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—— Abstract

Higher-order grammars are an extension of regular and context-free grammars, where non-

terminals may take parameters. They have been extensively studied in 1980’s, and restudied
recently in the context of model checking and program verification. We show that the class of
unsafe order-(n+1) word languages coincides with the class of frontier languages of unsafe order-n
tree languages. We use intersection types for transforming an order-(n+1) word grammar to a
corresponding order-n tree grammar. The result has been proved for safe languages by Damm
in 1982, but it has been open for unsafe languages, to our knowledge. Various known results on
higher-order grammars can be obtained as almost immediate corollaries of our result.
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1 Introduction

Higher-order grammars are an extension of regular and context-free grammars, where non-
terminals may take trees or (higher-order) functions on trees as parameters. They were
extensively studied in the 1980’s [6, 7, 8], and recently reinvestigated in the context of model
checking [10, 17] and applied to program verification [11].

The present paper shows that the class of unsafe order-(n + 1) word languages coincides
with the class of “frontier languages” of unsafe order-n tree languages. Here, the frontier
of a tree is the sequence of symbols that occur in the leaves of the tree from left to right,
and the frontier language of a tree language consists of the frontiers of elements of the tree
language. The special case where n = 0 corresponds to the well-known fact that the frontier
language of a regular tree language is a context-free language. The result has been proved
by Damm [6] for grammars with the safety restriction (see [16] for a nice historical account
of the safety restriction), but it has been open for unsafe grammars, to our knowledge.!

Damm’s proof relied on the safety restriction (in particular, the fact that variable renaming
is not required for safe grammars [3]) and does not apply (at least directly) to the case of
unsafe grammars. We instead use intersection types to transform an order-(n + 1) word
grammar G to an order-n tree grammar G’ such that the frontier language of G’ coincides

* A full version [2] of the paper is available at http://arxiv.org/abs/1604.01595.
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with the language generated by G. Intersection types have been used for recent other studies
of higher-order grammars and model checking [11, 13, 12, 15, 19, 18, 14, 20]; our proof in
the present paper provides even more evidence that intersection types are a versatile tool
for studies of higher-order grammars. Compared with the previous work on intersection
types for higher-order grammars, the technical novelties include: (i) our intersection types
(used in Section 3) are mixtures of non-linear and linear intersection types and (ii) our
type-based transformation involves global restructuring of terms. These points have made
the correctness of the transformations non-trivial and delicate.

As stressed by Damm [6] at the beginning of his paper, the result will be useful for
analyzing properties of higher-order languages by induction on the order of grammars. Our
result allows properties on (unsafe) order-n languages to be reduced to those on order-(n — 1)
tree languages, and then the latter may be studied by investigating those on the path
languages of order-(n — 1) tree languages, which are order-(n — 1) word languages.

The rest of this paper is structured as follows. Section 2 reviews the definition of higher-
order grammars, and states the main result. Sections 3 and 4 prove the result by providing
the (two-step) transformations from order-(n + 1) word grammars to order-n tree grammars.
Section 5 discusses applications of the result. Section 6 discusses related work and Section 7
concludes the paper. For the space restriction, we omit some details and proofs, which are
found in the full version [2].

2 Preliminaries

This section defines higher-order grammars and the languages generated by them, and then
explains the main result. Most of the following definitions follow those in [13].

A higher-order grammar consists of non-deterministic rewriting rules of the form A — ¢,
where A is a non-terminal and ¢ is a simply-typed A-term that may contain non-terminals
and terminals (tree constructors).

» Definition 1 (types and terms). The set of simple types,® ranged over by &, is given by:
k=0 | k1 = Ka2. The order and arity of a simple type &, written order(x) and ar(k), are
defined respectively by:

order(o) =0 order(k; — Kg) = max(order(ky) + 1, order(xz))
ar(o) =0 ar(k1 — ko) = 1 + ar(ko)

The type o describes trees, and ki — ko describes functions from x; to k. The set of
A-terms, ranged over by ¢, is defined by: t :=a | A| a|t1ta | Az : k.t. Here, x ranges over
variables, A over symbols called non-terminals, and a over symbols called terminals. We
assume that each terminal a has a fixed arity; we write 3 for the map from terminals to
their arities. A term ¢ is called an applicative term (or simply a term) if it does not contain
A-abstractions. A (simple) type environment K is a sequence of type bindings of the form
x : k such that if K contains z : k and 2’ : x” in different positions then z # z’. In type
environments, non-terminals are also treated as variables. A A-term t has type x under K if
K st t: k is derivable from the following typing rules.

