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Abstract
We present a reinterpretation of the Kameda-Weiner method of finding a minimal nondetermin-
istic finite automaton (NFA) of a language, in terms of atoms of the language. We introduce a
method to generate NFAs from a set of languages, and show that the Kameda-Weiner method
is a special case of it. Our method provides a unified view of the construction of several known
NFAs, including the canonical residual finite state automaton and the atomaton of the language.
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1 Introduction

Nondeterministic finite automata (NFAs), introduced by Rabin and Scott [11] in 1959, have
played a major role in the theory and applications of finite automata. In particular, the
problem of finding NFAs with the minimal number of states has received much attention.
Different approaches have been used over the years when trying to solve this problem, of
which the work done by Kameda and Weiner [10] in 1970 seems to be among the most
classical ones. Kameda and Weiner studied the problem of NFA minimization using a matrix
based on the states of the minimal deterministic finite automata (DFAs) for a given language
and its reverse. They suggested a method of finding a minimal NFA using grids of this
matrix.

We present a reinterpretation of the Kameda-Weiner method, using the recently introduced
atoms of regular languages [3, 5], and continuing the work started by Brzozowski and Tamm
in [4], where the Kameda-Weiner method was formulated in terms of quotients and atoms
of a language. We show that the matrix used by Kameda and Weiner can be viewed as
the quotient-atom matrix of the language, and that any maximal grid of this matrix can be
seen as the set of atoms that the grid involves. We also show that, instead of applying the
rather complicated intersection rule of the Kameda-Weiner method, to construct an NFA
corresponding to a cover of the matrix, consisting of maximal grids, one can use sets of atoms
associated with grids, and form an NFA based on these sets. We note that essentially the
same approach to the Kameda-Weiner method, which uses projections of grids (corresponding
to sets of atoms), has been presented by Champarnaud and Coulon [6].

Furthermore, we generalize the idea of constructing an NFA using sets of atoms. Namely,
we introduce a method to generate NFAs from a set of languages, and show that the
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116:2 New Interpretation and Generalization of the Kameda-Weiner Method

Kameda-Weiner method of constructing a minimal NFA is a special case of this method.
The introduced method provides a unified view of the construction of several known NFAs
including, for example, the canonical residual finite state automaton and the átomaton of
the language.

The structure of the rest of the paper is as follows. In Section 2, we provide definitions
for automata, quotients, and atoms of a regular language, and recall some results related
to atoms. Section 3 describes the Kameda-Weiner method of finding a minimal NFA of
a language and shows how the Kameda-Weiner construction of an NFA can be expressed
in terms of atoms. In Section 4, we introduce a method to generate NFAs from a set of
languages and present a few examples of known NFAs that can be constructed using this
method. In Section 5, we show that the NFA minimization method presented by Kameda
and Weiner is a special case of generating an NFA by our method. Section 6 concludes the
paper.

2 Automata, Quotients, and Atoms of Regular Languages

A nondeterministic finite automaton (NFA) is a quintuple N = (Q,Σ, δ, I, F ), where Q is
a finite, non-empty set of states, Σ is a finite non-empty alphabet, δ : Q × Σ → 2Q is the
transition function, I ⊆ Q is the set of initial states, and F ⊆ Q is the set of final states. We
extend the transition function to functions δ′ : Q×Σ∗ → 2Q and δ′′ : 2Q ×Σ∗ → 2Q, using δ
for all these functions. An NFA N ′ = (Q′,Σ′, δ′, I ′, F ′) is a subautomaton of N if Q′ ⊆ Q,
Σ′ ⊆ Σ, I ′ ⊆ I, F ′ ⊆ F , and q ∈ δ′(p, a) implies q ∈ δ(p, a) for every p, q ∈ Q′ and a ∈ Σ′.

The language accepted by an NFA N is L(N ) = {w ∈ Σ∗ | δ(I, w) ∩ F 6= ∅}. The right
language of a state q of N is Lq,F (N ) = {w ∈ Σ∗ | δ(q, w) ∩ F 6= ∅}. A state is empty if its
right language is empty. The left language of a state q of N is LI,q = {w ∈ Σ∗ | q ∈ δ(I, w)}.
A state is unreachable if its left language is empty. An NFA is trim if it has no empty or
unreachable states. If N1 = (Q1,Σ, δ1, I1, F1) and N2 = (Q2,Σ, δ2, I2, F2) are NFAs, then a
map ϕ from Q1 into Q2 is a morphism from N1 into N2 if and only if ϕ(I1) ⊆ I2, ϕ(F1) ⊆ F2,
and q ∈ δ1(p, a) implies ϕ(q) ∈ δ2(ϕ(p), a).

A deterministic finite automaton (DFA) is a quintuple D = (Q,Σ, δ, q0, F ), where Q, Σ,
and F are as in an NFA, δ : Q× Σ→ Q is the transition function, and q0 is the initial state.

The following three operations on automata are commonly used: the determinization
operation D applied to an NFA N , yielding a DFA ND, obtained by the well-known subset
construction, the reversal operation R which, when applied to an NFA N , yields an NFA
NR, where the sets of the initial and the final states of N are interchanged and all transitions
are reversed, and the trimming operation T which, when applied to an NFA N , results in an
NFA N T where all unreachable and empty states are removed.

