Minimizing Resources of Sweeping and Streaming
String Transducers®

Félix Baschenis!, Olivier Gauwin?, Anca Muscholl®, and
Gabriele Puppis*

1 University of Bordeaux, LaBRI, CNRS, Bordeaux, France

University of Bordeaux, LaBRI, CNRS, Bordeaux, France

3 University of Bordeaux, LaBRI, CNRS, Bordeaux, France; and
Institute for Advanced Study of the Technical University of Munich, Munich,
Germany

4 University of Bordeaux, LaBRI, CNRS, Bordeaux, France

N

—— Abstract

We consider minimization problems for natural parameters of word transducers: the number

of passes performed by two-way transducers and the number of registers used by streaming
transducers. We show how to compute in ExpSpace the minimum number of passes needed to
implement a transduction given as sweeping transducer, and we provide effective constructions
of transducers of (worst-case optimal) doubly exponential size. We then consider streaming
transducers where concatenations of registers are forbidden in the register updates. Based on a
correspondence between the number of passes of sweeping transducers and the number of registers
of equivalent concatenation-free streaming transducers, we derive a minimization procedure for
the number of registers of concatenation-free streaming transducers.

1998 ACM Subject Classification F.4.3 Formal Languages, F.1.1 Models of Computation, F.2.0
Analysis of Algorithms and Problem Complexity — General

Keywords and phrases word transducers, streaming, 2-way, sweeping transducers, minimization

Digital Object Identifier 10.4230/LIPIcs.JICALP.2016.114

1 Introduction

Regular word functions extend the robust family of regular languages, preserving many of its
characterizations and algorithmic properties. A word function maps words over a finite input
alphabet to words over a finite output alphabet. Regular word functions have been studied
in the early seventies, in the form of (deterministic) two-way finite state automata with
output [1]. Engelfriet and Hoogeboom [8] later showed that monadic second-order definable
graph transductions, restricted to words, are an equivalent model — this justifies the notation
“regular” word functions, in the spirit of classical results in automata theory and logic by
Biichi, Elgot, Rabin and others. Recently, Alur and Cerny [2] proposed an enhanced version
of one-way transducers called streaming transducers, and showed that they equivalent to the
two previous models. A streaming transducer processes the input word from left to right, and
stores (partial) output words in finitely many, write-only registers. A variant of streaming
transducers extended by stacks has been introduced in [3] and shown to capture precisely
the monadic-second order definable tree transductions.

* This work was partially supported by the ExStream project (ANR-13-JS02-0010) and the TUM-IAS,
funded by the German Excellence Initiative and the EU 7th Framework Programme (grant 291763).

© Félix Baschenis, Olivier Gauwin, Anca Muscholl, and Gabriele Puppis;
37 licensed under Creative Commons License CC-BY
43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016).

Editors: Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi;
Article No. 114; pp.114:1-114:14

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.114
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

114:2

Minimizing Resources of Sweeping and Streaming String Transducers

Two-way and streaming transducers raise new and challenging questions about storage
requirements. The classical storage measure for automata is state complexity. State space
minimization of two-way transducers is however poorly understood, even in the simpler setting
of automata (cf. related work). But there are more meaningful parameters for transducer
minimization. One such parameter for streaming transducers is the number of registers, and
for two-way transducers it is the number of times the transducer needs to re-process the
input word. These parameters measure the required storage capacity in a more realistic way
than the number of control states. For example, a two-way transducer that needs to process
a very large input with several passes has much larger memory requirements in practice than
the memory needed for storing the states. Ideally, the input is processed one-way, hence in
one pass only, as in the streaming setting. But not every transduction can be implemented
by a one-way, finite state transducer without additional memory.

The register minimization problem has been considered by Alur and Raghothaman in [4],
for a special family of deterministic streaming transducers: the output alphabet is unary, and
the updates are additions/subtractions of registers by constants. For two-way transducers,
Filiot et al. showed how to decide whether a transducer is equivalent to some one-way
transducer [10]. The decision procedure of [10] is non-elementary, and we provided in [5] an
elementary decision procedure and construction of equivalent one-way transducers in the
special case of sweeping transducers: head reversals are only allowed at the extremities of the
input. Sweeping transducers are strictly less expressive than two-way transducers, as shown
e.g. by the transduction mapping inputs of the form wy #us# - - - #u,, where the words w;
contain no occurrence of #, to Uy, - - - ugu.

In this paper we extend our results from [5] by showing how to compute in EXPSPACE
the minimal number of passes needed by a non-deterministic, functional sweeping transducer.
It turns out that sweeping transducers have the same expressive power as bounded-reversal
two-way transducers, and as concatenation-free streaming transducers — transducers where
concatenation of registers is not allowed in the updates. Since the transformations between the
sweeping and streaming models preserve the relationship between the number of passes and
the number of registers, we reduce the minimization problem for registers of concatenation-free
streaming transducers to the minimization of the number of passes of sweeping transducers,
and thus solve the former problem.

Related work. As already mentioned, succinctness questions about two-way automata
are still challenging. A longstanding open problem is whether non-deterministic two-way
automata are exponentially more succinct than deterministic two-way automata. It is only
known that this is the case for deterministic sweeping automata [13].

Regular transductions behave also nicely in terms of expressiveness: first-order definable
transductions are known to be equivalent to transductions defined by aperiodic streaming
transducers [11] and by aperiodic two-way transducers [6].