Kbsra:0—---—0—o0
K,z:k, KtFgra:k ST L —
Z(a)

2 'We sometimes call simple types sorts in this paper, to avoid confusion with intersection types introduced
later for grammar transformations.
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Khtgrtits ik Kbtgr Ax k1.t : k1 — Ko
We call ¢ a (finite, X-ranked) tree if ¢ is an applicative term consisting of only terminals, and
Fsr t: o holds. We write Treey, for the set of ¥-ranked trees, and use the meta-variable m
for a tree.

We often omit type annotations and just write Az.t for Az : k.t. We consider below only
well-typed A-terms of the form Azi.--- Axk.t, where t is an applicative term. We are now
ready to define higher-order grammars.

» Definition 2 (higher-order grammar). A higher-order grammar is a quadruple (2, NV, R, S),
where (i) ¥ is a ranked alphabet; (ii) A is a map from a finite set of non-terminals to
their types; (iii) R is a finite set of rewriting rules of the form A — Axj.--- Azy.t, where
N(A) =K1 — -+ — K¢ — o, t is an applicative term, and N, x1 : k1, ..., Te: kg Fsr t : 0 holds
for some Ki,...,ke. (iv) S is a non-terminal called the start symbol, and N'(S) = o. The

order of a grammar G, written order(G), is the largest order of the types of non-terminals.

We sometimes write Xg, Ng, Rg, Sg for the four components of G.
For a grammar G = (X, N, R, S), the rewriting relation —¢ is defined by:

(A= Azy.-- Az t) €R t; —g t] ie{l,....,k} Y(a) =k
Aty -ty —g [t1/@1, - e /Tt aty -ty —rg aty -ty thtig -ty
Here, [t1/x1, ..., tx/xk]t is the term obtained by substituting ¢; for the free occurrences of

x; in t. We write — ¢ for the reflexive transitive closure of —g.

The tree language generated by G, written £(G), is the set {m € Trees, | S —§ 7}.

We call a grammar G a word grammar if all the terminal symbols have arity 1 except the
special terminal e, whose arity is 0. The word language generated by a word grammar
G, written L£4(G), is {a1---an | a1(---(ane)---) € L(G)}. The frontier word of a tree m,
written leaves(7), is the sequence of symbols in the leaves of 7. It is defined inductively
by: leaves(a) = a when 3(a) = 0, and leaves(am --- m;) = leaves(m ) - - - leaves(my,)
when X(a) = k > 0. The frontier language generated by G, written Lie.:(G), is the set:
{leaves(7) | S —§ 7 € Treeyx, }. In our main theorem, we assume that there is a special
nullary symbol e and consider e € L1.,:(G) as the empty word ¢; i.e., we consider £5,,;(G)
defined by:

Lieas(G) = (L1eaz(G) \ {e}) U{e | & € Lreat (F)}-

We note that the classes of order-0 and order-1 word languages coincide with those of
regular and context-free languages respectively. We often write Az --- x — t for the rule
A — Axq.--- Axg.t. When considering the frontier language of a tree grammar, we assume,
without loss of generality, that the ranked alphabet 3 has a unique binary symbol br, and
that all the other terminals have arity 0.

» Example 3. Consider the order-2 (word) grammar G; = ({a:1,b:1,e:0},{S:0,F: (0 —
0) 2 0,A:(0 2 0)—= (0 —=0),B:(0—>0)— (0 —0)},Rq,S5), where Ry consists of:

S — Fa S— Fb Afx—a(fz) Bfxz—b(fx),
Ff—f(fe) Ff—=F(Af) Ff—=F(BY).

S is reduced, for example, as follows.

S — Fb—» F(Ab) —s (Ab)(Abe) — a(b(Abe)) —> a(b(a(be))).
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The word language £,(G1) is {ww | w € {a,b}T}.
Consider the order-1 (tree) grammar Go = ({br:2,a2:0,b:0,e:0},{S:0, F:0 = 0}, R2, 5),
where Ro consists of:

S — Fa S— Fb Ff—obvrff Ff—FMraf) Ff— F(rbf).

The frontier language £5_,¢(G2) coincides with £,(G;) above.
The following is the main theorem we shall prove in this paper.

» Theorem 4. For any order-(n + 1) word grammar G (n > 0), there exists an order-n tree
grammar G' such that L4(G) = L5,.6(G).