The left quotient, or simply quotient, of a language L by a word w ∈ Σ∗ is the language
w−1L = {x ∈ Σ∗ | wx ∈ L}. There is one initial quotient, ε−1L = L. A quotient is final if it
contains ε. It is well known that there is a one-to-one correspondence between the set of
states Q = {q0, . . . , qn−1} of the minimal DFA D = (Q,Σ, δ, q0, F ) accepting L and the set
of quotients {K0, . . . ,Kn−1} of L, such that Lqi,F (D) = Ki for i = 0, . . . , n− 1.

An atom of a regular language L with quotients K0, . . . ,Kn−1 is any non-empty language
of the form K̃0 ∩ · · · ∩ K̃n−1, where K̃i is either Ki or Ki, and Ki is the complement of Ki

with respect to Σ∗. Thus atoms of L are regular languages uniquely determined by L and
they define a partition of Σ∗. They are pairwise disjoint and every quotient of L (including
L itself) is a union of atoms. Also, every quotient of an atom of L is a union of atoms. It
has been noticed that atoms are exactly the classes of the left congruence of L [9] defined as
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follows: for x, y ∈ Σ∗, x is equivalent to y if for every u ∈ Σ∗, ux ∈ L if and only if uy ∈ L.
This idea was used in [2], where this equivalence is called the atom congruence.

A regular language L with n quotients has at most 2n atoms. An atom is initial if it has L
(rather than L) as a term; it is final if it contains ε. There is exactly one final atom, the atom
K̂0∩ · · · ∩ K̂n−1, where K̂i = Ki if ε ∈ Ki, and K̂i = Ki otherwise. Let A = {A0, . . . , Am−1}
be the set of atoms of L, let IA be the set of initial atoms, and let Am−1 be the final atom.
If K0 ∩ · · · ∩Kn−1 is an atom, then it is called the negative atom, all the other atoms are
positive.

We use a one-to-one correspondence Ai ↔ Ai between atoms Ai of a language L and the
states Ai of the NFA A defined as follows [5]:

I Definition 1. The átomaton of L is the NFA A = (A,Σ, α, IA, {Am−1}), where A =
{Ai | Ai ∈ A}, IA = {Ai | Ai ∈ IA}, and Aj ∈ α(Ai, a) if and only if Aj ⊆ a−1Ai, for all
Ai,Aj ∈ A and a ∈ Σ.

The right language of any state Ai of the átomaton is the atom Ai [5].
The next theorem is a slightly modified version of the result by Brzozowski [1]:

I Theorem 2. If an NFA N has no empty states and NR is deterministic, then ND is
minimal.

Since it was shown in [5] that AR is a minimal DFA for the reverse language of L, we
know by Theorem 2 that AR is isomorphic to DRD, where D is the minimal DFA of L. Thus,
A is isomorphic to DRDR.

A new class of NFA’s was defined in [5] as follows: an NFA N = (Q,Σ, δ, I, F ) is atomic
if for every q ∈ Q, the right language Lq,F (N ) of q is a union of atoms of L(N ). Also, it was
shown that for any NFA N , ND is a minimal DFA if and only if NR is atomic.

3 NFA Minimization by Kameda and Weiner

Kameda and Weiner [10] have developed a theory of NFA minimization. They used minimal
DFAs for a language L and its reverse LR to form a matrix, and based on the grids in this
matrix, a minimal NFA was found. We note that the biclique edge cover technique presented
by Gruber and Holzer [8] as a lower bound method for the size of a minimal NFA, uses
another representation of the same matrix.

We present main principles of the Kameda-Weiner method, using mostly our terminology
and notation. Kameda and Weiner [10] consider a trim minimal DFA D = (Q,Σ, δ, q0, F )
with Q of cardinality p, and its reversed determinized and trim version DRDT ; the set of
states of DRDT is a subset S of cardinality r of 2Q \ ∅. They then form an p × r matrix
T where the rows correspond to non-empty states qi ∈ Q of D, which is the trim minimal
DFA of a language L, and columns, to states Sj ∈ S of DRDT , which is the trim minimal
DFA of the language LR by Theorem 2. The entry ti,j of the matrix T is 1 if qi ∈ Sj , and 0
otherwise.

We use DRDRT , the trim átomaton, instead of DRDT , since the state sets of these two
automata are identical. Interpret the rows of the matrix as non-empty quotients of L and
columns, as positive atoms of L. Then ti,j = 1 if and only if quotient Ki contains atom Aj
as a subset, and it is clear that every regular language defines a unique such matrix, which
we will call the quotient-atom matrix.

The ordered pair (Ki, Aj) is a point of T if ti,j = 1. A grid g of T is the direct product
g = P × R of a set P of quotients with a set R of atoms, such that every atom in R is a
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116:4 New Interpretation and Generalization of the Kameda-Weiner Method

subset of every quotient in P . If g = P ×R and g′ = P ′ ×R′ are two grids of T , then g ⊆ g′
if and only if P ⊆ P ′ and R ⊆ R′. Thus ⊆ is a partial order on the set of all grids of T , and
a grid is maximal if it is not contained in any other grid. We say that a grid g = P ×R is
horizontally maximal if for any grid g′ = P × R′, R′ ⊆ R. Similarly, a grid g = P × R is
vertically maximal if for any grid g′ = P ′ ×R, P ′ ⊆ P . Clearly, any maximal grid is both
horizontally and vertically maximal.

A cover G of T is a set G = {g0, . . . , gk−1} of grids, such that every point (Ki, Aj) belongs
to some grid gi in G. A minimal cover has the minimal number of grids.