Besides [4], the closest work to ours is [7], that shows how to compute the minimal
number of registers of deterministic streaming transducers with register updates of the form
x =y -v, where v is a word and x,y are registers. These transducers are as expressive
as one-way transducers. However, the focus of [7] is different from ours, since the outputs
can be formed over any infinitary group. Moreover, the works [4, 7] consider deterministic
transducers, which require in general more registers than non-deterministic functional ones.
The proof techniques are based on variants of a property that has been studied for one-way
transducers (the twinning property), and are quite different from ours.

F. Baschenis, O. Gauwin, A. Muscholl, and G. Puppis

Overview. After introducing two-way and streaming transducers in Section 2, and showing
some basic properties, we recall in Section 3 the key characterization of one-way definability
from [5]. Section 4 presents the main result on minimization of sweeping transducers. Finally,
Section 5 concludes with a logical characterization for sweeping transducers. A longer version
of the paper is available at https://hal.archives-ouvertes.fr/hal-01274992.

2 Preliminaries

Here we introduce the transducers we are interested in: two-way and streaming transducers.

Two-way transducers. A two-way transducer is a tuple T = (Q, X, A, I, E, F), where Q is
a finite set of states, 2 (resp. A) is a finite input (resp. output) alphabet, I (resp. F) is a
subset of () representing the initial (resp. final) states, and E C @ x ¥ x A* x Q x {left, right}
is a finite set of transition rules describing, for each state and input symbol, the possible
output string, target state, and direction of movement. To enable distinguished transitions
at the extremities of the input word, we use two special symbols > and <1 and assume that
the input of a two-way transducer is of the form u =a; ...ay,, withn > 2, ¢y = >, a, = <,
and a; Z>, < foralli=2,...,n— 1.

Given an input word u, we call positions the places between the symbols of u, where the
head of a transducer can lie. We can identify the positions of u = a; ... a, with the numbers
1,...,n — 1, where each number x is seen as the position between a, and a,11. Since here
we deal with two-way devices, a position can be visited several times along a run. Formally,
we associate the states of the transducer with locations, namely, with pairs (x,y), where =
is a position and y is a non-negative integer, called level. For convenience, we assume that,
from a location at even level, the transducer can either move to the next position to the
right, without changing the level, or perform a reversal, that is, increment the level by 1 and
keep the same position; symmetrically, from a location at odd level, the transducer can either
move leftward, without changing the level, or perform a reversal. Locations are ordered
according to the following order: ¢ < ¢ if £ = (x,y),¢ = (2’,y’) and one of the following
holds: (1) y <9/, or (2) y =9 even and x < 2/, or (3) y =y’ odd and =z > z’.

Formally, we define a run on v = a; . ..a, as a sequence of locations, labeled by states
and connected by edges, hereafter called transitions. The state at a location ¢ = (z,y) of a
run p is denoted p(¢). The transitions must connect pairs of locations £ < ¢’ that are either

at adjacent positions and on the same level, or at the same position and on adjacent levels.

Each transition is labeled with a pair a/v consisting of an input symbol a and a word v
produced as output. There are four types of transitions:

Qg v Ay v
(m,2y+1)<+—1/(x+1,2y+1) (x,2y)+—l/>(x+l,2y)
(x4+1,2y+2) (z,2y+1)

Az y1/v C (x 11,29+ 1) (x,Zy) D agy1/v

The upper left (resp. upper right) transition can occur in a run p of T on u provided that
(p(z+1,2y+1), azs1, v, p(x, 2y+1), left) (resp. (p(z,2y), az41,v, p(z+1,2y), right)) is a valid

transition rule of T and a,11 is the (x + 1)-th symbol of u (assuming that first symbol is).

Similarly, the lower left (resp. lower right) transition are called reversals, and can occur in a run
pif (p(x+1,2y +1), azi1, v, p(x + 1,2y +2), right) (vesp. (p(z,2y), az41,v, p(z, 2y +1), left))
is a valid transition rule of T and a4 is the (x 4+ 1)-th symbol of w.

114:3

ICALP 2016

https://hal.archives-ouvertes.fr/hal-01274992

114:4

Minimizing Resources of Sweeping and Streaming String Transducers

We say that a run on v = ay . .. a, is successful if it starts with an initial state, either at
location (1,0) or at location (n —1,1), and ends in a final state, at some location of the form
(1, Ymax) Or (n — 1, Ymax). The output produced by a run p is the concatenation of the words
produced by its transitions, and it is denoted by out(p).

Crossing sequences. An important notion associated with runs of two-way automata is
that of crossing sequence. Intuitively, this is a tuple of states that label those locations of a
run that visit the same position. Formally, given a successful run p of a two-way transducer
on input u = ay ...a,, the crossing sequence of p at a position x € {1,...,n — 1} is the
tuple plz = (p(:v,yo)7 .. ,p(:z:,yh)), where yo < ... < yp are all and only the levels of the
locations of p at position x. The classical transformation of two-way finite state automata
into equivalent one-way automata [12] uses crossing sequences.

Properties of two-way transducers. We say that a two-way transducer is
sweeping if every run performs the reversals only at the extremities of the input word,
i.e. when reading the symbols > or <
L-sweeping if it is sweeping and all successful runs start at the leftmost location (1,0);
R-sweeping if it is sweeping and all successful runs start at the rightmost location (n—1, 1);
k-pass if every successful run visits every position of the input at most k times;
k-reversal if every successful run performs at most k reversals;
one-way if it is 1-pass, L-sweeping.

A transducer is functional if it produces at most one output on each input. It is called
unambiguous if it admits at most one successful run on each input. These notions will have
the same meaning for streaming transducers, defined later. Clearly, every unambiguous
transducer is functional. The converse is not true in general, but we will see later that we can
transform the functional transducers considered in this paper so as to enforce unambiguity.