The converse of the above theorem also holds:

» Theorem 5. For any order-n tree grammar G’ such that no word in L5.,:(G') contains e,
there exists a word grammar G of order at most n+ 1 such that L;(G) = L5..¢(G").

Since the construction of G is easy, we sketch it here; For n > 1, the grammar G is obtained by
(i) changing the arity of each nullary terminal a (# e) to one, i.e., ¥g(a) := 1, (ii) replacing the
terminal e with a new non-terminal E of type o — o, defined by E 2 — x, and also the unique
binary terminal br with a new non-terminal Br of type (o0 — 0) — (0 — 0) — (0 — o),
defined by Br fgx — f(gx), (iii) applying n-expansion to the right hand side of each
(original) rule to add an order-0 argument, and (iv) adding new start symbol S’ with rule
S’ — Se. For example, given the grammar G, above, the following grammar is obtained:

S'— Se Sx— Fax Sx— Fbzx
Ffx—Brffz Ffx— F(Braf)x Ffz— F(Brbf)x
Fzx—zx Brfgx — f(gx).

Theorem 4 is proved by two-step grammar transformations, both of which are based on
intersection types. In the first step, we transform an order-(n + 1) word grammar G to an
order-n tree grammar G such that £,(G) = Lieas (G”)Te, where L7 is the word language
obtained from £ by removing all the occurrences of the special terminal e; that is, the frontier
language of G” is almost the same as £,(G), except that the former may contain multiple
occurrences of the special, dummy symbol e. In the second step, we clean up the grammar
to eliminate e (except that a singleton tree e may be generated when € € £,(G)). The first
and second steps shall be formalized in Sections 3 and 4 respectively.

For the target of the transformations, we use the following extended terms, in which a
set of terms may occur in an argument position:

u (extended terms) ==z | A|a|uwU | Az.u
U:i={uy,...,ux} (k>1).

Here, ug u; is interpreted as just a shorthand for wg{u }. Intuitively, {u1, ..., ux} is considered
a non-deterministic choice uy + - - - + ug, which (lazily) reduces to u; non-deterministically.
The typing rules are extended accordingly by:
Krsrug:k1l — K Ktgr U ke K bsru;: k for each i € {1,...k}
KrtgruU: k Kbtsr {ut,...,ur}: k

An extended higher-order grammar is the same as a higher-order grammar, except that
each rewriting rule in R may be of the form Az --- Axy.u, where u may be an applicative
extended term. The reduction rule for non-terminals is replaced by:
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(A= Xzy - Azpw) € R W € [Ur/xy, ..., Uk/xr]u
AU1 - U —>gu/

where the substitution fu is defined by:

bazfa) bo— {9@) (if z € dom(0))
{z}  (otherwise)
O(upU) = {v(0U) | v € Qup} O{uy,...,upt =0u; U---Ubuy.

Also, the other reduction rule is replaced by the following two rules:

u—g v ie{l,...,k} Y(a) =k
ClUl Ui_l{u}U,'_H Uk —G aU1 Ui_l{u'}Ui_H Uk

ueU; U; is not a singleton ie{l,...,k} Y(a) =k
alUy --- U —G aly --- Ui_l{u}UH_l < Uy

Note that unlike in the extended grammar introduced in [13], there is no requirement
that each u; in {uy,...,u} is used at least once. Thus, the extended syntax does not change
the expressive power of grammars. A term set {uy,...,u} can be replaced by Axy --- 2y
with the rewriting rules Az -+ x; — u;, where {x1,..., 2} is the set of variables occurring
in some of uy,...,u;. In other words, for any order-n extended grammar G, there is an
(ordinary) order-n grammar G’ such that £(G) = L(G').

3 Step 1: from order-(n + 1) grammars to order-n tree grammars

In this section, we show that for any order-(n + 1) grammar G = (X, N, R,S) such that
Y(e) =0 and X(a) =1 for every a € dom(X) \ {e}, there exists an order-n grammar G’ such
that g = {br —2,e = 0} U{a— 0| X(a) =1} and L4;(G) = Lieas (G')Te-

For technical convenience, we assume below that, for every type s occurring in Ng(A)
for some A, if k is of the form o — «’, then order(x’) < 1. This does not lose generality,
since any function Az : o.t of type o — k' with order(x’) > 1 can be replaced by the term
Az’ 0 — o.[z'e/z|t of type (0 — o) = £’ (without changing the order of the term), and any
term t of type o can be replaced by the term Kt of type o — o, where K is a non-terminal
of type o = o — o, with rule K xy — x. See [2] for the details of this transformation.