Let fG be the function that assigns to every non-empty quotient Ki the subset of a
cover G, consisting of grids g = P × R such that Ki ∈ P . The NFA constructed by the
Kameda-Weiner method is NG = (G,Σ, ηG, IG, FG), where G is a cover consisting of maximal
grids, IG = fG(K0) is the set of grids corresponding to the initial quotient K0, and FG is
defined by g ∈ FG if and only if g ∈ fG(Ki) implies that Ki is a final quotient. For every grid
g = P ×R and a ∈ Σ, we can compute ηG(g, a) by the formula ηG(g, a) =

⋂
Ki∈P fG(a−1Ki).

It is said that the NFA NG is obtained from D by the intersection rule, using the (grid)
cover G.

It may be the case that NG does not accept the language L. A cover G is called legal if
L(NG) = L. To find a minimal NFA of a language L, the method in [10] tests the covers of
the quotient-atom matrix of L in the order of increasing size to see if they are legal. The
first legal NFA is a minimal one.

Next, we will interpret the Kameda-Weiner method in terms of atoms. For this, we first
show the relationship between maximal grids and certain sets of atoms. Let us start with
the following definition:

IDefinition 3. Let R be a set of atoms and let U(R) =
⋃
Aj∈RAj be the union of these atoms.

We define the maximized version of U(R) to be the language max(U(R)) =
⋂
U(R)⊆Ki

Ki.
We say that the set R is maximal if max(U(R)) = U(R).

The following proposition is an easy observation:

I Proposition 4. Let R be a set of atoms. Then
1. U(R) ⊆ max(U(R)),
2. max(max(U(R))) = max(U(R)).

I Proposition 5. Let Ri and Rj be sets of atoms. The following properties hold:
1. If U(Ri) ⊆ U(Rj), then max(U(Ri)) ⊆ max(U(Rj)).
2. For every a ∈ Σ, max(a−1U(Ri)) ⊆ a−1max(U(Ri)).

Proof. To prove the first claim, let U(Ri) ⊆ U(Rj). Then it is easy to see that the
inclusion {Kh | U(Ri) ⊆ Kh} ⊇ {Kk | U(Rj) ⊆ Kk} holds, implying that also the inclusion⋂
U(Ri)⊆Kh

Kh ⊆
⋂
U(Rj)⊆Kk

Kk holds. Thus, max(U(Ri)) ⊆ max(U(Rj)).
To prove the second property, consider the set of quotients Kh such that U(Ri) ⊆ Kh.

Since U(Ri) ⊆ Kh implies that a−1U(Ri) ⊆ a−1Kh holds, it is clear that the inclu-
sion {a−1Kh | U(Ri) ⊆ Kh} ⊆ {Kk | a−1U(Ri) ⊆ Kk} holds. This implies that also
the inclusion

⋂
a−1U(Ri)⊆Kk

Kk ⊆
⋂
U(Ri)⊆Kh

a−1Kh holds. Since
⋂
U(Ri)⊆Kh

a−1Kh =
a−1 ⋂

U(Ri)⊆Kh
Kh, we get that max(a−1U(Ri)) ⊆ a−1max(U(Ri)). J

Next, we will see that any maximal grid can be considered as a maximal set of atoms it
involves.

I Proposition 6. For any grid g = P ×R, U(R) ⊆
⋂
Ki∈P Ki holds.
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Proof. For any grid g = P × R, it holds that for every Ki ∈ P and Aj ∈ R, Aj ⊆ Ki,
implying that U(R) ⊆

⋂
Ki∈P Ki. J

I Proposition 7. A grid g = P × R is horizontally maximal if and only if the equality⋂
Ki∈P Ki = U(R) holds.

Proof. For any grid g = P × R, the inclusion U(R) ⊆
⋂
Ki∈P Ki holds by Proposition 6.

Let g be a horizontally maximal grid. Then there is no grid g′ = P ×R′, such that R ⊂ R′.
That is, there is no Al ∈ {A0, . . . , Am−1} \R, such that U(R) ∪Al ⊆

⋂
Ki∈P Ki would hold.

Since every quotient is a disjoint union of atoms, every intersection of quotients is also a
union of atoms. Therefore, the equality

⋂
Ki∈P Ki = U(R) holds.

Conversely, if
⋂
Ki∈P Ki = U(R), then for every grid g′ = P ×R′, the inclusion R′ ⊆ R

holds. Thus, the grid g = P ×R is horizontally maximal. J

I Corollary 8. A grid g = P ×R is horizontally maximal if and only if the set R is maximal.

Proof. Let g = P ×R be a horizontally maximal grid. By Proposition 7, this means that
the equality

⋂
Ki∈P Ki = U(R) holds. Since max(U(R)) =

⋂
U(R)⊆Ki

Ki, it is clear that
max(U(R)) = U(R). Thus, R is maximal. J

I Corollary 9. A grid g = P ×R is maximal if and only if P is a maximal set of quotients
such that the equality

⋂
Ki∈P Ki = U(R) holds.

According to Corollaries 8 and 9, any maximal grid involves a maximal set of atoms and
the set of quotients, such that the intersection of these quotients is the union of the atoms
involved.

