Speed of convergence. By definition of Tn,d→d′
F , if u ∈ L (SAd′ (π(TF ))), then u ∈

L
Ä
SAd′

Ä
π
Ä
Tn,d→d′
F

äää
. We want to quantify the reciprocal, that is to say given a k, find

the smallest n such that u /∈ Lk(SAd′ (π(TF ))) =⇒ u /∈ Lk
Ä
SAd′

Ä
π(Tn,d→d′

F )
ää

. This
allows to quantify when a word is forbidden by the local rules F in the approximation row.
The speed of convergence as sofic of the cover TF with the factor π is the following function:

ϕF,π,d→d′ : N −→ N

k 7−→ min {n ∈ N : u /∈ Lk(SAd′ (π(TF )))
=⇒ u /∈ Lk

Ä
SAd′

Ä
π(Tn,d→d′

F )
ää©

.

ϕF,π,d→d′(k) corresponds to the minimum size of the row to detect a forbidden pattern in
the effective subshift realized as projective subaction of π(TF ).

I Example 2. Consider the following set of 2-dimensional forbidden patterns

F =


β a
α

, a a
β , a $ ,

b γ
α

, b b
γ

, $ b

such that
α ∈ { a , b } ,
β ∈ { $ , b } ,
γ ∈ { $ , a } .

 .

SA1 (TF ) is the subshift where {$anbm$, $anbma, banbm$, banbma : m 6= n} are the for-
bidden patterns. The idea is that in a configuration of TF , if a line contains $anbm$ with

ICALP 2016
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e1

e2 ∈ T3,2→1
F

∈ SA1
(

T3,2→1
F

)SA1

$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $$ a a a a a a a a ab b b b b b b

Figure 1 Application of SA1 under a configuration of TF and T3,2→1
F .

n 6= m then the next line in the direction e2 contains $an−1bm−1$ and recursively. Thus the
pattern a$ or $b appear and the configuration considered is excluded (see Figure 1).

In Tn,2→1
F there is only n lines to detect a forbidden pattern so SA1

Ä
Tn,2→1
F

ä
is

the subshift where the forbidden patterns are {$apbm$, $apbma, bapbm$, bapbma : m 6=
p and max(p,m) ≤ n}. We deduce that ϕF,Id,2→1(n) = bn2 c. In Section 4 we will see that it
is possible to obtain SA1 (TF ) thanks to another sofic but with a better speed.

1.3 Subshift (ϕ, d)-realizable by sofic

A speed of convergence is in F , the set of non-decreasing functions from N to N. Denote

FSoficΣ,d→d′ =
ß
ϕ ∈ F : ∃F ⊂

finite
B∗ and π : B → A with ϕ = ϕF,π,d→d′ and SAd′ (π(TF )) = Σ

™
.

By Theorem 1, FSoficΣ,d→d′ 6= ∅ if and only if Σ is effective. Using the fact that a sofic subshift
can superpose different layers and delete them with the factor, it is easy to verify that
FSoficΣ,d→d′ is stable by min, max, multiplication by an integer, division by an integer, addition
and multiplication. Moreover FSoficΣ,d→d′ ⊂ F

Sofic
Σ,d+1→d′ .

Invariance of (ϕ, d)-realizable subshift under conjugacy. We need to introduce a preorder
relation on F . We say that ϕ ≺ ϕ′ if there exists r,M ∈ N such that ϕ(k) ≤Mϕ′(k + r) for
all k ∈ N. We say that ϕ ∼ ϕ′ if ϕ ≺ ϕ′ and ϕ′ ≺ ϕ. Multiplication by M comes from the
fact that a given speed can be improved by division by an integer and addition by r allows
stability by conjugacy.

A d′-dimensional subshift Σ is (ϕ, d)-realizable by projective subaction of sofic if there exist
a finite set of d-dimensional forbidden patterns F and a factor π such that SAd′ (π(TF )) = Σ
and ϕF,π,d→d′ ≺ ϕ. The subshift Σ is sharp (ϕ, d)-realizable if moreover ϕ ≺ ϕ′ for all
ϕ′ ∈ FSoficΣ,d→d′ .