The basic idea of the transformation is to remove all the order-0 arguments (i.e., arguments
of tree type o). This reduces the order of each term by 1; for example, terms of types o — o
and (o — o) — o will respectively be transformed to those of types o and o — o. Order-0

arguments can indeed be removed as follows. Suppose we have a term t; to where ¢1 : 0 — o.

If ¢; does not use the order-0 argument ¢5, then we can simply replace t; to with t?& (where
t?& is the result of recursively applying the transformation to ¢1). If ¢; uses the argument
t2, the word generated by t; t2 must be of the form wjws, where ws is generated by ts; in
other words, t; can only append a word to the word generated by ts. Thus, ¢; {2 can be
transformed to br tfb tf, which can generate a tree whose frontier coincides with wyws (if

e is ignored). As a special case, a constant word ae can be transformed to br a e. As a

little more complex example, consider the term A (be), where A is defined by Az — ax.

Since A uses the argument, the term A (be) is transformed to br A (br b e). Since A no
longer takes an argument, we substitute e for z in the body of the rule for A (and apply
the transformation recursively to ae). The resulting rule for A is: A — br a e. Thus, the
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term after the transformation generates the tree br (br ae) (brbe). Its frontier word is aebe,
which is equivalent to the word ab generated by the original term, up to removals of e; recall
that redundant occurrences of e will be removed by the second transformation. Note that
the transformation sketched above depends on whether each order-0 argument is actually
used or not. Thus, we introduce intersection types to express such information, and define
the transformation as a type-directed one.

Simple types are refined to the following intersection types.

du=olo—4§ ocu=0 A ANd (k>0)

We write T for 61 A--- AJd, when &k = 0. We assume some total order < on intersection
types, and require that §; < --- < dx whenever d; A --- A § occurs in an intersection type.
Intuitively, (61 A -+ A dg) — & describes a function that uses an argument according to types
d1,...,0k, and the returns a value of type 0. As a special case, the type T — o describes a
function that ignores an argument, and returns a tree. Thus, according to the idea of the
transformation sketched above, if x has type T — o, xt would be transformed to z; if
has type o — o, 2t would be transformed to br z t#. In the last example above, the type
o — o should be interpreted as a function that uses the argument just once; otherwise the
transformation to br x t# would be incorrect. Thus, the type o should be treated as a linear
type, for which weakening and dereliction are disallowed. In contrast, we need not enforce,
for example, that a value of the intersection type o — o should be used just once. Therefore,
we classify intersection types into two kinds; one called balanced, which may be treated as
non-linear types, and the other called unbalanced, which must be treated as linear types. For
that purpose, we introduce two refinement relations ¢ ::,, k and ¢ ::, x; the former means that
0 is a balanced intersection type of sort x, and the latter means that § is an unbalanced in-
tersection type of sort x. The relations are defined as follows, by mutual induction; k£ may be 0.
0j tu K je{l,...,k}
0; up k (foreach i € {1,...,k}\ {4})
AR Y

0; p k (for each i € {1,...,k})
AR Y R

oy K 0 K oiu kK 0 g K oy K dip K

0iu0 =0y k— K oc—=0p Kk — K oc—=0pKk— K
A type 0 is called balanced if § ::, k for some k, and called unbalanced if ¢ ::, k for some
k. Intuitively, unbalanced types describe trees or closures that contain the end of a word
(i.e., symbol e). Intersection types that are neither balanced nor unbalanced are considered
ill-formed, and excluded out. For example, the type o — o — o (as an intersection type) is
ill-formed; since o is unbalanced, o — o must also be unbalanced according to the rules for
arrow types, but it is actually balanced. Note that, in fact, no term can have the intersection
type o — o — o in a word grammar. We write § :: k if § 11, K or § 11y K.

We introduce a type-directed transformation relation I' ¢ : § = wu for terms, where T is
a set of type bindings of the form x : §, called a type environment, t is a source term, and u
is the image of the transformation, which may be an extended term. We write I'y U T'y for
the union of I'; and I's; it is defined only if, whenever x: 6 € I'y NT's, § is balanced. In other
words, unbalanced types are treated as linear types, whereas balanced ones as non-linear (or
idempotent) types. We write bal(T") if ¢ is balanced for every z:§ € T.