As the main result of this section, we will prove the following theorem which shows how
the construction of the NFA NG can be expressed in terms of atoms:

I Theorem 10. Let G = {g0, . . . , gk−1} be a cover consisting of maximal grids gi = Pi ×Ri,
i = 0, . . . , k − 1, and let NG = (G,Σ, ηG, IG, FG) be the corresponding NFA, obtained by the
intersection method. It holds that gi ∈ IG if and only if U(Ri) ⊆ L, and gi ∈ FG if and
only if ε ∈ U(Ri). For any gi, gj ∈ G and a ∈ Σ, gj ∈ ηG(gi, a) if and only if the inclusion
U(Rj) ⊆ a−1U(Ri) holds.

Proof. The set IG of initial states of NG consists of those grids that intersect the initial
quotient K0 = L. That is, for every grid gi ∈ G, gi ∈ IG if and only if U(Ri) ⊆ L holds.

The set FG of final states of NG is the set of grids that intersect only the final quotients.
Equivalently, for any gi ∈ G, it holds that gi ∈ FG if and only if U(Ri) includes the final
atom. The latter is equivalent to having ε ∈ U(Ri).

Next, let gj ∈ ηG(gi, a) for some gi, gj ∈ G and a ∈ Σ. By the intersection rule, it holds
that ηG(gi, a) =

⋂
Kh∈Pi

f(a−1Kh). That is, gj ∈ ηG(gi, a) if and only if gj ∈ f(a−1Kh) for
every Kh ∈ Pi. This implies that gj ∈ ηG(gi, a) if and only if a−1Kh ∈ Pj holds for every
Kh ∈ Pi.

It is clear that if a−1Kh ∈ Pj holds for every Kh ∈ Pi, then the inclusion
⋂
Kk∈Pj

Kk ⊆⋂
Kh∈Pi

a−1Kh holds. And conversely, if
⋂
Kk∈Pj

Kk ⊆
⋂
Kh∈Pi

a−1Kh, then since by Corol-
lary 9, Pj is a maximal set of quotients such that the equality

⋂
Kk∈Pj

Kk = U(Rj) holds,
it must be that a−1Kh ∈ Pj for Kh ∈ Pi. Thus, a−1Kh ∈ Pj for Kh ∈ Pi if and only if
the inclusion

⋂
Kk∈Pj

Kk ⊆
⋂
Kh∈Pi

a−1Kh holds. Because of the equality
⋂
Kh∈Pi

a−1Kh =
a−1 ⋂

Kh∈Pi
Kh, we get the equivalent condition

⋂
Kk∈Pj

Kk ⊆ a−1 ⋂
Kh∈Pi

Kh. Using Corol-
lary 9, we get the inclusion U(Rj) ⊆ a−1U(Ri). J
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Theorem 10 provides another way of constructing the NFA NG from a given set of
maximal grids covering the quotient-atom matrix: instead of applying the intersection rule
to get transitions of NG, one can use the sets of atoms corresponding to the grids, and apply
quotients of unions of the atoms involved. This can be done using the transition function of
the átomaton.

We mention that basically the same approach to the Kameda-Weiner method has been
presented by Champarnaud and Coulon [6]. They used projections of grids, consisting of
subsets of the state set of the DFA DRDT , to construct an NFA similarly as in Theorem 10.

In the next section, we will generalize this idea of using sets of atoms (or unions of atoms)
of a language L, to construct NFAs for L.

4 Generating Automata by a Set of Languages

In this section, we introduce a method to generate NFAs from a set of languages.
Let L be a regular language, and let K = {K0, . . . ,Kn−1} be the set of quotients of L.

A set {L0, . . . , Lk−1} of languages is a cover of the quotients of L, or simply, a cover for L,
if every quotient Kj of L is a union of some Li’s. We note that since L is the quotient of
itself by the empty word ε, L is a union of some Li’s.

We define the NFA based on a cover {L0, . . . , Lk−1} as follows:

I Definition 11. The NFA generated by a cover {L0, . . . , Lk−1} for L is defined by G =
(Q,Σ, δ, I, F ), where Q = {q0, . . . , qk−1}, I = {qi | Li ⊆ L}, F = {qi | ε ∈ Li}, and
qj ∈ δ(qi, a) if and only if Lj ⊆ a−1Li for all qi, qj ∈ Q and a ∈ Σ.

I Lemma 12. For all states qi, qj of NFA G and for any word w ∈ Σ+, qj ∈ δ(qi, w) if and
only if Lj ⊆ w−1Li.

Proof. We prove the statement by induction on the length of w. If w = a for some a ∈ Σ,
then the lemma holds by Definition 11.

Now, let w = ua, where u ∈ Σ+ and a ∈ Σ, and assume that the lemma holds for u,
that is, for all states qi, qj of G, qj ∈ δ(qi, u) if and only if Lj ⊆ u−1Li. Consider a state
qi, and let qk ∈ δ(qi, ua). Then there is a state qj , such that qj ∈ δ(qi, u) and qk ∈ δ(qj , a).
Equivalently, by the induction assumption and Definition 11, respectively, the inclusions
Lj ⊆ u−1Li and Lk ⊆ a−1Lj hold. Hence Lk ⊆ a−1Lj ⊆ a−1(u−1Li) = (ua)−1Li. Thus,
qk ∈ δ(qi, ua) if and only if Lk ⊆ (ua)−1Li. J

I Proposition 13. The following properties hold for NFA G:
1. Lqi,F (G) ⊆ Li for every qi ∈ Q.
2. L(G) ⊆ L.