I Proposition 3. Let Σ and Σ′ be two conjugated d′-dimensional subshfits. The subshift Σ
is (ϕ, d)-realizable by projective subaction of a sofic if and only if it is the same for Σ′.

Proof. Let ψ : Σ −→ Σ′ be the conjugation map of neighborhood U = [−r, r]d′ . The local
function can be extended in a function ψ : AZd −→ BZd of neighborhood U = [−r, r]d′ ×{0}.

Let TF be a subshift of finite type and π be a factor such that SAd′ (π(TF )) = Σ, one
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has SAd′ (ψ ◦ π(TF )) = Σ′. Let u ∈ B[0,k−1]d
′

and ϕ = ϕF,π,d→d′ , one has

u /∈ L(Σ′) =⇒
{
v ∈ A[−r,k+r−1]d

′

: ψ(v) = u
}
6⊂ L(Σ)

=⇒
{
v ∈ A[−r,k+r−1]d

′

: ψ(v) = u
}
6⊂ L
Ä
SAd′

Ä
π
Ä
Tϕ(k+2r),d→d′
F

äää
=⇒ u /∈ L

Ä
SAd′

Ä
ψ ◦ π

Ä
Tϕ(k+2r),d→d′
F

äää
Thus ϕF,ψ◦π,d→d′(k) ≤ ϕF,π,d→d′(k + 2r), the reciprocal is obtained using ψ−1. J

2 Speed of convergence in general constructions

2.1 Notion of Turing machines
A k-tapes Turing machine M = (k,Q,Γ,#, q0, δ, QF ) is defined by:

Γ a finite alphabet, with a blank symbol # ∈ Γ. Initially, k infinite memory tapes
represented as an element of (Γk)Z, are filled with #, except for a finite prefix on the
first tape (the input), and a computing head is located on the first letter of the tape;
Q the finite set of states of the head and q0 ∈ Q is the initial state;
δ : Q× Γk → Q× Γk × {←, · ,→}k the transition function. Given the state of the head
and the letter associated, it reads on the tape, depending on its position, the head can
change state, replace the letter and move by one cell at most.
QF ⊂ Q the set of final states, when a final state is reached, the computation stops and
the output is the value currently written on the tape.

Turing machines are a very robust model of computation, there exist several variants
in the literature which are equivalent from a decidability point of view. Nevertheless these
modifications on the definition are not without effects on the time and space complexities
(time unit is one application of the transition function, space unit is one cell of the tape). To
detect forbidden patterns in the projective subaction, one of the fundamental construction is
the use of laical rules to encode Turing machine computations. In this article we choose to
use the basic version ofM but the reader should have in mind that it is possible to improve
time and space complexities, using by instance these non-exhaustive acceleration techniques:

Compare-Copy: compare or copy instantaneously a word between two markers between
two tapes;
Transfer head: transfer instantaneously the head to another cell of the tape marked by
a special symbol;
Fill: fill instantaneously a part of a tape with a periodic pattern.

Let F be a recursively enumerable set of forbidden patterns, then the complementary
of L(TF ) in A∗, denoted L(TF )c is also recursively enumerable. ConsiderML(TF )c be a
Turing machine which enumerates L(TF )c, denote

DtimeML(TF )c (k) the maximal time needed by the Turing machineML(TF )c to know if
a pattern of size k is not in the language of TF ;
DspaceML(TF )c (k) the maximal space needed by the Turing machineML(TF )c to know
if a pattern of size k is not in the language of TF (only the space necessary for the
computation is taken in consideration and the input is considered in an auxiliary tape).

I Remark. DtimeML(TF )c and DspaceML(TF )c are not computable if L(TF )c is not recursive.