The relation I' ¢ : § = u is defined inductively by the following rules.

bal(T") A N(A) bal(T")
(TR1-VAR) (TrR1-NT)
z:0bxz:0 = x5 I'HFA:6= As
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bal(T") Y(a)=1 bal(T")
———  (Tr1-CoNnsTO0)
I'Fe:o=e I'Fa:o—o0=a

(Tr1-ConsT1)

ToFs:01AN---ANdp 2=
TiFt:0; = U; and 6; # o (for each i € {1,...,k})

(Tr1-AppPl)
Foulyu---Ul'yFst:d=oU;--- Uy
I'oFs:io—=d0=V I'iEt:o=U
(Tr1-APP2)
ITouUl'y1Fst:d=brVU
THt:0= u; (f hie{l,....k E>1
u; (for each ¢ € { H (Tr1-SET)
F'kt:0={u,...,ux}
D,z:61,...,2:0,Ft: 0= u x ¢ dom(T)
d; fi hie{l,....k
7o for cach i € { ) (Tr1-ABsl)
PEAXxt:01 A A — 0= Az, -+ Azs, .U
I'z:oFt:d=u
(Tr1-ABS2)

F'FAzt:o— 0= [e/zo]u

In rule (TR1-VAR), a variable is replicated for each type. This is because the image of
the transformation of a term substituted for z is different depending on the type of the term;
accordingly, in rule (TR1-ABs1), bound variables are also replicated, and in rule (TR1-ApP1),
arguments are replicated. In rule (TR1-NT), a non-terminal is also replicated for each type.
In rules (TR1-CoONSTO) and (TR1-CONST1), constants are mapped to themselves; however,
the arities of all the constants become 0. In these rules, I' may contain only bindings on
balanced types.

In rule (TR1-APP1), the first premise indicates that the function s uses the argument ¢
according to types d1,...,0,. Since the image of the transformation of ¢ depends on its type,
we replicate the argument to Uy, ..., Ug. For each type d;, the result of the transformation is
not unique (but finite); thus, we represent the image of the transformation as a set U; of
terms. (Recall the remark at the end of Section 2 that a set of terms can be replaced by
an ordinary term by introducing auxiliary non-terminals.) For example, consider a term
A(zy). It can be transformed to As, s5{xs,—5,Ys, x(;é_)(;ly%} under the type environment
{x:00 = 01,2:0y = d1,y:00,y:6(}. Note that k in rule (TR1-APP1) (and also (TR1-ABsl1))
may be 0, in which case the argument disappears in the image of the transformation.

In rule (TR1-APP2), as explained at the beginning of this section, the argument ¢ of type
o is removed from s and instead attached as a sibling node of the tree generated by (the
transformation image of) s. Accordingly, in rule (TR1-ABs2), the binder for x is removed
and x in the body of the abstraction is replaced with the empty tree e. In rule (TR1-SET),
type environments are shared. This is because {u1, ..., ux} represents the choice uj +- - - 4 ug;
unbalanced (i.e. linear) values should be used in the same manner in uy, ..., ug.

The transformation rules for rewriting rules and grammars are given by:

OFAzq.- - Awg.t: 6= Al Az §N(A)
(Azq - ap = t) = (Asay - ) = u)

(Tr1-RULE)

111:7
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S = {br s 2,6 5 0} Ufa s 0| () = 1}
N ={As:[0:6] |NA)=kAd:r} R ={r|IreRr=1"}

TR1-GRAM
N, R,S) = (X, N',R,S,) ( )

Here, [0 :: ] is defined by:

[6::k] =0 (if order(x) <1
[(61 A+ A = 6) (ko = k)] = [01 2 k0] = -+ = [0k ko] = [0 2 K]
(if order(kg — k) > 1)

» Example 6. Recall the grammar G; in Example 3. For the term Af.Az.a(f z) of the rule
for A, we have the following derivation:

fio—=okFf:io—=0= foo VAR T:okz:0= 2, VAR
Q)I—a:o%o:>aCONST1 fio—=o,x:0F fx:0=Dbr foo APP2
fio—oo,x:oFa(fxz):o0=bra(br fou,x,) APP2
firo— ok Ara(fz):0— o0o=Dbra(br fo.e) ABS2
ABsl

OEXfAz.a(fz): (0= 0) = 0— 0= Aosobra(br fo,e)