Proof. 1. Consider a state qi of G. Let w ∈ Lqi,F (G). If w = ε, then qi ∈ F , and ε ∈ Li
by Definition 11. If w ∈ Σ+, then there is some qj such that qj ∈ F and qj ∈ δ(qi, w). By
Lemma 12, Lj ⊆ w−1Li and ε ∈ Lj implying that w ∈ Li.

2. Since L(G) is the union of right languages of the initial states of G, the claim follows
from Definition 11 and Part 1. J

I Lemma 14. If a−1Li is a union of Lj’s for every Li and a ∈ Σ, then w−1Li is a union
of Lj’s for every Li and w ∈ Σ+.
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Proof. Let a−1Li be a union of Lj ’s for every Li and a ∈ Σ, that is, a−1Li =
⋃
j∈Ji,a

Lj
for some Ji,a ⊆ {0, . . . , k − 1}. We prove the statement by induction on the length of w. If
w = a for some a ∈ Σ, then the lemma trivially holds.

Now, let w = ua, where u ∈ Σ+ and a ∈ Σ, and assume that the lemma holds for u,
that is, u−1Li =

⋃
j∈Ji,u

Lj for some Ji,u ⊆ {0, . . . , k − 1}. Then (ua)−1Li = a−1(u−1Li) =
a−1(

⋃
j∈Ji,u

Lj) =
⋃
j∈Ji,u

a−1Lj =
⋃
j∈Ji,u

⋃
h∈Jj,a

Lh. Thus, (ua)−1Li is a union of Lh’s.
J

I Proposition 15. Let G = (Q,Σ, δ, I, F ) be the NFA generated by a cover {L0, . . . , Lk−1}
for L. The equality Lqi,F (G) = Li holds for every qi ∈ Q if and only if a−1Li is a union of
Lj’s for every Li and a ∈ Σ.

Proof. First, let the equality Lqi,F (G) = Li hold for every qi ∈ Q. Let us consider any Li
and a ∈ Σ. Then it holds that a−1Li = a−1Lqi,F (G) =

⋃
qj∈δ(qi,a) Lqj ,F (G) =

⋃
Lj⊆a−1Li

Lj .
Conversely, assume that a−1Li is a union of Lj ’s for every Li and a ∈ Σ. Let us consider

any state qi of G. By Proposition 13, the inclusion Lqi,F (G) ⊆ Li holds, so we only have
to show that Li ⊆ Lqi,F (G). Let w be any word in Li. If w = ε, then qi ∈ F , and so
w ∈ Lqi,F (G). If w ∈ Σ+, then by Lemma 14, w−1Li is a union of Lj ’s. Since w ∈ Li, there
must be some Lj such that Lj ⊆ w−1Li and ε ∈ Lj . By Lemma 12, there is some qj ∈ F
such that qj ∈ δ(qi, w). Therefore w ∈ Lqi,F (G), and we conclude that Lqi,F (G) = Li. J

I Proposition 16. Let G = (Q,Σ, δ, I, F ) be the NFA generated by a cover {L0, . . . , Lk−1}
for L. If a−1Li is a union of Lj’s for every Li and a ∈ Σ, then G accepts L.

Proof. If a−1Li is a union of Lj ’s for every Li and a ∈ Σ, then by Proposition 15, Lqi,F (G) =
Li holds for every qi ∈ Q. Since L(G) =

⋃
qi∈I Lqi,F (G) =

⋃
Li⊆L Li = L, the equality

L(G) = L holds. J

We present four examples of covers for the language L and the corresponding NFAs
generated by these covers, where the condition of Proposition 16 holds, ensuring that the
generated NFA accepts L:

I Example 17. Consider the set K = {K0, . . . ,Kn−1} of quotients of L as a cover for L.
Let GK be the NFA generated by the set K. Since for every quotient Ki and a ∈ Σ there
exists some quotient Kj such that a−1Ki = Kj , we know by Proposition 16 that GK accepts
L. It is well known that the states of the minimal DFA correspond to the quotients of L.
However, the NFA GK is isomorphic to the saturated version [7] of the minimal DFA of L.

I Example 18. Consider the set K ′ ⊆ K of prime quotients of L, that is, those non-empty
quotients of L which are not unions of other quotients, as a cover for L. Let GK′ be the NFA
generated by the set K ′. Since every quotient of L is a union of some prime quotients of L,
it is clear that for every prime quotient K ′i and a ∈ Σ, a−1K ′i is a union of prime quotients.
Thus, GK′ accepts L by Proposition 16. The NFA GK′ is known as the canonical residual
finite state automaton (canonical RFSA) [7] of L.

I Example 19. Consider the set A = {A0, . . . , Am−1} of atoms of L. The set of atoms is a
cover for L, because every quotient of L is a union of atoms [5]. The NFA GA, generated by
the set A, is the átomaton of L (cf. Definition 1). It is known that for every atom Ai and
a ∈ Σ, a−1Ai is a union of atoms [5]. Thus, the condition of Proposition 16 holds, and GA
accepts L.
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I Example 20. Let A0, . . . , Am−1 be the atoms of L. Consider the setM = {M0, . . . ,Mm−1}
of the maximized versions of atoms, that is, Mi = max(Ai) for i = 0, . . . ,m− 1. Clearly, if
Ai ⊆ Kj for some atom Ai and quotient Kj , then the inclusionMi ⊆ Kj holds by Definiton 3.
Thus, the set M is a cover for L. The NFA GM , generated by the set M , is the maximized
átomaton [13] of L. Since for any Mi ∈M and a ∈ Σ, a−1Mi =

⋃
Aj⊆Mi

a−1Aj , and because
a−1Aj is a union of atoms [5], we get that a−1Mi is a union of atoms. By [13, Proposition 2,
Part 4], the inclusion Aj ⊆ a−1Mi holds if and only if Mj ⊆ a−1Mi holds. We conclude that
a−1Mi is a union of Mj ’s, and by Proposition 16, GM accepts L.