ICALP 2016
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Let F be a set of patterns andMF a Turing machine, called enumerative Turing machine
of F , with the following behavior: it starts on the empty tape and successively writes the
patterns of F on its tape. A set of finite patterns F forbids the pattern w if w /∈ L(TF ).
LetMF be an enumerative Turing machine of F , denote DtimeenuMF

(k) (resp. DspaceenuMF
(k))

the smallest time (resp. the smallest space) taken by the Turing machine MF such that
the subset FDtimeenu

MF
(k) of F (resp. FDspaceenu

MF
(k) ⊂ F ) generated at this time (resp. at this

space) forbid all the words of Lk(TF )c.

2.2 Speed of convergence for previous constructions
In this section, we give some elements to determine the speed of convergence given by the
construction of [6] and [2]. The idea is to “program” a d-dimensional subshift of finite type,
denoted TFinal whose projective subaction is a given effective subshift Σ ⊂ AZ where d = 3
in [6] and d = 2 in [2]. In the two constructions, TFinal is constituted by three layers:

the first one is AZd and contains different copies of the same configuration y ∈ AZ
superposed on additional directions, the additional finite type conditions check if y ∈ Σ;
the second is TGrid ⊂ AZ

d

Grid and constructs a grid which allows to implement well
initialized Turing machine in all configurations with different sizes for time and space;
the third is TM ⊂ AZ

d

M and checks if no forbidden pattern appears: the purpose is to
implement a Turing machineMF which enumerates forbidden patterns which define Σ
and an additional procedureMSearch which checks if the patterns produced appear in
the configuration of the first layer (if it is the case, the Turing machine enters in a special
state which is forbidden by TFinal).

Thus x ∈ TFinal ⊂ AZ
d×TGrid×TM if and only if there exists y ∈ Σ such that y = π(x)i+Ze1

for all i ∈ 〈e2, . . . , ed〉Z where π is the factor on the first layer which deletes computation
states. In particular Σ = SA1 (π(TFinal)) but moreover Σ is conjugate to a sub-action of
π(TFinal). This result is stronger that just realization by projective subaction and allows to
construct local rules for exotic tilings [3, 5].

In the two articles, TGrid is defined by a substitution. Mozes’ result [13] gives local
rules which force a cell to be in a super tile of order n well formed without considering
the whole configuration. To determine ϕFFinal,π,d→1, it is sufficient to analyze the size in
TGrid necessary for thatMF enumerates patterns of size k and all zones are checked by the
additional procedureMSearch. This depends of DtimeenuMF

(k) and DspaceenuMF
(k).

Speed of convergence in the construction of [6]. As it is described in Section 4 of [6],
TGrid gives a rectangular partition of Z3 generated by Ŵ3 × Ŵ5 where Ŵ3 and Ŵ5 are
obtained by a substitution. Thus for s, t ∈ N there exists M ⊂ Z such that for all i ∈ M,
the slice {i} × Z2 is partitioned into rectangles of size 3s × 5t which delimits computation
zones. Moreover M does not have gap bigger than 3s5t. To copy the initial configuration
onto the first layer, we need an approximation row of width O(3s5t) to detect a forbidden
word enumerated in space less than 3s and in time less than 5t. One deduces that

(k 7−→ ϕFFinal,π,3→1) ∼
(
k 7−→ DspaceenuMF

(k)DtimeenuMF
(k)
)
.

Speed of convergence in the construction of [2]. As it is described in Section 2, Fact
2.4, of [2], TGrid defines fractured zone of computation to implement the Turing machine of
size 2n × 22n , the first coordinate according to e1 corresponds to the space and the second
according to e2 corresponds to the time. By the substitution rules and the clock rules,
this fractured zone of computation is included in a pattern of TGrid of size 4n × (2n+2n)
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and every row T2n+2n
,2→1

Final contains such computation zone every 4n cells. Since the time
to cheek if a forbidden pattern of size k appears in the responsibility zone (n22n steep
in direction e2 by Fact 3.4 of [2]) is negligible according to the time given to the Turing
machine to compute forbidden patterns (2n+2n steep in direction e2), one deduces that
(k 7→ ϕFFinal,π,2→1(k)) ∼

Ä
k 7→ 2n(k)+2n(k)ä where n(k) = min{n : DspaceenuMF

(k) < 2n}. So

(k 7−→ ϕFFinal,π,2→1) ∼
Ä
k 7−→ DspaceenuMF

(k)2Dspaceenu
MF

(k)
ä
.