Notice that the argument x has been removed, and the result of the transformation has type
o — o. The whole grammar is transformed to the grammar consisting of the following rules.
So - F(o—)o)%o a So — F(o%o)—)o b
A(o—)o)%o—)o Joso = bra(br foce) B(o%o)—)o%o foso = T b (bT fos0e)

F(o%o)—)o foso = BT foso (bT foso @) F(O*)O)*)o Joso = F(o%o)%o (A(o%o)%o%o fo—o)
F(o~>o)—>o fo—)o — F(o%o)—)o (B(o%o)—)o%o fo—>o)-

Here, we have omitted rules that are unreachable from S,. For example, the rule
F(T—)o)/\(o—>o)—>o fT%o fo—)o — br fo%o fT~>o

may be obtained from the following derivation, but it is unreachable from S,, since F' is
never called with an argument of type (T — o) A (0 — o).

f:TookFf:T—=0= fro XAR
f:o—)ol—fifo_)oVAR f:T—)ol—fe:o:>f-|—_>oA P2P1
f:T—=o,fio—=o0k f(fe):o=br fose fToo PP

DEXSF(fe): (T —=0)A(0o—0)—= 0= AfTooAfoumoDT fouso f[T—0o

ABsl

The following theorem states the correctness of the first transformation.

» Theorem 7. Let G be an order-(n+1) word grammar. If G = G", then G" is an (extended)
grammar of order at most n. Furthermore, L£,(G) = L1cas(G")Te.

4 Step 2: removing dummy symbols

We now describe the second step for eliminating redundant symbols e, which have been
introduced by (TR1-ABs2). By the remark at the end of Section 2, we assume that the result
of the first transformation is an ordinary grammar, not containing extended terms. We also
assume that br occurs only in the fully applied form. This does not lose generality, because
otherwise we can replace br by a new non-terminal Br and add the rule Brxy — braxy.
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The idea of the transformation is to use intersection types to distinguish between terms
that generate trees consisting of only br and e, and those that generate trees containing
other arity-0 terminals. We assign the type o, to the former terms, and oy to the latter. A
term brtgt; is transformed to (i) br to#ﬁé if both ¢y and ¢; have type o, (where tfﬁ is the

image of the transformation of ¢;), (ii) ¢]

if ¢; has type oy and t;_; has type o, and (iii) e
if both ¢g and ¢; have type o.. As in the transformation of the previous section, we replicate
each non-terminal and variable for each intersection type. For example, the nonterminal
A:o — o defined by Az — x would be replicated to A,, .o, and A, ...

We first define the set of intersection types by:

512206|0+|§1A~-~A§k—>€

We assume some total order < on intersection types, and require that whenever we write
E NNk, & < -+ <& holds. We define the refinement relation & :: k inductively by:
(i) oc i o, (ii) o4 o, and (iii) (&1 A+ A&k — &) i (k1 = ko) if £ it kg and & i Kk for every
i€ {l1,...,k}. We consider only types £ such that ¢ :: k for some k. For example, we forbid
an ill-formed type like o4 A (o4 — 04) — o4

We introduce a type-based transformation relation = F ¢ : £ = wu, where = is a type
environment (i.e., a set of bindings of the form z : £), t is a source term, £ is the type of ¢,
and u is the result of transformation. The relation is defined inductively by the rules below.
Y(a)=0 aF#e
Erillbx:{=>xe Zheio.=>e Eha:o. =a

(TR2-VAR) (Tr2-CONSTO) (TR2-CONST1)

El—t0:§0:>UO El—t1:£1=>u1
(brugui,op) if&y=¢& =o4
(u, &) = (ui,04) if §, = o4 and & _; = o,
(e, 0¢) if §g =& = o
=k brigty :§:>u

(Tr2-CoONsT2)

EN(F) Az - xp, —tER DEAXxy. - Azt €= Ayy. - dye.u

(TrR2-NT)
EFAEéAE
EEs:EG AN AN > Esw EFt:&=1U,; (foreachie {1,...,k}) (Tr2-App)
Ekst:&E=vU0--- Uy
EFt:€ = uy; (f hie{l,....k k>1
& = u; (for each i € { b (Tr2-SE1)
ERt:&={ur,...,ur}
SR S TN S ol AR S
iadd v & ndl (Tr2-ABS)
EREArt & AN = E= Apg, -+ Awg, U
The transformation of rewriting rules and grammars is defined by:
OFXzy. - Axpt: €= Azl dxh.t = N(A
- it 8 o e § (4) (TR2-RULE)
(A= Azq.- - Axg.t) = (A = Az Aat)
N = {Ac [E] [ NT(A) = kA €51}
R ={r'|IreRr=1r}1U{s -5, ,5 =5,
] 5 =g = 3 (TR2-GRAM)