However, we note that the condition of Proposition 16 is not necessary for the generated
NFA to accept L.

I Proposition 21. If N is a trim NFA accepting L, with the set {L0, . . . , Lk−1} of the right
languages of its states, then this set is a cover for L.

Proof. By determinizing N , the quotients of L are formed as unions of some Li’s. J

I Proposition 22. Let N = (Q,Σ, δ, I, F ) be a trim NFA of L, with the set {L0, . . . , Lk−1}
of the right languages of its states, and let G = (Q′,Σ, δ′, I ′, F ′) be the NFA generated by
the set {L0, . . . , Lk−1}. Let ϕ : Q→ Q′ be the mapping assigning to every state q of N , the
state q′i of G, such that Li = Lq,F (N ). Then ϕ is a morphism from N into G.

Proof. Let N = (Q,Σ, δ, I, F ) be a trim NFA accepting L, with the set {L0, . . . , Lk−1}
of the right languages of its states. By Proposition 21, the set {L0, . . . , Lk−1} is a cover
for L. Let G = (Q′,Σ, δ′, I ′, F ′) be the NFA generated by the set {L0, . . . , Lk−1}, with
Q′ = {q′0, . . . , q′k−1}. Let ϕ : Q → Q′ be the mapping assigning to every state q of N , the
state q′i of G, such that Li = Lq,F (N ). We note that there may be some states p and q of N ,
such that p 6= q and Lp,F (N ) = Lq,F (N ), so ϕ is a many-to-one correspondence. We show
that ϕ is a morphism from N into G.

First, if q ∈ I is an initial state of N , then there is some Li, such that Li = Lq,F (N ) and
Li ⊆ L, which implies that the corresponding state q′i of G is also initial, that is, ϕ(q) ∈ I ′.

Similarly, if q ∈ F , then there is some Li, such that Li = Lq,F (N ) and ε ∈ Li, implying
that q′i ∈ F ′, that is, ϕ(q) ∈ F ′.

If q ∈ δ(p, a) holds for some states p, q ∈ Q and a ∈ Σ, then there are some Li and Lj ,
such that Li = Lp,F (N ), Lj = Lq,F (N ), and Lj ⊆ a−1Li. It is implied that q′j ∈ δ′(q′i, a),
that is, ϕ(q) ∈ δ′(ϕ(p), a). We conclude that ϕ is a morphism from N into G. J

I Theorem 23. If there is a trim NFA accepting L, with the set {L0, . . . , Lk−1} of the right
languages of its states, then the NFA generated by the cover {L0, . . . , Lk−1} for L is such an
NFA.

Proof. Let N = (Q,Σ, δ, I, F ) be a trim NFA accepting L, with the set {L0, . . . , Lk−1}
of the right languages of its states. By Proposition 21, the set {L0, . . . , Lk−1} is a cover
for L. Let G = (Q′,Σ, δ′, I ′, F ′) be the NFA generated by the set {L0, . . . , Lk−1}, with
Q′ = {q′0, . . . , q′k−1}. By Proposition 22, there is a morphism ϕ : Q → Q′ from N into G,
such that ϕ(q) = q′i for some q ∈ Q and q′i ∈ Q′ if and only if Lq,F (N ) = Li.

The morphism ϕ implies that for every state q ∈ Q, with its right language Lq,F (N ) = Li
for some Li, the inclusion Lq,F (N ) ⊆ Lq′

i
,F ′(G), that is, Li ⊆ Lq′

i
,F ′(G) holds. Since by

Proposition 13, Part 1, the inclusion Lq′
i
,F ′(G) ⊆ Li holds, the equality Lq′

i
,F ′(G) = Li

must hold. Also, the morphism ϕ implies that the inclusion L(N ) ⊆ L(G) holds. Since by
Proposition 13, Part 2, L(G) ⊆ L, and we assumed that L(N ) = L, we conclude that G
accepts L. J
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Theorem 23 shows that our method to generate NFAs from a set of languages is indeed
general. That is, if one is interested in finding an NFA for a given language, such that the
states of that NFA correspond to certain languages, this method can be used to generate
such an NFA if it exists. If the generated NFA is not such an NFA, then it does not exist.

To conclude this section, we point out three cases which can occur if a cover {L0, . . . , Lk−1}
for L is used to generate an NFA G:

First, the NFA G accepts L, and the right language of every state qi of G is Li. This case
is described by Propositions 15 and 16.

In the second case, the NFA G accepts L, but the right language of some state qi of G is
not Li. The third case is when G does not accept L. Characterization of the last two cases is
an interesting problem for further study.

5 Generating Automata by Atomic Languages

Let L be a regular language, with its quotients K0, . . . ,Kn−1 and atoms A0, . . . , Am−1.

I Definition 24. A language Li is atomic with regard to L if Li is a union of atoms of L.