2.3 A more efficient construction
In the particular case where Σ is an effective subshift with a periodic configuration, the
construction can be highly simplified and the speed of convergence is improved. In a few
words, the same type of construction with different layers is built, however the computation
checks if no forbidden patterns appear only in one line, the other lines are mapped into the
periodic configuration by the factor map. Thus the computation zones do not need to be
fractionated and simplified layer TGrid allows a computation in real time.

I Theorem 4. Let Σ ⊂ AZd be an effective subshift of dimension d with a periodic point
(∞w∞ ∈ Σ) defined by a set F of forbidden patterns enumerated by a Turing machineMF .
Then there exists a subshift of finite type TFFinal of dimension d+ 1 and a factor map π such
that SAd (π(TFFinal)) = Σ and ϕFFinal,π,d+1→d ∼ Dtimeenu

MF
.

Proof. Assume thatMF enumerates patterns of F on the first tape separated by the symbol
$ and that the tapes ofM are onesided. The different layers of TFFinal are:

Layer 1: The first layer is TLine ⊂ ((A× { , }) ∪ { })Z
2
the subshift of finite

type such that for x ∈ TLine there is at most one i ∈ Z such that SA1
(
σie2(x)

)
=∞ ∞

and for all j 6= i one has SA1
(
σje2(x)

)
∈ {σk(∞w∞) : k ∈ Z} × { , }Z.

Layer 2: The second layer is the subshift TConfig = {x ∈ AZ2 : σe1−e2(x) = x}, the
configuration is shifted in view to scan two adjacent areas (and their frontier) during the
comparison.
Layer 3: The third layer is the subshift of finite type TGrid ⊂ { , ∗ , , ∗ }Z

2
such

that on each line of x ∈ TGrid, the two colors alternates and this alternation is repeated
above until it crosses a line which contains the symbol ∗. In this case the transitions
red/blue become monochromatic and the transitions blue/red force the alternation.
Thus the sequences of monochromatic colors become larger. We remark that if a line
contains the periodic configuration ∞ ( )∞, then all lines below contain this periodic
configuration and above, if we have crossed n times a line with the symbol ∗, we obtain a
line with the periodic configuration ∞( 2n 2n

)∞ (see Figure 2).
Layer 4: Denote AM = ((Q× Γ) ∪ Γ)k where k is the number of tapes, the fourth layer
is a subshift of finite type TM ⊂ AZ

2

M where the local rules are given by the transition
rules δ ofMF .
Layer 5: The fifth layer is the full-shift TCompar = { }Z2 .

To obtain the subshift of finite type TFinal ⊂ TLine ×TConfig ×TGrid ×TM ×TCompar we
add a finite set of forbidden patterns FSynchroLine ∪ FInit ∪ FExtend ∪ FCompar which codes the
interaction between the different layers. These local rules are:

Rules FSynchroLine: These rules imply that if a line ∞ ∞ appears in the layer TLine of
a configuration, then it is synchronized with a periodic point ∞ ∞ or ∞ ∗ ∗ ∞ in
the layer TGrid.
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x =

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

y =

∗ ∗ ∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗

Figure 2 x and y are two examples of configurations of TGrid and y contains ∞ ( )∞.