(X,NV,R,S) = (Z,N',R",S")
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Here, [£] is defined by:
[oc] = [o+] =0 [Gan- NG =&l =[a] = = [&] = [€]

We explain some key rules. In (TR2-VAR) we replicate a variable for each type, as in the
first transformation. The rules (TR2-CONsST0) and (TR2-CONST1) are for nullary constants,
which are mapped to themselves. We assign type o, to e and o4 to the other constants. The
rule (TR2-CoONsT2) is for the binary tree constructor br. As explained above, we eliminate
terms that generate empty trees (those consisting of only br and e). For example, if £, = o
and & = oy, then ¢ty may generate an empty tree; thus, the whole term is transformed to u;.

The rule (TR2-NT) replicates a terminal for each type, as in the case of variables. The
middle and rightmost premises require that there is some body ¢ of A that can indeed be
transformed according to type £. Without this condition, for example, A defined by the rule
A — A would be transformed to A4,, by 0 - A : o, = A,., but A, diverges and does not
produce an empty tree. That would make the rule (TR2-CONST2) unsound: when a source
term is br A a, it would be transformed to a, but while the original term does not generate a
tree, the result of the transformation does. In short, the two premises are required to ensure
that whenever () F ¢ : o, = wu holds, ¢ can indeed generate an empty tree. In (TR2-APP), the
argument is replicated for each type. Unlike in the transformation in the previous section,
type environments can be shared among the premises, since linearity does not matter here.
The other rules for terms are analogous to those in the first transformation.

In rule (TR2-GRAM) for grammars, we prepare a start symbol S’ and add the rules
S"— So., 8" — S, . We remark that the rewriting rule for S,_ (resp. So, ) is generated only
if the original grammar generates an empty (resp. non-empty) tree. For example, in the
extreme case where R = {S — S}, we have R’ = {S" — S,,, 5" — S, }, without any rules
to rewrite S,_or S, .

» Example 8. Let us consider the grammar G = (X, N, R,S) where N = {S:0,A:0 —
0,B:0—0,F:0— o}, and R consists of:

S—Fa S— Fb Af —bra(brfe) Bf —brb(br fe)
Ff—brf(brfe) Ff—F(Af) Ff—F(BY)

It is the same as the grammar obtained in Example 6, except that redundant subscripts on
non-terminals and variables have been removed. The body of the rule for A is transformed
as follows.

c ) fiop b fiop = fo, VAR f:0+FetoeéegONSTg
fioiFa:op=a ONST fiopbbrfe:or = fo, ONST
CoNsT2

fiopFbra(brfe):op =braf,,
OFAfbra(brfe):oy —op = Afo, . braf,,

ABS

The whole rules are transformed to:
S"— S, 5" — So. Soy = Fo, 50,2 So, = Fo, 5o, b
Ao+—>o+ foJr _>brafo+ B::>+—>04r .]coJr —>brbfo+ Fo+—>o+ fo+ — br fo+ fo+
Fo+—>o+ fo+ — Fo+—>o+ (Ao+—>o+ fo+) Fo+—>o+ f0+ — F°+—>O+ (Bo+—>o+ fo+)
Here, we have omitted rules on non-terminals unreachable from S’.
The following theorem claims the correctness of the transformation. The proof is given
in [2]. The main theorem (Theorem 4) follows from Theorems 7, 9, and the fact that any

order-m grammar with m < n can be converted to an order-n grammar by adding a dummy
non-terminal of order n.
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» Theorem 9. Let G = (X,N,R,S) be an order-n tree grammar. If G = G', then G’ is a
tree grammar of order at most n, and Lieas(G)Te = L562:(G).

5 Applications

5.1 Unsafe order-2 word languages = safe order-2 word languages

As mentioned in Section 1, many of the earlier results on higher-order grammars [6, 10]
were for the subclass called safe higher-order grammars. In safe grammars, the (simple)
types of terms are restricted to homogeneous types [6] of the form k1 — -+ — kr — o,
where order(ky) > -+ > order(ky), and arguments of the same order must be supplied
simultaneously. For example, if A has type (o0 — 0) — (0 — 0) — o, then the term f (A f f)
where f:0 — o is valid, but g (A f) where g:((0 — 0) — 0) — o, f:0 — o is not: the partial
application A f is disallowed, since A expects another order-1 argument. Unsafe grammars
(which are just called higher-order grammars in the present paper) are higher-order grammars
without the safety restriction.