It is easy to see that every unambiguous transducer with n states is 2n-pass. For functional
transducers we can restrict ourselves to considering only normalized runs, namely, runs that
never visit the same position twice with the same state and the same direction. The reason
is that functionality guarantees that every factor of a successful run that starts and ends at
the same position and with the same state produces the empty output.

Hereafter, we silently assume that all transducers are functional and all successful runs
are normalized. As a consequence the length of the crossing sequences of the successful runs
of a transducer can be bounded by 2n, where n is the number of states of the transducer.

For streaming transducers, we can observe the following. Every k-pass R-sweeping
transducer can be transformed into an equivalent (k + 1)-pass L-sweeping transducer. It
is also easy to disambiguate functional sweeping transducers, that is, transform them into
equivalent unambiguous sweeping transducers, without increasing the number of passes. For
this it suffices to fix a total order on the successful runs, e.g. the lexicographic order, and
restrict to runs that are minimal among those over the same input.

The following proposition shows an interesting correspondence between the number of
passes of sweeping transducers and the number of reversals of two-way transducers.

» Proposition 1. FEvery k-pass sweeping transducer is also (k — 1)-reversal. Conversely,
every (k—1)-reversal two-way transducer can be transformed in 2EXPTIME into an equivalent
unambiguous k-pass sweeping transducer. The transformation can be performed in EXPTIME
if the (k — 1)-reversal transducer is unambiguous.

F. Baschenis, O. Gauwin, A. Muscholl, and G. Puppis

Streaming transducers. Streaming transducers can implement the same transductions as
two-way transducers [2, 8], but they do so using a single left-to-right pass and a fixed set of
registers that can store words over the output alphabet.

Formally, a streaming transducer is a tuple T = (Q, 2, A, R, U,I, E, F), where @ is a
finite set of states, ¥ (resp. A) is a finite input (resp. output) alphabet, R is a finite set of
registers disjoint from A, U is a finite set of updates for the registers, namely, functions from
R to (RWA)*, I is a subset of @) representing the initial states, E C @ x ¥ x U x Q is a
finite set of transition rules, describing, for each state and input symbol, the possible updates
and target states, and F': Q — (RW A)* is a partial output function.

A well-behaved class of streaming transducers [2] is obtained by restricting the allowed
types of updates and partial output functions to be copyless. A streaming transducer
T=(Q,X,A,R,UIE,F)is copyless if (1) for every update f € U, every register z € R
appears at most once in f(z1)-...- f(z;), where R = {z1,...,2,}, and (2) for every state
q € Q, every register z € R appears at most once in F(q). Hereafter we assume that all
streaming transducers are copyless.

To define the semantics of a streaming transducer T' = (Q,%X,A,R,U,I,E, F), we
introduce wvaluations of registers in R. These are functions of the form g : R — A*.
Valuations can be homomorphically extended to words over RUA and to updates, as follows.
For every valuation g : R — A* and every word w € (RU A)*, we let g(w) be the word
over A obtained from w by replacing every occurrence of a register z with its valuation g(z).
Similarly, for every valuation g : R — A* and every update f: R — (RU A)*, we denote by
g o f the valuation that maps each register z to the word g(f(z)).

A configuration of T is a pair state-valuation (g, g). This configuration is said to be initial
if ¢ € I and g(z) = € for all registers z € R. When reading a symbol «a, the transducer can
move from a configuration (g, g) to a configuration (¢, ¢') if there exists a transition rule
(¢,a, f,q") € E such that ¢ = go f. We denote this by (¢,9) —25 (¢, q').

T
A runof T onu=aj...a, is a sequence of configurations and transitions of the form

o = (g0, 90) = (q1,91) 2 L 2 (qns gn)- The run p is successful if the partial

output function F' is defined on the last state ¢,. In this case, the output of T on wu is
gn(F(qn))-

Properties and relationships with sweeping transducers. Functional and unambiguous
streaming transducers are defined as in the two-way case. A streaming transducer is k-register
if it uses at most k registers. As we did for two-way transducers, we assume that all streaming
transducers are functional.

It is known that (functional) streaming transducers capture precisely the transductions
definable by deterministic two-way transducers or, equally, by monadic second-order logic
(so-called MSO transductions) [2, 8]. Moreover, differently from two-way transducers, non-
deterministic streaming transducers can be determinized. This happens at the cost of
increasing the number of registers.

» Definition 2. A streaming transducer T' = (Q, X, A, R, U, I, E, F) is concatenation-free if
f(z) € A* - (RU{e}) - A*, for all registers z € R and all updates f € U.

Intuitively, a concatenation-free streaming transducer forbids register updates with two or
more registers inside a right-hand side. We note that concatenation-free streaming transducers
can also be determinized effectively. Moreover, it is easy to see that allowing boundedly
many updates with concatenations does not change the expressiveness of the model, as one
can remove any occurrence of an update with concatenations by introducing new registers.

114:5

ICALP 2016

114:6

Minimizing Resources of Sweeping and Streaming String Transducers

The following proposition shows a tight correspondence between the number of registers
of the concatenation-free streaming transducers and the number of passes of the sweeping
transducers. Note that the proposition considers sweeping transducers that start from the
rightmost position. A slightly weaker correspondence holds for L-sweeping transducers,
since any sweeping transducer can be made L-sweeping (resp. R-sweeping) by increasing the
number of passes by 1.

» Proposition 3. Every concatenation-free streaming transducer with k registers can be
transformed in EXPTIME into an equivalent unambiguous 2k-pass R-sweeping transducer.
The transformation is in PTIME if the streaming transducer is unambiguous.

Conversely, every k-pass R-sweeping transducer can be transformed in 2EXPTIME into
an equivalent unambiguous concatenation-free streaming transducer with [g} registers. The
transformation is in EXPTIME if the sweeping transducer is unambiguous.