Rules FInit: They imply that the initialization state q0
]

appears in the layer TM on
each cell in correspondence to the line ∞ ∞ in the layer TLine.
Rules FExtend: They imply that if a computation needs more space, the symbol ∗ appears
in the layer TGrid (thus the computation zones is doubled) and the tape in the layer TM
corresponding to the old red zone is erased (to have only one computation by computation
zone). Thus the space allowed by a Turing machine is doubled if the head was in a blue
zone.
Rules FCompar: They imply that if a forbidden pattern appears in the enumeration obtained
in TM then it is compared with the corresponding pattern which appears in TConfig. If
the two patterns coincide then the configuration is forbidden in TFinal.

Define the factor map πFinal : TFinal → AZ
2 such that for x ∈ TFinal and i ∈ Z2, π(x)i is

the cell of the layer TConfig if we are in the line ∞ ∞ in TConfig and the cell corresponding
to the periodic orbit of TLine if not.

For x ∈ Σ it is easy to construct y ∈ TFinal such that SA1 (πFinal(y)) = x. Recip-
rocally, consider y ∈ TFinal. If πLine(y)(0,0) 6= then SA1 (πFinal(y)) =∞ w∞ ∈ Σ. If
πLine(y)(0,0) = , we consider u a sub-pattern of x = SA1 (πFinal(y)) of size n. Assume
that u /∈ L(Σ), so there exists a word w @ x enumerated byM in time tF (n) = DtimeenuM (n)
and space sF (n) = DspaceenuM (n) such that w @ u. By construction of TFinal, one has
SA1

(
πGrid(σtF (n)(y))

)
=∞ ( 2k 2k

)∞ where k = min{k′ : sF (n) < 2k′}. Since the
configuration is shifted on TConfig and compared instantaneously thanks to TCompar, we
conclude there exists k′ such that tF (n) ≤ k′ ≤ tF (n) + 21+min{k:sF (n)<2k} where the word
w is detected in the line yZ,k′ . By the condition FCompar this is impossible.

Thus SAe1Z

(
πFinal(TFinal)

)
= Σ and ϕF,π,2→1(k) = tF (k) + 21+min{n:sF (k)<2n} for all

k ∈ N. In particular ϕF,π,2→1 ∼ max(DtimeenuMF
,DspaceenuMF

) = DtimeenuMF
. J

2.4 Increase the dimension to increase the speed
Generally, properties studied on subshifts of finite type exhibit a gap between dimension
one and dimension two. The most famous is the undecidability of the domino problem in
dimension d ≥ 2. In this section we exhibit a gap which appears in an algorithmic point of
view.

I Theorem 5. Let Σ ⊂ AZd be a subshift which is (ϕ, d+d′)-realizable by projective subaction
of a sofic then it is (ϕ d′

d′′ , d+ d′′)-realizable by projective subaction of a sofic for d′′ ≥ d′.

Proof. Let Σ ⊂ AZ be an effective subshift. Consider TF ⊂ BZ
2 a subshift of finite type such

that SA1 (π(TF )) = Σ. Denote ϕ = ϕF,π,2→1. One constructs TF ′ ⊂ B′Z
3 a subshift of finite
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type and π′ : B′ → A a factor map such that SA1 (π′(TF ′)) = Σ and ϕF ′,π′,3→1 ∈ Θ(√ϕ).
This prove the Theorem for d = 1, d′ = 1 and d′′ = 2.

Construction of a tangled grid. Consider the alphabet C formed by , , , their
rotations and their symmetrized about to the axis, thus card(C) = 3× 4× 2 = 24 and define
the following substitution on C (modulo rotations and symmetries):

s:

By iterating substitution s on a letter a ∈ C, we construct for every n ∈ N the pattern
sn(a) called the super-tile of order n and type a. The substitutive subshift defined by

Ts =
¶
x ∈ CZ

2
: u @ x if there exists n ∈ N and a ∈ C which verifies u @ sn(a)

©
,

is sofic according to Mozes’ result [13]. Thus there exists a finite set of forbidden patterns Fs
and a factor map πs : Cs → C such that πs(TFs

) = Ts. In the Mozes’ construction the local
rules Fs force every super tile of order n to be assembled in a super tile of order n+ 1. Thus
if p ∈ C[−k,k]2

s does not contain patterns of Fs, then the center letter p0 is in a super-tile of
order n such that 2n ≤ k < 2n+1. In this super tile, the arrows form a connected tangled
segment of size 2n2 .