Let N = (Q,Σ, δ, I, F ) be a trim NFA accepting L, with Q = {q0, . . . , qk−1}. For every
state qi of N , we define an atomic language Bi =

⋃
Lqi,F (N )∩Ah 6=∅Ah as the union of all

atoms of L which intersect with the right language of qi. In other words, Bi is the smallest
atomic language that contains the right language of state qi. Clearly, if Lqi,F (N ) ⊆ Kj holds
for some quotient Kj of L, then, because every quotient is a union of atoms, Bi ⊆ Kj holds
as well. Since by Proposition 21, the set of right languages of the states of N forms a cover
for L, the set of Bi’s has the same property. We note that there may be some states qi and
qj of N , such that qi 6= qj , but Bi = Bj . Let the set of distinct Bi’s be B.

Let GB = (QB ,Σ, δB , IB , FB) be the NFA generated by the cover B for the language L.
We note that |QB | 6 |Q|. Let ϕatom : Q→ QB be the mapping assigning to state qi of N ,
the state qBi

of GB , such that Bi =
⋃
Lqi,F (N )∩Ah 6=∅Ah.

I Proposition 25. The mapping ϕatom is a morphism from N into GB.

Proof. First, if qi ∈ I is initial, then Lqi,F (N ) ⊆ L, and since L is a union of (initial) atoms,
the inclusion Bi ⊆ L holds, implying that qBi is also initial, that is, ϕatom(qi) ∈ IB .

Similarly, if qi ∈ F , then ε ∈ Lqi,F (N ), implying that ε ∈ Bi, and thus qBi
∈ FB , that is,

ϕatom(qi) ∈ FB .
It remains to be shown that for all states qi, qj ∈ Q and a ∈ Σ, if qj ∈ δ(qi, a) holds, then

ϕatom(qj) ∈ δB(ϕatom(qi), a) holds as well. Let qj ∈ δ(qi, a) for some qi, qj ∈ Q and a ∈ Σ.
Then the inclusion Lqj ,F (N ) ⊆ a−1Lqi,F (N ) holds. Because of Lqi,F (N ) ⊆ Bi, the inclusion
Lqj ,F (N ) ⊆ a−1Bi holds. Since it is known that any quotient of a union of atoms is some
union of atoms, a−1Bi is a union of atoms. Consequently, Lqj ,F (N ) ⊆ Bj ⊆ a−1Bi holds,
implying that qBj

∈ δB(qBi
, a), that is, ϕatom(qj) ∈ δB(ϕatom(qi), a).

We conclude that ϕatom is a morphism from N into GB . J

I Corollary 26. For every state qi of N , the inclusion Lqi,F (N ) ⊆ LqBi
,FB

(GB) holds. Also,
L(GB) = L.

Proof. The morphism ϕatom : Q → QB implies that for every qi ∈ Q, the inclusion
Lqi,F (N ) ⊆ LqBi

,FB
(GB) holds, and also that L(N ) ⊆ L(GB) holds.

Since L(N ) = L, and we know by Proposition 13 that L(GB) ⊆ L, we conclude that
L(GB) = L. J
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I Corollary 27. If there is a one-to-one correspondence between the sets Q and B, then the
NFA N is isomorphic to a subautomaton of GB.

Next, for every atomic language Bi we consider its maximized version, the language
Ci = max(Bi) =

⋂
Bi⊆Kj

Kj . Clearly, Ci is also atomic, and Bi ⊆ Ci. If the inclusion
Bi ⊆ Kj holds for some quotient Kj , then by the definition of Ci, Ci ⊆ Kj holds as well.
Since the set of Bi’s forms a cover for L, so does the set of corresponding Ci’s. We note that
there may be some Bi and Bj , such that Bi 6= Bj , but Ci = Cj . Let the set of distinct Ci’s
be C.

Let GC = (QC ,Σ, δC , IC , FC) be the NFA generated by the cover C for the language L.
We note that |QC | 6 |QB |. Let ϕmax : QB → QC be the mapping assigning to state qBi

of
GB , the state qCi of GC .

I Proposition 28. The mapping ϕmax is a morphism from GB into GC .

Proof. First, if qBi ∈ IB, then Bi ⊆ L. Since Ci is a subset of the same quotients as Bi,
Ci ⊆ L, implying that qCi

∈ IC . If qBi
∈ FB, then ε ∈ Bi, and since Bi ⊆ Ci, it holds that

ε ∈ Ci, so we get qCi ∈ FC .
We also have to show that if qBj

∈ δB(qBi
, a) holds for some states qBi

and qBj
of

GB and a ∈ Σ, then qCj
∈ δC(qCi

, a) for the corresponding states qCi
and qCj

of GC .
Indeed, if qBj

∈ δB(qBi
, a), then Bj ⊆ a−1Bi. By Proposition 5, Part 1, we know that

max(Bj) ⊆ max(a−1Bi), and by Part 2, the inclusion max(a−1Bi) ⊆ a−1max(Bi) holds.
Since Ci = max(Bi) and Cj = max(Bj), we get that Cj ⊆ a−1Ci holds. Thus, qCj ∈
δC(qCi

, a).
We conclude that ϕmax is a morphism from GB into GC . J

I Corollary 29. For every state qBi
of GB, the inclusion LqBi

,FB
(GB) ⊆ LqCi

,FC
(GC) holds.

Also, L(GC) = L.