Based on the above proposition, the problem of minimizing the number of registers in a
concatenation-free streaming transducer reduces to the problem of minimizing the number
of passes performed by a sweeping transducer. We will thus focus on the latter problem:
in Section 4, we consider the decidability and complexity of the following problem, called
k-pass sweeping definability problem: given a functional sweeping transducer S and a number
k € N, decide whether S has an equivalent k-pass sweeping transducer.

3 One-way definability

In [5] we gave an effective characterization of sweeping transducers that are one-way definable,
i.e., equivalent to some one-way transducer. This can be seen as a special case of the problem
that we are considering here, and some of the technical tools developed in [5] will be used
later. We briefly recall some definitions and results related to this characterization. Hereafter
we assume that S is an L-sweeping transducer and p a successful run of S.

Intercepted factors. An interval of positions of the run p has the form I = [z1, zs], with
1 < xo. We say that an interval I = [x1,x2] contains (resp., strongly contains) another
interval I’ = [z, 24] if 21 <) <) < g (resp., x1 < 2} < b <). We say that a factor
of p is intercepted by an interval I = [x1,x5] if it is maximal among the factors of p that
visit only positions in I and that never make a reversal (recall that reversals in sweeping
transducers can only occur at the extremities of the input word).

Pumping loops. A loop of a run p is an interval L = [z1, 23] of positions such that the
crossing sequences p|z; and p|zg are equal. If L is a loop of p, we can obtain new runs by
replicating any number of times the factors of p intercepted by L and, simultaneously, the
factor of the input word u between positions x1 and xo. This operation is called pumping and
is formally defined as follows. Let L = [x1, 23] be a loop of a run p on u. The run obtained

by pumping n times the loop L is the sequence pump? (p) = a1 BT 71 @283 v2 - o Be T
| R N — | SRS
1st pass 2nd pass k-th pass

where k is the number of passes performed by p, 5; is the factor intercepted by L at the i-th
level, «; is the factor intercepted either by [1,x1] or by [x2 41, |u|] at the i-th level, depending
on whether this level is even or odd, and, symmetrically, ; is the factor intercepted either by
[z2 + 1, |u]] or by [1,21] at the i-th level, depending on whether this level is even or odd. We
also define pump’ (u) = u[l, z1] - (u[:l:l + 1,:1:2])” -ul[zg+ 1, |ul] and we observe that pump’ (p)
is a valid run on pump? (u).

F. Baschenis, O. Gauwin, A. Muscholl, and G. Puppis

It is convenient to introduce some notation for pumping runs on multiple loops. If the
loops are pairwise non-overlapping this can be done by simply pumping each loop separately,
since the order in which we pump the loops does not really matter. The situation is a bit
more complicated when some loops overlap. In particular, when pumping a loop L of p,
several copies of the original locations of p are introduced, and with this several copies of
other loops may appear (think, for example, of a loop L’ that is contained in L). We say that
a location 7 in pump’ (p) corresponds to £ in p if 7 is one of the copies of ¢ that is introduced
when pumping p on L. We extend this correspondence to sets of locations and loops. With a
slight abuse of notation, we denote by pump?? (pump?! (p)) the run obtained by first pumping
n1 times the loop L; in p, and then pumping no times every loop that corresponds to

Lo in pump}! (p) (note that the copies of Ly in pump7!(p) are pairwise non-overlapping).

It is routine to check that the two runs pump7? (pumpy’ (p)) and pump}’ (pump}?(p)) are
isomorphic. This allows us to use the shorthand pump%(p) to denote runs obtained from p

by pumping the loops L = L1,..., L,, with the numbers @ = ni, ..., N, respectively.

Inversions. The notion of inversion is crucial for characterizing one-way definability [5]. Let
L be a loop of p. A location ¢; is called an entry point of L if it is the first location of a
factor intercepted by L. Similarly, a location #5 is called an exit point of L if it is the last
location of a factor intercepted by L. Note that every entry/exit point of L = |21, z2] occurs
either at position z; or at position .

» Definition 4. An inversion of a run p is a pair of locations ¢; and ¢5 for which there exist
two loops Ly = [x1,2]] and Ly = [z2, 24] such that (also refer to the figure on the right):
/1 is an entry point of L1 and /5 is an exit point of Lo,
01 < ly and zo <),

for both ¢ = 1 and ¢ = 2, the factor intercepted by L; >:_) N S N

and visiting ¢; has non-empty output, and no other loop by I
. R — >‘
strongly contained in L; has the same property as L;
w.r.t. this factor. Ly L
We say that the loops Ly and Lo are the witnessing loops of the inversion ({1, ¢s).

Periodic words. A word w is said to have period p if w € u* v for some word u of length p
and some prefix v of u. For example, w = abc abcab has period p = 3.

We are interested into factors of the outputs of S that are periodic, with uniformly
bounded periods. To do this, we fix the constant eg = cg - |Q[?/9!, where ¢g is the maximum
number of symbols output by a single transition of S and @ is the state space of S. The
crux in [5] is the following property:

» Proposition 5 (Prop. 7 in [5]). If S is a one-way definable L-sweeping transducer and
(01,42) is an inversion of a successful run p of S, then out(p[l1,£2]) has period at most eg.

The above result justifies the following definition: let Lg C dom(S) be the language of
those words w that induce a successful run p of S such that, for all inversions (¢1,%3) of
p, out(p[ly1,£2]) is periodic with period at most es. We denote by S|p, the transducer S
restricted to inputs from Lg. One-way definability is characterized as follows:

» Theorem 6 (Th. 1in [5]). An L-sweeping transducer S is one-way definable if and only if
Ls = dom(S). Moreover, given an L-sweeping transducer S, one can construct in doubly
exponential time a one-way transducer T' that is equivalent to S|Lq.