Construction of a three-dimensional sofic subshift which realizes Σ. Consider the subshift
of finite type TF ′ ⊂ B′Z

3 where B′ = B × Cs such that
for all i ∈ Z the Z2-configuration πCs

(x)ie1+Z2 is an element of Ts;
the 2-dimensional forbidden patterns of F are transfered in 3-dimensional forbidden
patterns where the second coordinate is wrapped following the tangled grid (see Figure 3).

Let π′ be the application of π following the tangled grid, we obtain SA1 (π′(TF ′)) = Σ.

π′(TF ′) has the expected speed of convergence. By definition of the speed of convergence,
for any u ∈ Ak, if u /∈ Σ then u /∈ L

Ä
π
Ä
SA1

Ä
Tϕ(k),2→1
F

äää
.

Let z ∈ T
2
⌈√

ϕ(k)
⌉
,3→1

F ′ . The condition Fs verified on z
{0}×

[
−2
⌈√

ϕ(k)
⌉
,2
⌈√

ϕ(k)
⌉]2 im-

plies that z0 is included in a super-tile of order n =
ö
log2

Ä†√
ϕ(k)
£äù

. One deduces
that z0 is in the center of a segment constituted following the arrows of C of amplitudeÅ

2
⌊

log2

(⌈√
ϕ(k)

⌉)⌋ã2
. Like the local transitions F are transfered, there exists y ∈

SA1
Ä
Tϕ(k),2→1
F

ä
which correspond to z in the wrapped zone. Thus u /∈ L

Å
T

2
⌈√

ϕ(k)
⌉
,3→1

F ′

ã
that is to say ϕF ′,π′,3→1 ≺

√
ϕ. In the same way the reverse holds and so ϕF ′,π′,3→1 �√

ϕ. J

I Remark. Exemples of Section 4 show that this theorem is optimal.
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•

Σ Pattern of TF ′Pattern of TF

Figure 3 Pattern of TF wrapped following the tangled grid in a pattern of TF ′ . The subshift Σ
is obtained taking factor π or π′ and projective subaction following e1.

3 Lower bounds for the speed of convergence of a subshift

3.1 Combinatorial lower bounds

Let Σ be a one dimensional subshift and let u ∈ A∗, the follower set of word of size k of
u is FolkΣ(u) = {v ∈ Lk(Σ) : uv ∈ L(Σ)}. If u /∈ L(Σ) then FolkΣ(u) = ∅. Moreover one has
card({Folk2

Σ (u) : u ∈ Ak1}) ≤ card(A)k1 .

I Theorem 6. Let Σ ⊂ AZ be an one dimensional effective subshift and ϕ ∈ FSoficΣ,d with
d ≥ 2. Then there exists a constant M such that for all k1, k2 ∈ N one has:

MϕF,π,d→1(k1 + k2) ≥
Ä
log(card({Folk2

Σ (u) : u ∈ Ak1}))
ä 1

d−1
.

Proof. Assume that Σ = SA1 (π(TF )) and ϕ = ϕF,π,d→1. For u ∈ Lk1(Σ), one has

Folk2
Σ (u) =

¶
SA1 (π(x))[0,k2−1] ∈ A

k2 :

x ∈ Tϕ(k1+k2),d→1
F such that SA1 (π(x))[−k1,−1] = u

©
.

Let r such that the support of every pattern of F is included in [0, r − 1]d. For x ∈
Tϕ(k1+k2),d→1
F ⊂ BZd such that SA1 (π(x))[−k1,−1] = u ∈ Ak1 , the knowledge of

x[−r,−1]×[−ϕ(k1+k2),ϕ(k1+k2)]d−1 is sufficient to determine which set of {Folk2
Σ (u′) : u′ ∈ Ak1}

is allowed to complete u ∈ Ak1 by a word v ∈ Ak2 such that

uv ∈ Lk1+k2(SA1
Ä
π(Tϕ(k1+k2),d→1

F

ä
) = Lk1+k2(Σ) .