For order-2 word languages, Aehlig et al. [1] have shown that safety is not a genuine
restriction. Our result in the present paper provides an alternative, short proof. Given
an unsafe order-2 word grammar G, we can obtain an equivalent order-1 grammar G’ such
that £4(G) = L£5.,¢(G"). Note that G’ is necessarily safe, since it is order-1 and hence
there are no partial applications. Now, apply the backward transformation sketched in
Section 2 to obtain an order-2 word grammar G” such that £,(G") = £5..:(G’). By the
construction of the backward transformation, G” is clearly a safe grammar: Since the type
of each term occurring in G’ is 0 — -+ — o — o, the type of the corresponding term of
G"is (0 - 0) = -+ = (0 = 0) = (0 — o). Since all the arguments of type o are applied

simultaneously in G’, all the arguments of type o — o are also applied simultaneously in G”.

Thus, for any unsafe order-2 word grammar, there exists an equivalent safe order-2 word
grammar.

5.2 Diagonal problem

The diagonal problem [5] asks, given a (word or tree) language L and a set S of symbols,
whether for all n, there exists w,, € L such that Va € S.|wy|, > n. Here, |w|, denotes the
number of occurrences of a in w. A decision algorithm for the diagonal problem can be
used for computing downward closures [21], which in turn have applications to program
verification. Hague et al. [9] recently showed that the diagonal problem is decidable for safe
higher-order word languages, and Clemente et al. [4] extended the result for unsafe tree
languages. For the single letter case of the diagonal problem (where |S| = 1), we can obtain
an alternative proof as follows. First, following the approach of Hague et al. [9], we can
use logical reflection to reduce the single letter diagonal problem for an unsafe order-n tree
language to that for the path language of an unsafe order-n tree language. We can then use
our transformation to reduce the latter to the single letter diagonal problem for an unsafe
order-(n — 1) tree language.

5.3 Context-sensitivity of order-3 word languages

By using the result of this paper and the context-sensitivity of order-2 tree languages [13], we
can prove that any order-3 word language is context-sensitive, i.e., the membership problem
for an order-3 word language can be decided in non-deterministic linear space. Given an
order-3 word grammar G, we first construct a corresponding order-2 tree grammar G’ in
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advance. Given a word w, we can construct a tree m whose frontier word is w one by one,
and check whether 7 € £(G’). Since the size of 7 is linearly bounded by the length |w| of

?
w, m € L(G") can be checked in space linear with respect to |w|. Thus, w € L,(G) can be
decided in non-deterministic linear space (with respect to the size of w).

6 Related Work

As already mentioned in Section 1, higher-order grammars have been extensively studied
in 1980’s [6, 7, 8], but most of those results have been for safe grammars. In particular,
Damm [6] has shown an analogous result for safe grammars, but his proof does not extend
to the unsafe case.

As also mentioned in Section 1, intersection types have been used in recent studies of
(unsafe) higher-order grammars. In particular, type-based transformations of grammars and
A-terms have been studied in [14, 13, 4]. Clement et al. [4], independently from ours, gave
a transformation from an order-(n + 1) “narrow” tree language (which subsumes a word
language as a special case) to an order-n tree language; this transformation preserves the
number of occurrences of each symbol in each tree. When restricted to word languages,
our result is stronger in that our transformation is guaranteed to preserve the order of
symbols as well, and does not add any additional leaf symbols (though they are introduced
in the intermediate step); consequently, our proofs are more involved. They use different
intersection types, but the overall effect of their transformation seems similar to that of
our first transformation. Thus, it may actually be the case that their transformation also
preserves the order of symbols, although they have not proved so.

7 Conclusion

We have shown that for any unsafe order-(n + 1) word grammar G, there exists an unsafe
order-n tree grammar G’ whose frontier language coincides with the word language £,(G).
The proof is constructive in that we provided (two-step) transformations that indeed construct
G’ from G. The transformations are based on a combination of linear/non-linear intersection
types, which may be interesting in its own right. As Damm [6] suggested, we expect the
result to be useful for further studies of higher-order languages; in fact, we have discussed a
few applications of the result.

Acknowledgments. We would like to thank Takeshi Tsukada for helpful discussions and
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