114:7

ICALP 2016

114:8

Minimizing Resources of Sweeping and Streaming String Transducers

4 k-pass sweeping definability

We begin by defining the objects that need to be considered for characterizing k-pass
definability, i.e., whether a sweeping transducer is equivalent to some k-pass sweeping
transducer. Let S be an L-sweeping transducer. The idea is to consider factors of runs of
S that can be simulated alternatively from left to right and from right to left. We begin
by introducing a notion of inversion that looks symmetric to Definition 4: a co-inversion
is defined as above, with x; < z}, replacing 23 < 2. In other words, for an inversion we
exclude the case where Lo is after L, whereas for a co-inversion we exclude that Lo is before
L. We then combine inversions and co-inversions, as follows:

» Definition 7. A k-inversion of p is a sequence £ = ({1,(3),. .., (fa._1, l2x) such that:
by <y < ...<Ulok_1 < Loy, are distinct locations in p,
for all even i € {0,...,k — 1}, ({2541, l2i4+2) is an inversion of p,
for all odd i € {0,...,k — 1}, (£a41,%2i42) is a co-inversion of p.

An example of a 3-inversion is depicted to the right. < @ ’
We say that £ is safe if out(p[f2i11, p2i+2]) has period ¢ AN b

at most eg, for some i € {0,...,k —1}. We denote by \. D
L% the language of words u € dom(S) such that all H
: O G—

k-inversions of all successful runs of S on u are safe. @
» Example 8. Consider the 3-pass transducer that on input

u#v, with u,v € {a,b}*, outputs (ab)l“vl(ba)l**l. This . ’. g

transduction can also be realized in 2 passes. This means , @
that every 2-inversion is safe. For example, the 2-inversion
depicted to the right is safe, as the output p[¢s, ¢4] is periodic. u #owv

Note that the definition of 1-inversion is the same as Definition 4, and hence Lg) =Lg.
In particular, by Theorem 6, we know that S is one-way definable iff L(Sl) = dom(S). The
generalization of this result is provided in Theorem 9 below: k-pass definability is equivalent
to k-inversions being all safe, in the same way as one-way definability is equivalent to all
inversions having periodic output.

» Theorem 9. A sweeping transducer S is k-pass L-sweeping definable iff Lfgk) = dom(S),

and this can be decided in EXPSPACE. Moreover, given a sweeping transducer S, one can

construct in 2EXPTIME an unambiguous k-pass L-sweeping transducer T equivalent to S|L(k).
S

An analogous result for deciding k-pass R-sweeping definability can be derived by symme-
try, by mirroring the input and reversing the computation. We also observe that, for k = 1,
the above theorem improves the previous 2EXPSPACE upper bound from [5] for deciding
one-way definability of a sweeping transducer S. Concerning the doubly exponential size of
an equivalent k-pass L-sweeping transducer, we observe that this is optimal, as in [5] we have
shown that there are sweeping transducers S such that any equivalent one-way transducer
has size at least doubly exponential in S.

Before turning to the proof of Theorem 9, we list some simple consequences of this
theorem and of Propositions 1 and 3.

» Corollary 10.
One can compute in EXPSPACE the minimum number of passes needed to implement a
transduction given as a sweeping transducer.

F. Baschenis, O. Gauwin, A. Muscholl, and G. Puppis

One can compute in SEXPSPACE the minimum number of reversals needed to imple-
ment a transduction given as a bounded-reversal two-way transducer. The complexity is
2EXPSPACE if the given two-way transducer is unambiguous.
One can compute in 2EXPSPACE the minimum number of registers needed to implement
a transduction given as a concatenation-free streaming transducer. The complexity is
EXPSPACE if the given streaming transducer is unambiguous.

The proof of Theorem 9 is split into two parts. The first part, called “soundness”, deals
with the construction of the k-pass L-sweeping transducer T of the second claim. Since
Lgk) = dom(.S) implies that T is equivalent to .S, this construction also proves the right-to-left
direction of the first claim. Moreover, as a side result, we prove that whether Lgk) = dom(S)
holds is decidable in EXPSPACE. The second part, called “completeness”, deals with the
left-to-right direction of the first claim.

Soundness. We show how to construct from S a k-pass L-sweeping transducer T equivalent
to S|L(k). The idea is to consider a successful run p of S on a word u € Lgk), and divide it
into k factors. We then simulate each factor of the run in a single pass, alternatively from
left to right and from right to left, using [5]. First we need the notion of k-factorizations:

» Definition 11. A k-factorization of a successful run p of S is any sequence of locations
=10y, 0,...,0 of psuch that:
by <l <...< /g, Ly is the first location of p, and ¢} is the last location of p,
for all even indexes i, with 0 < i < k, and all inversions (¢, ¢') of p, with £; < £ < ' < ¥;14,
the word out(p[¢, ¢']) has period at most eg,
for all odd indexes 4, with 1 < i < k, and all co-inversions (¢, ¢') of p, with ¢; < ¢ < ¢ <
li+1, the word out(p[l, ¢']) has period at most eg.

» Example 12. We consider the transducer of Example 8 and

we depict a 2-factorization of a run of it (gray nodes). All the @
inversions between £y and ¢, and all the co-inversions between O @ O

£1 and ¢5, must be periodic. Note that the run does contain @

non-periodic inversions (e.g. those crossing ¢1), and hence it u # v

does not admit a 1-factorization.