Thus card({Folk2
Σ (u) : u ∈ Ak1})) ≤ Br(2ϕ(k1+k2)+1)d−1 .
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ϕ(k1 + k2)

r

k1 k2 Σ

J

3.2 Computational lower bounds
I Theorem 7. Let Σ ⊂ AZ be an one dimensional effective subshift and ϕ ∈ FSoficΣ,d . There
exists a Turing machineM whose the domaine is L(Σ)c such that

max(log, (ϕF,π,d→1)d−1) � log ◦DtimeM;
(ϕF,π,d→1)d−1 � DspaceM.

Since L(Σ)c is not necessarily recursive, DtimeM and DspaceM are not necessarily comput-
able.

Proof. Let F be a finite set of forbidden patterns of maximal size r such that Σ =
SA1 (π(TF )) and ϕ = ϕF,π,d→1. Denote Bn = {k2e2 +· · ·+kded : (k2, . . . , kd) ∈ [−n, n]d−1}
and Tm = Tm,d→1

F . One has Lk
(
SA1

(
π(Tϕ(k))

))
= Lk(Σ) and Tϕ(k) ⊂

(
BBϕ(k)

)Z is a
one-dimensional subshift of finite type of order r. This subshift can be represented by
a graph where the vertices are

(
BBϕ(k)

)r ∩ L(Tϕ(k)) and there is an edge from u to v if
the two words coincide except for the extremal letters (see [11]). Thus this graph has at
most card(B)r(2ϕ(k))d−1 vertices and can be viewed as an automaton which accepts words of
L(π(Tϕ(k))), this takes a linear time in the size of the graph.

To determine if u /∈ L(Σ), it is sufficient that u /∈ L(SA1 (π(Tm))) for some m ∈ N. We
implement an algorithm which explores the graph generated by Tm for each m ∈ N and
search if u is accepted with the corresponding automaton. One knows if u ∈ L(SA1 (π(Tm)))
in time O(k card(A)r(2m)d−1). This algorithm halts on u /∈ L(Σ) in time

DtimeM(k) ≤M k

ϕ(k)∑
m=1

card(A)r(2m)d−1
≤M kϕ(k)card(A)r(2ϕ(k))d−1

Since ϕ(k) ≤ ϕd−1(k), it follows that max(log, ϕd−1) � log ◦DtimeM.We deduce the first
point of the theorem.

To prove the second point, the naive procedure to find a configuration of SA1 (π(Tm))
which contains u in the center is to start from an element of

(
BBn

)r ∩L(Tm) and complete it
respecting the condition F until it finds again a one-sided periodic orbit. To be sure to explore
all the orbits it is possible to order them lexicographically. Thus, the algorithm just needs to
know the last orbit checked, this needs r(2m)d−1 space to know if u ∈ L(SA1 (π(Tm))). If
u /∈ L(Σ), the algorithm halts when it explores

(
BBn

)r ∩ L(Tϕ(k)). So there exists M > 0
such that M(ϕ(k))d−1 ≥ DspaceM(k). We recall that the word u is written on an annex
tape which is only used for the reading and which is not counted in DspaceM. J

I Remark. These theorems do not generalize to dimension 2: Theorem 6 uses a characteriza-
tion of one dimensional sofic subshifts with follower sets and Theorem 7 is blocked by the
undecidability of emptiness of two-dimensional subshifts of finite type.

ICALP 2016



110:12 Algorithmic Complexity for the Realization of an Effective Subshift By a Sofic

A configuration of TFlog
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Figure 4 A configuration of TFlog .