Proof. The morphism ϕmax : QB → QC implies that for every qBi ∈ QB, the inclusion
LqBi

,FB
(GB) ⊆ LqCi

,FC
(GC) holds, and also that L(GB) ⊆ L(GC) holds.

Since L(GB) = L by Corollary 26, and L(GC) ⊆ L by Proposition 13, we conclude that
L(GC) = L. J

I Corollary 30. If there is a one-to-one correspondence between the sets B and C, then the
NFA GB is isomorphic to a subautomaton of GC .

Based on the results above, we can state the following theorem:

I Theorem 31. There is a morphism ϕmax ◦ ϕatom from a trim NFA N into the NFA GC ,
generated by the set C of languages Ci = max(

⋃
Lqi,F (N )∩Ah 6=∅Ah), where qi is a state of N ,

with L(GC) = L(N ). Moreover, if there is a one-to-one correspondence between the states of
N and GC , then N is isomorphic to a subautomaton of GC .

The following theorem shows that the NFA minimization method presented by Kameda
and Weiner is a special case of generating an NFA:

I Theorem 32. Let G = {g0, . . . , gk−1} be a set of maximal grids, with gi = Pi×Ri, forming
a cover of the quotient-atom matrix of L. The NFA NG, obtained by the Kameda-Weiner
method using G, is isomorphic to the NFA GC , generated by the set C = {C0, . . . , Ck−1} of
languages Ci = U(Ri), i = 0, . . . , k − 1.
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Proof. Let G = {g0, . . . , gk−1} be a set of maximal grids gi = Pi × Ri, forming a cover of
the quotient-atom matrix of L. Let NG = (G,Σ, ηG, IG, FG) be the NFA obtained by the
intersection method using G, and let GC = (QC ,Σ, δC , IC , FC) be the NFA generated by
the set C = {C0, . . . , Ck−1}, where Ci = U(Ri) for i = 0, . . . , k − 1. We show that NG is
isomorphic to GC by applying Theorem 10.

First, by Theorem 10, for every grid gi ∈ G, it holds that gi ∈ IG if and only if the
inclusion U(Ri) ⊆ L holds, that is, Ci ⊆ L. Since this is equivalent to the condition qCi

∈ IC ,
there is a one-to-one correspondence between the sets IG and IC .

Also, it holds that gi ∈ FG if and only if ε ∈ U(Ri), that is, ε ∈ Ci. This is equivalent to
the condition qCi

∈ FC . Thus, there is a one-to-one correspondence between the sets FG and
FC .

It remains to show that gj ∈ ηG(gi, a) if and only if qCj
∈ δC(qCi

, a) for all gi, gj ∈ G
and a ∈ Σ. Indeed, by Theorem 10, gj ∈ ηG(gi, a) holds if and only if the inclusion
U(Rj) ⊆ a−1U(Ri) holds, that is, Cj ⊆ a−1Ci. On the other hand, by Definition 11,
qCj ∈ δC(qCi , a) if and only if Cj ⊆ a−1Ci, where qCi , qCj ∈ QC and a ∈ Σ. Therefore,
gj ∈ ηG(gi, a) holds if and only if qCj

∈ δC(qCi
, a) holds for all gi, gj ∈ G and a ∈ Σ. J

I Corollary 33. There exists an atomic NFA with the right languages C0, . . . , Ck−1, such
that the set of atoms contained in every Ci is maximal, if and only if the Kameda-Weiner
method finds it.

Proof. Follows from Theorem 23 and Theorem 32. J

I Corollary 34. There is a morphism from any trim NFA N into the NFA NG obtained by
the Kameda-Weiner method using the set G of maximal grids, corresponding to the maximal
sets of atoms associated to the right languages of N .

Proof. Follows from Theorem 31 and Theorem 32. J

As a special case, if N is a minimal NFA, then by Theorem 31, N is isomorphic to a
subautomaton of the NFA GC generated by the set C of the maximized atomic languages of
the right languages of N , or equivalently, as by Theorem 32, of the NFA NG obtained by the
Kameda-Weiner method, using the corresponding maximal grids.

This indeed ensures that if one considers covers of the quotient-atom matrix, starting
from the smallest cover, and produces NFAs according to the Kameda-Weiner method, or
equivalently, generates NFAs, using unions of atoms corresponding to the grids in the cover,
the first obtained NFA which accepts the given language, is a minimal NFA.

As we mentioned earlier, Champarnaud and Coulon [6] have presented an approach to
the Kameda-Weiner method which, similarly to our method, finds NFAs corresponding to
grid covers, using projections of grids (corresponding to sets of atoms). We note that they
also used grid extensions and automaton morphisms, similarly to our theory. However, we
point out that our theory explicitly shows that atoms of regular languages have an important
role in the Kameda-Weiner method.

We also mention that Sengoku’s method [12] of constructing NFAs is related to atoms; it
yields atomic NFAs. However, we note that by a result proved in [5], not every language has
an atomic minimal NFA.
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6 Conclusions

We presented a reinterpretation of the Kameda-Weiner method for NFA minimization, and
generalized it by introducing a method to generate NFAs by certain sets of languages.
We hope that our contributions provide a useful insight into the difficult problem of NFA
minimization, to obtain a better understanding of this problem.

We also think that the introduced method of generating NFAs is of interest on its own as
exemplified in Section 4. This method provides a unified view of the construction of several
known NFAs, including the canonical RFSA and the átomaton of the language.
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for discussions.
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