The following lemma shows that we can reason equally in terms of safe k-inversions
(Definition 7) and in terms of k-factorizations.

» Lemma 13. For every word u € dom(S), we have that u € Lgk) if and only if all successful
runs of S on u admit k-factorizations.

Next we show that being a k-factorization is a regular property. To formalize this,
we need to explain how to encode runs and sequences of locations as annotations of the
underlying input. Formally, given a word u € dom(S), a successful run p of S on wu,
and a tuple of locations £ = /1,...,£,, in p, we denote by (u, p,?) the word obtained by
annotating each position 1 < z < |u| of v with the crossing sequence p|x and with the
m-tuple ¥ = (y1(x), ..., ym(x)), where each y;(x) is either the level of ¢; or L, depending on
whether ¢; is at position x or not. Based on this encoding, we can define the language Fék)
of all words of the form (u, p, £), where p is a successful run of S on u and £ = £y, ..., £ is a
k-factorization of p. Lemma 14 below proves that this language is regular. In fact, in order

to better handle the complexity of our characterization, the lemma shows that both Fék)

—(k
and its complement ng) are recognized by automata of doubly exponential size.

114:9

ICALP 2016

114:10

Minimizing Resources of Sweeping and Streaming String Transducers

» Lemma 14. The language Fék) and its complement ngk) are recognized by non-deterministic
finite state automata of size double exponential w.r.t. S.

Using the above encodings, we can also relativize the outputs produced by the transducer
S to factors of successful runs. More precisely, we denote by Sgactors the transducer that
reads words of the form (u, p, £1, £2) and outputs words of the form out(p[¢1, {5]), provided
that p is a successful run of S on u and ¢1, > are two locations in it. Note that Stictors does
not check that the input is well-formed, in particular, that p is a successful run of S on .
Because of this, the number of states of Sgactors is polynomial in the number of states of .S,
and a succinct representation of Stactors can be produced in polynomial time.

Now, it is easy to construct a k-pass L-sweeping transducer T’ equivalent to S| L) as

claimed in Theorem 9. The idea is that, on reading the input u, the transducer T guesses

a successful run p on u and a k-factorization ¢ = /g, ..., ¢, of p — this can be done using
the encoding (u, p,f) and Lemma 14. While guessing these objects, T performs k passes
and outputs To({u, p, €o, £1)) - T1 ((u, p, €1,02)) - ... - Tp—1({u, p,€r—_1, L)), where each T; is

the 1-pass sweeping transducer obtained by applying Theorem 6 to Sg.ctor (as usual, some
mirroring is required for dealing with the odd indexes ¢). The only technical detail, here, is
that different objects p, ¢ may be guessed along the different passes of T'. If this happens, the
output produced by T might not be equal to that of S. We can overcome this problem by
exploiting disambiguation, namely, by guessing canonical encodings (u, p, £) in the language
Fék). For example, we can fix a lexicographic ordering on these encodings and commit to
always guessing the least encoding among those that agree on the input word w. This requires
reasoning with both the language Fék) and its complement ngk). By Lemma 14, the two
languages are recognized by automata of doubly exponential size in S, and hence T can be
constructed in doubly exponential time from S. As a matter of fact, the transducer T' that
we just constructed is also unambiguous.

We conclude this part by showing how to decide in exponential space if Lgc) = dom(S).
In fact, as we already know that L(Sk) C dom(S), it suffices to decide only the containment
Lfgk) D dom(S). We know from Lemma 13 that the language Lgk) coincides with the
projection of F ék) on the underlying words u. Thus, we have Lgc) 2 dom(S) if and only if

f(sk) ND =0, where D = {{u,p,¢) : u € dom(S)}. A close inspection of the construction of

the automaton for ngk) shows that the emptiness of ngk) N D can be decided in EXPSPACE.

Completeness. Here we prove the left-to-right direction of the first claim of Theorem 9.
We suppose that S is an L-sweeping transducer and 7T is an equivalent k-pass L-sweeping
transducer. We fix, once and for all, a successful run p of S on u and a k-inversion
? = (£1,€2), ey (62]@,1,62]6) of P

The goal is to prove that £ is safe, namely, that the factor of the output produced between
the locations of some (co-)inversion (f9;1,¢2;12) of £ is periodic, with uniformly bounded
period. The main idea is to try to find a factor out(p[f2;11, f2i+2]) that is entirely covered
by the output produced along a single pass of the equivalent transducer 7', and apply a
suitable generalization of Proposition 5. Informally, this works by pumping the output
out(p[lai+1, l2;12]) through repeating the witnessing loops of (£g;41, f2;12). In a similar way,
we pump the output produced along a single pass of T. Then, by analyzing how the former
outputs are covered by the latter outputs, we deduce the periodicity of out(p[lo;+1, f2i12])-

The main difficulty in formalizing the above idea lies in the fact that the k passes of the
supposed transducer T' cannot be identified directly on the run p of S. Therefore we need
to reason in a proper way about families of factors associated with (co-)inversions inside
pumped runs. Below, we introduce some terminology and notation to ease this task.

F. Baschenis, O. Gauwin, A. Muscholl, and G. Puppis

Recall that £ = (¢1,0s), ..., (farx_1, 1) is a k-inversion of the run p. Foralli =0,...,k—1,
let Lo;1 and Lo; 4o be the witnessing loops of (€241, £2;42). For a given tuple of numbers 7@ =
(n1,...,n9) € N?* we define p" = pump%(p), where L = Ly,..., Loy and @ = ny, ..., nog
(recall that this is the run obtained by pumping the loops L1, ..., Loy respectively ni,. .., nag
times, as described in Section 3). Similarly, we denote by u™ the word parsed by the pumped
run p".