4 Some classes of speed of convergence and perspectives

In this section we give the sharp realization of some one-dimensional subshifts.
I Sofic subshift. A subshift is constant-realizable by sofic if and only if it is sofic (see [14]).
I Gap under constant-realizable. If a subshift Σ ⊂ AZ is (ϕ, 2)-realizable by sofic with
ϕ ∈ o(log(log(n))) then this subshift is sofic. Indeed, by Theorem 7, L(Σ)c can be recognized
in space o(log(log(n))), thus L(Σ)c is rational (see [8]), that is to say Σ is sofic.

Let L ⊂ A∗ be a language and $ /∈ A. Define the subshift T (L) = TFL ⊂ A′Z where
A′ = A ∪ {$} and F = {$u$ : u /∈ L}. If L is effective then T (L) is an effective subshift.
I log-realizable. Consider L= = {anbn : n ∈ N}. The subshift T (L=) ⊂ {a, b, $}Z is
sharp ((log)

1
d−1 , d)-realizable by sofic for d ≥ 2. Theorem 6 gives the lower bound since

card({FolnΣ(u) : u ∈ An}) ≥ card({FolkΣ($ak) : k ∈ [0, n− 1]}) = n.

For d = 2, the upper bound is obtained considering the subshift of finite type TFlog ⊂
{a, b, $, 0a, 1a, ∅a, 0b, 1b, ∅b}Z

2 where Flog are the forbidden patterns of shape U = which
do not appear in the configuration represented in Figure 4. The factor π maps $ on $,
{0a, 1a, ∅a} on a and {0b, 1b, ∅b} on b. The idea is to implement counters which grow when
going from $’s region and compare them at the frontier. The upper bound for d ≥ 3 is
obtained using Theorem 5.

In the same way the subshift T (Lsquare) defined with the langage Lsquare = {anbn2 : n ∈
N} is sharp ((log)

1
d−1 , d)-realizable by sofic.

I Linear-realizable. For u ∈ {0, 1}∗, define u the miror of u. Consider Lpalin = {uu : u ∈
{0, 1}∗}, the subshift T (Lpalin) ⊂ {0, 1, $}Z is sharp ((Id)

1
d−1 , d)-realizable by projective

subaction of sofic for d ≥ 2 where Id : k 7→ k. Theorem 6 gives the lower bound.
For d = 2, the upper bound is obtained considering the subshift TFlin ⊂ {$, 0l, 1l, 0r, 1r}Z

2

where Flin are the patterns of shape U = or which do not appear in the configuration
represented in Figure 5. The factor π maps $ on $, {0l, 0r} on 0 and {1l, 1r} on 1. The
principle is to compare vertically the two words of {0, 1}∗. The upper bound for d ≥ 3 is
obtained using Theorem 5.
I DspaceM realizable. Let L be a computable language in space DspaceM and # /∈ L.
Consider L′ = {u#DtimeM(|u|)}, then T (L′) is sharp (DspaceM, 2)-realizable (the time of
the Turing machine is coded following e1 in the sofic which realizes T (L′)).
I Substitutive subshift. Let s be a one-dimensional substitution, Ts ∪ {∞a∞} is sharp
(log, 2)-realisable. The lower bound is given by Theorem 6 and the upper bound follows from
the sofic subshift where elements of Ts are in at most in one row. If it appears, this row is
de-substituted in the next row in direction e2.
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A configuration of TFlin
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Figure 5 A configuration of TFlin .

I No-computable realization. Consider the recursively enumerable set F = {01n0 :
n such that the Turing machine of number n halts}. Then ϕ ∈ FSoficΣ,2 is larger than any
recursive function, otherwise it is possible to decide if the Turing machine of number n halts.
I Perspectives. This article highlights the importance of algorithmic properties and
optimality in the realization of effective subshifts by sofic. Particularly, the last section
exhibits the existence of different subclasses of effective subshift but does not present
systematic study: characterization of classes of subshifts with the same speed of convergence,
links between dynamical properties and speed of convergence, sharp realization for effective
subshift without periodic point (as the substitutive subshift Ts)...
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