We would like to map the inversions and co-inversions of ¢ on the pumped runs p”.

Consider an inversion (f2;41, f2;42), for some i € {1,...,2k} (the case of a co-inversion is
similar). Recall that when pumping loops in p, several copies of the original locations may
be introduced. In particular, among the copies of the inversion (€21, f2;42) that appear
in the pumped run p”, we will consider the maximal one, which is identified by taking the
first copy 1721-+1 of l9;11 and the last copy g2i+2 of £9;12. For the sake of brevity, we say that
(221'4,_1, ZQH_Q) is the inversion of p™ that corresponds to (f2;11,l2i12).

We can now define the key objects for our reasoning, that is, the factors of the output of
a pumped run p” that correspond in the original run p to the factors produced between the
locations of the (co-)inversions of £. Formally, for every 2k-tuple 7 of natural numbers and
every index ¢ = 0,...,k — 1, we define

" (i) = Out(pﬁ[5~2i+1,l72i+2])

where (@thgiﬁ) is the (co-)inversion of p™ that corresponds to ({2,411, /2;12). Below we
highlight the relevant factors inside the output produced by S on u™:

Su™) = OUt(Pﬁ[Eoygl])'”ﬁ(o)'OUt(PH[ZQjSD'Uﬁ(l)'--~'”ﬁ(k—1)'°Ut(0ﬁ[22k7l72k+1]) (1)

where {y is the first location of p™, 511 is the last location of p™.

In a similar way, we can factorize the output produced by the k-pass L-sweeping transducer
T when reading the input «™. However, the focus here is on the factors of the output produced
along each pass. Formally, given 7 € N?* we let 0™ be some successful run of T on u”. For
every j =0,...,k—1, we let E;- be the first location of o™ at level j. We further let ¢}, be
the last location of ¢, which is at level & — 1. We then define

w™(j) = out(aﬁ[@,@ﬂ])
and factorize the output of T on u” as follows:

T@W") = w™(0) - w™(1)-... - w™(k—1). (2)

The next step is to exploit the hypothesis that S and T are equivalent. This means that
Equations (1) and (2) represent the same word. From this we derive that, for any given
7 € N2* | at least one of the words v"™(i) highlighted in Equation (1) is a factor of the word
w" (i) highlighted in Equation (2). However, what is the index i for which this coverability
relation holds depends on the parameter 7. In order to enable a reasoning similar to that of
Proposition 5, we need to find a single index ¢ such that, for “sufficiently many” parameters
m, v"(i) is a factor of w™(i). The definition below, formalizes what we mean precisely by
“sufficiently many” 7 — intuitively, we require that specific coordinates of @ are unbounded,
as well the differences between these coordinates.

» Definition 15. Let P(7) denote an arbitrary property of tuples m € N?*. Further let
h,h' be two distinct coordinates in {1,...,2k}. We say that P(7m) holds unboundedly on the
coordinates h,h' of m if, for all numbers ng € N, there exist 721,75 € N?* such that:

114:11

ICALP 2016

114:12

Minimizing Resources of Sweeping and Streaming String Transducers

P(m1) and P(m2) hold,
ﬁl[h] > ng and 7 [h/] — Ny [h] > ng,
ﬁg[h/] > ng and 7o [h] — TNo [h/] > ng.

We recall that each factor v™ (i) is associated with the (co-)inversion (f2;11, f2;42), and
that the corresponding components 72[2i + 1] and 7[2i + 2] of the parameter 7 denote the
number of times the witnessing loops Lg;y1 and Lo; o are pumped in p”. The specific
properties we are interested in are the following ones, for : =0,...,k — 1:

Pi(m) = “v™(i) is a factor of w"(i)”.

It is not difficult to see that for every tuple m € N?* P;(7m) holds for some i € {0,...,k — 1}.
From this, using a suitable counting argument, we can prove the crucial lemma below.

» Lemma 16. There exists an index i € {0,...,k — 1} such that the property P;(m) =
“o™(4) is a factor of w™(i)” holds unboundedly on the coordinates 2i + 1 and 2i + 2 of 7.

The last piece of the puzzle consists of generalizing the statement of Proposition 5.
The idea is that we can replace the hypothesis that S is one-way definable by the weaker
assumption of Lemma 16. That is, if P;(7) holds unboundedly on the coordinates 2i + 1
and 2i + 2 of 7, we can still use the same arguments based on pumping and Fine-Wilf’s
Theorem as in Proposition 5, in order to deduce that the output out(p[€2;+1, f2i+2]) between
the locations of the (co-)inversion is periodic:

» Proposition 17. If the property P;(n) = “v™(i) is a factor of w™(i)” holds unboundedly
on the coordinates 2i +1 and 2i+2 of W, then the output out(p[la;t1, lait2]) produced between
the locations of the (co-)inversion (€2;41,%2i42) is periodic, with period es. In particular, the
k-inversion £ = (£1,03), ..., (fap_1, lar) is safe.

To conclude, we assumed that the L-sweeping transducer S is equivalent to a k-pass
L-sweeping transducer T. We considered a successful run p of S and an arbitrary k-inversion
¢ of it. By Lemma 16, we know that there is an index i € {0,...,k — 1} for which the
property P;(m) = “v™(i) is a factor of w™(i) ” holds unboundedly on the coordinates 2i + 1
and 2i + 2 of m. From this, by applying Proposition 17, we derive that the k-inversion ¢ is

safe. This proves the left-to-right direction of the first claim of Theorem 9. |

5 Sweeping transducers and MSO

We provide a logical characterization of sweeping transducers. For this we will consider
restricted forms of transductions definable in monadic-second order logic (MSO) [8].

MSO transductions are described by specifying the output (seen as a relational structure)
from a fixed number of copies of the input. Formally, an MSO transduction with m copies
consists of an MSO sentence ®gom, some unary MSO formulas ®:(z), one for each i €
{1,...,m} and a € A, and some binary MSO formulas <I>i<’j(ac,y), one for each 7,5 €
{1,...,m}. Intuitively, the sentence @40y, tells whether the transduction is defined on some
input u. The unary formula ®’ (z) tells whether the element z of the i-th copy of the input
belongs to the output and is labeled with the letter a. The formula <I>i<’j (z,y) tells whether,
in the produced output, the element z of the i-th copy of the input precedes the element y of
the j-th copy of the input. Note that the sentence ®q,,, can easily guarantee that, whenever
the output is defined, it is well-formed, namely, it is a word. For the sake of simplicity, we
assume that @ (x) entails ®qom, namely, for all words u and all positions x, u = ®¢ (z)
implies u = ®gom. Similarly, we assume that ®27 (z,) entails ®(z) and &7 (y).

F. Baschenis, O. Gauwin, A. Muscholl, and G. Puppis

» Definition 18. Let 7" be an MSO transduction with m copies. We say that T is
order-preserving if each formula <I>Z§’j (z,y) entails z < y;

order-inversing if each formula <I>i<’j (z,y) entails z > y;

k-phase if there is a partition Io, Iy, ..., Ix—1 of the set of indexes {1,...,m} such that
In<@ <...<Iy_1,namely, i < jforall 0 <h < h <k,i€ I, and j € I, and each
formula <I>i<’j(x, y) entails x < y if h is even, or x > y otherwise.

We know from [9] that order-preserving MSO transductions capture precisely the one-way
definable transductions. We obtain:

» Theorem 19. k-phase MSO transductions have the same expressive power as functional,
k-pass L-sweeping transducers.

6 Conclusions

We showed that sweeping transducers, bounded-reversal transducers, and concatenation-free
streaming transducers define the same subclass of regular word transductions. Our main
result is an effective characterization of transductions definable by sweeping transducers with
a fixed number of passes. As a consequence we obtained a procedure that minimizes the
number of registers in a concatenation-free sweeping transducer.

We believe that similar results can be proven for two-way (non-sweeping) transducers,
using a refined version of the constructions presented here. In this respect, an interesting
open problem is to characterize the two-way transducers that are equivalent to sweeping
transducers, but with an arbitrary (unspecified) number of passes.

—— References

1 A.V. Aho and J. D. Ullman. A characterization of two-way deterministic classes of lan-
guages. J. Comput. Syst. Sci., 4(6):523-538, 1970.

2 R. Alur and P. Cerny. Expressiveness of streaming string transducers. In F'STTCS, volume 8
of LIPIcs, pages 1-12. Schloss Dagstuhl — Leibniz-Zentrum fuer Informatik, 2010. doi:
10.4230/LIPIcs.FSTTCS.2010.1.

3 R. Alur and L. D’Antoni. Streaming tree transducers. In ICALP, volume 7392 of LNCS,
pages 42-53. Springer, 2012.

4 R. Alur and M. Raghothaman. Decision problems for additive regular functions. In ICALP,
volume 7966 of LNCS, pages 37-48. Springer, 2013.

5 F. Baschenis, O. Gauwin, A. Muscholl, and G. Puppis. One-way definability of sweeping
transducers. In FSTTCS, volume 45 of LIPIcs, pages 178-191. Schloss Dagstuhl — Leibniz-
Zentrum fuer Informatik, 2015. doi:10.4230/LIPIcs.FSTTCS.2015.178.

6 O. Carton and L. Dartois. Aperiodic two-way transducers and FO-transductions. In CSL,
LIPIcs, pages 160-174. Schloss Dagstuhl — Leibniz-Zentrum fuer Informatik, 2015. doi:
10.4230/LIPIcs.CSL.2015.160.

7 L. Daviaud, P.-A. Reynier, and J.-M. Talbot. A generalised twinning property for minimi-
sation of cost register automata. In LICS. IEEE Computer Society, 2016.

8 J. Engelfriet and H. J. Hoogeboom. MSO definable string transductions and two-way
finite-state transducers. ACM Trans. Comput. Logic, 2:216-254, 2001.

9 E. Filiot. Logic-automata connections for transformations. In ICLA, pages 30-57, 2015.

10 E. Filiot, O. Gauwin, P.-A. Reynier, and F. Servais. From two-way to one-way finite state
transducers. In LICS, pages 468-477. IEEE Computer Society, 2013.

114:13

ICALP 2016

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.1
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.1
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2015.178
http://dx.doi.org/10.4230/LIPIcs.CSL.2015.160
http://dx.doi.org/10.4230/LIPIcs.CSL.2015.160

114:14 Minimizing Resources of Sweeping and Streaming String Transducers

11 E. Filiot, S. N. Krishna, and A. Trivedi. First-order definable string transformations. In
FSTTCS, volume 29 of LIPIcs, pages 147-159. Schloss Dagstuhl — Leibniz-Zentrum fuer
Informatik, 2014. doi:10.4230/LIPIcs.FSTTCS.2014.147.

12 J. C. Shepherdson. The reduction of two-way automata to one-way automata. IBM Journal
of Research and Development, 3(2):198-200, 1959.

13 M. Sipser. Lower bounds on the size of sweeping automata. In STOC, pages 360-364. ACM,
1979.

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2014.147

	Introduction
	Preliminaries
	One-way definability
	k-pass sweeping definability
	Sweeping transducers and MSO
	Conclusions

